Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зона плавления экструдера

Рис. У.53. Исследование влияния флуктуации п на производительность, температуру и давление экструдера. Материал — полиэтилен высокого давления ( Хо = 0,34) кгс-сек 1см Ь= 1,08-10 1/°С Tg 112° С). Кривые — внешние характеристики червяка при разных значениях п (1 — 3 2 — 2 3 — 4). Числа на кривых — температура расплава в °С. Наклонные прямые — характеристики головки. Рабочие точки /, //, 11 — головка с малым сопротивлением IV, V, VI — головка с высоким сопротивлением. Геометрические характеристики червяка иО = = 26,3 см О = 6,3 см 1 = 48 см, 2 = 23,8 см (зона плавления) Ах = 0,96 см кг = 0,17 см 1 = 6,3 СМ, е = 0,63 см 6 = 0,02 см. Рис. У.53. <a href="/info/135031">Исследование влияния</a> флуктуации п на производительность, температуру и <a href="/info/333817">давление экструдера</a>. Материал — <a href="/info/219094">полиэтилен высокого давления</a> ( Хо = 0,34) кгс-сек 1см Ь= 1,08-10 1/°С Tg 112° С). Кривые — <a href="/info/318006">внешние характеристики червяка</a> при <a href="/info/1326726">разных значениях</a> п (1 — 3 2 — 2 3 — 4). Числа на кривых — температура расплава в °С. <a href="/info/1423002">Наклонные прямые</a> — <a href="/info/318007">характеристики головки</a>. <a href="/info/318144">Рабочие точки</a> /, //, 11 — головка с <a href="/info/1427899">малым сопротивлением</a> IV, V, VI — головка с <a href="/info/320970">высоким сопротивлением</a>. <a href="/info/12785">Геометрические характеристики</a> червяка иО = = 26,3 см О = 6,3 см 1 = 48 см, 2 = 23,8 см (зона плавления) Ах = 0,96 см кг = 0,17 см 1 = 6,3 СМ, е = 0,63 см 6 = 0,02 см.

    Математическое описание процессов, происходящих в экструдерах, перекачивающих расплавы, справедливо и для пластицирующей экструзии. Однако при этом необходимо дополнить его описанием движения твердых частиц полимера в загрузочных бункерах под действием гравитационных сил, а также описанием распределения давления, условий образования сводов и зависания в бункере, распределения температуры и давления в зоне питания методом расчета длины зоны задержки и распределения давления и температуры в пробке гранул, описанием интенсивности плавления и изменения ширины пробки вдоль зоны плавления, включающим определение средней температуры расплава, перетекающего из тонкой пленки в область циркулирующего запаса. Далее необходимо располагать методами расчета мощности, потребляемой в зонах питания, задержки и плавления, а также методами предсказания условий, вызывающих флуктуации производительности экструдера. Казалось бы, можно свести всю задачу моделирования к описанию полей скоростей, температуры и напряжений как в твердой, так и в жидкой фазах, из которых можно рассчитать все другие интересующие нас переменные. Однако в случае пластицирующей экструзии получить строгое решение задачи гораздо труднее, чем в случае экструзии [c.433]

    Для определения ширины твердой пробки воспользуемся дифференциальным уравнением материального баланса. При составлении уравнения не будем принимать во внимание количество материала, находящегося в тонком слое расплава, а скорость движения пробки будем по-прежнему считать постоянной (это допущение очень хорошо согласуется с экспериментальными данными Маршалла наблюдавшего по показаниям термопар за движением порции расплава, впрыснутого через отверстия в стенке корпуса в пробку гранул в зоне плавления экструдера)  [c.249]

    I. При расплавлении в шнековых аппаратах (экструдерах) удаление части пузырей происходит за счет их выдавливания в зоне плавления. Кроме того, в экструдерах часто имеется зона расширения, где над поверхностью расплава создается вакуум для отсоса газов. За счет интенсивного перемешивания расплава происходит постоянное обновление поверхности в вакуумной зоне, через которую быстро удаляются летучие соединения. Таким методом дегазируют расплавы полиолефинов, полиамидов и других веществ. [c.123]


    Некоторые экструдеры оснащаются червяком с ярко выраженной зоной плавления, представляющей собой участок червяка с коническим сердечником, располагающийся между зоной питания и зоной дозирования. [c.245]

    В реальном экструдере производительность зоны питания должна превышать производительность зон плавления и дозирования, и обе эти зоны играют роль своеобразного сопротивления, автоматически ограничивающего производительность зоны питания до значения, соответствующего фактической производительности машины. Поэтому величину угла 6 можно рассчитать как функцию параметра (В)  [c.260]

    Результаты расчета показывают, что максимальная производительность экструдера в выбранном температурном режиме не может превышать 120 кг/ч, так как при этом зона плавления занимает почти весь червяк (зона дозирования оказывается равна одному шагу). Фактическая производительность, определяемая положением рабочих точек, составляет 33—98 кг/ч (в зависимости от выбранной скорости вращения червяка). [c.307]

    Особенно нежелателен захват расплавом зерен полимера или даже целых островов , откалывающихся от так называемого клина гранулята или порошка они проникают вплоть до эжекторной зоны и даже в головку и являются причиной дефектов окраски экструдата, в общем, при достаточном диспергировании красящего вещества. Во избежание этого целесообразно размещать перемешивающие элементы в зоне разрушающегося клина гранулята или элементы, создающие усилия сдвига, — в конце зоны плавления. Обычно в одночервячных экструдерах эта проблема проявляется наиболее остро. Пространство теплообмена в них меньше, чем в двухчервячных. Кроме того, последние работают с меньшей частотой вращения, во избежание термического повреждения материала при больших усилиях сдвига (ПВХ). Это же относится (хотя и проявляется не в такой мере) и к двух-червячным экструдерам, особенности конструкции которых допускают работу с большой частотой вращения. [c.199]

    Полная характеристика пластицирующего экструдера зависит от того, как червяк выполняет каждую из своих трех функций транспортирование сыпучего материала, плавление материала и его выдавливание. Это положение иллюстрируется экспериментами Бернхардта и Мак-Келви, которые уже рассматривались в предыдущем разделе. Было показано, что работа зоны плавления червяка может в значительной степени изменяться при изменении температуры червяка в зоне плавления. Так как в использованном для экспериментов экструдере имелся манометр, расположенный в цилиндре, то была возможность непосредственно наблюдать за эффектом, который вызывался при изменении режима работы каждой из зон червяка. [c.312]

    Суммарное давленпе, развиваемое на выходе из экструдера, представляет собой су.мму давлений, создаваемых в каждой из функциональных зон. Перепад давления, создаваемый в зоне плавления, может быть получен для степенной жидкости из уравнения [94] [c.142]

    Рассмотренная схема течения характерна для случая, когда отсутствует перепад давления вдоль винтового канала. Обычно в зависимости от давления, развиваемого в конце зоны плавления, и сопротивления формующей головки экструдер может работать в двух режимах. В том случае, когда в зоне загрузки и плавления создается низкое давление, зона дозирования работает как нагнетающий насос и давление к выходу из экструдера повышается, т. е. в зоне дозирования имеется отрицательный градиент давления (рис. 5.11). В результате часть расплава течет по винтовым каналам шнека в направлении к зоне плавления со скоростью Уд,,, которая совпадает по направлению со скоростью Vq, возникающей от вращения шнека (рис. 5.12,6). При увеличении давления в головке перепад давления вдоль винтового канала возрастает, поэтому скорость v p также повышается (рис. 5.12, а). При геометрическом сложении векторов скорости Удр и vq изменяется эпюра скорости течения расплава в тангенциальном направлении (рис. 5.13). Таким образом, чем больше перепад давления, тем [c.120]

    Метод сухого окрашивания характеризуется следующими достоинствами 1) доступность и простота оборудования 2) экономичность 3) возможность быстрого перехода с цвета на цвет. Однако он имеет и существенные недостатки 1) усилия сдвига в экструдере очень малы, и пигмент, налипший на гранулы, не успевает диспергироваться в расплаве полимера 2) при транспортировке или хранении опудренного гранулята происходит осыпание пигмента 3) наличие порошкообразного пигмента в зоне плавления затрудняет процесс переработки полимера 4) результат окрашивания не всегда хорошо воспроизводим. [c.170]

    Другой метод реализации описанного способа плавления осуществлен в одночервячных экструдерах и других машинах подобной конфигурации, в которых деформация материала является следствием напряжений сдвига, вызванных движением стенок. В частности, в червячных экструдерах, которые спроектированы и работают таким образом, что в зонах питания червяка (см. разд. 12.1) развиваются очень высокие давления, наблюдаются более высокие скорости плавления, чем те, которые предсказываются моделями плавления, основанными на анализе плавления по механизму теплопроводности с принудительным удалением расплава за счет движения стенок. [c.298]


    Реализация теплового удара в данном случае способствует замене внешнего трения гранул внутренним сдвигом. При этом возникают интересные теоретические задачи исследование неизотермического процесса плавления с учетом градиента давления в зонах действия энергетического парадокса , а также разработка и решение математической модели неизотермического напорного течения расплава полимера в дисковой части комбинированных экструдеров, где действует не только градиент давления, развиваемый червяком, но и нормальные напряжения в дисковом рабочем зазоре. Ожидает своего решения также неизотермический процесс плавления и образования расплава в чисто дисковых экструдерах, хотя нам и представляются более перспективными комбинированные экструдеры, которые могут обеспечить стабильный режим переработки термопластов. [c.107]

    Объемный расход поступательного течения определяет производительность экструдера и, следовательно, лимитирует скорость движения пробки гранул в пределах зон питания и плавления. Циркуляционное течение возникает вследствие существования составляющей скорости относительного движения в направлении, перпендикулярном оси винтового канала, увлекающей расплав в этом направлении. Двигаясь поперек канала, поток встречает толкающую стенку и направляется вдоль нее ко дну канала, а затем в обратную сторону. Циркуляционное течение обеспечивает гомогенизацию расплава, выравнивает распределение температур и позволяет использовать экструзию для смешения. [c.241]

    В начале зоны температура расплава равна температуре плавления. Продвигаясь в зоне дозирования, полимер продолжает разогреваться как за счет подвода тепла извне, так и за счет тепла, выделяющегося вследствие интенсивной деформации сдвига. Одновременно идет процесс гомогенизации расплава. Происходит окончательное расплавление мелких включений и выравнивание температурного поля. Для нормальной работы экструдера необходимо, чтобы расплав, поступающий к рабочему инструменту (к головке), имел заданную, однородную по сечению температуру. Поэтому время пребывания расплава в зоне дозирования должно быть достаточно для его прогрева и гомогенизации. [c.241]

    Температура перехода из одного состояния в другое и вид термомеханической кривой используются для выбора метода и определения условий переработки полимеров. Так, на основании вида термомеханической кривой можно рекомендовать условия переработки. Если переход полимера из кристаллического состояния в Бязкотекучее происходит в узком температурном интервале, то при переработке такого полимера необходимо точное регулирование температуры. Аморфные полимеры в интервале применяемых температур переработки могут подвергаться значительному деформированию, например, в зоне плавления экструдера, поэтому шнек в этой зоне может иметь переменную глубину нарезки на сравнительно большой длине. Кристаллические полимеры до температуры плавления почти не деформируются, поэтому для [c.9]

    Внешняя характеристика червяка пластицируюш,его экструдера обычно имеет нелинейную форму (вид внешней характеристики червяка, нерекачиваюш,его расплав, обсуждался в предыдущем разделе). Пластицирующий червяк выполняет ряд функций, и все реализуемые в нем элементарные стадии, кроме перекачивания и смешения расплава, протекают в изменяющихся условиях. Так, по достижении определенного расхода производительность зоны питания может оказаться недостаточной, что приводит к работе в режиме голодного питания. Изменение расхода вызывает изменение длины зоны плавления следовательно, вдоль кривой внешней характеристики червяка меняется не только температура расплава, как это имело место для экструдера, перекачивающего расплав (см, рис. 12.6), но в экструдате могут появиться нерасплавленные частицы. Более того, средняя температура расплава определяется при этом не только теплом, передаваемым потоку расплава от стенок и за счет вязкого трения в самом расплаве, но также и интенсивностью плавления (т. е. условиями транспортировки расплава из тонкой пленки к слою расплавленного полимера). Наконец, могут изменяться расположение и длина зоны запаздывания, оказывая влияние на положение и длину зон и дозирование. [c.433]

    Теоретический анализ литья под давлением включает все элементы анализа установившейся непрерывной пластицируюш,ей экструзии, а кроме того, осложняется анализом неустойчивого течения, обусловленного периодическим враш,ением червяка, на которое накладывается его осевое перемеш,ение. Для управления процессом литья под давлением важной является зона плавления в цилиндре пластикатора. Экспериментально показано, что механизм плавления полимера в цилиндре литьевой машины подобен пластикации в червячном экструдере [1 ]. На этом основана математическая модель процесса плавления в пластикаторе литьевой машины [2]. Расплав полимера скапливается в полости, образующейся в цилиндре перед червяком. Гомогенность расплава, полученного на этой стадии, влияет как на процесс заполнения формы, так и на качество изделий. В настоящем разделе рассматривается только процесс заполнения формы. Предполагается, что качество смешения и температура расплава остаются постоянными на протяжении всего цикла литья и не изменяются от цикла к циклу. [c.518]

    В многочервячных экструдерах совергиенствуется конструкция червяков с более глубокими канавками (при этом удается снизить скорость вращения червяков) применяются конические червяки в трехчервячных экструдерах, а также последовательное pa пoлoлieниe червяков с разделением зон плавления и транспортировки расплава. При этом отношение L/D первого червяка такой двухчервячной системы составляет 18 1, второго 14 1, далее располагается интенсивно охлаждаемая головка. Достижения в области экструзии открывают новые возможности получения и использования мягкой транспортной тары из полимерных материалов. [c.43]

    Транспортировка сыпучих материалов происходит только в зоне 1 пластицирующего экструдера. Назначение этой зоны перемещать твердые частицы нерасплавленного полимера от загрузочной воронки к зоне 2 — зоне плавления полимера. Может показаться, что практически транспортирование сыпучих материалов в пластицирующих экструдерах не является достаточно серьезной проблемой, особенно если они работают на материалах с хорощей сыпучестью и достаточно больщим насыпным весом. Однако транспортирование порошков с плохой сыпучестью и низкой насыпной массой в зоне 1 пластицирующего экструдера представляет собой трудную задачу. [c.300]

    В зоне питания происходит дрием перерабатываемого материала и его перемещение в направленпи зоны плавления и уплотнения. Для повышеиия производительности зона загрузки выполняется с большим объемом винтового канала червяка, а также используются устройства для принудительной запитки экструдера. [c.120]

    Ранее было отмечено, что плавление в одночервячном экструдере носит пленочный характер, а в результате отрыва пробки при. М 0,2 частццы нерасплавленного полимера попадают в расплав, и двигаясь с ним, могут достигать (особенно при больших производительностях) формующего инструмента. Для улучшения температурной однородности экструдата, а также увеличения скорости плавления поли.мера в конце зоны плавления могут устанавливаться различные диспергирующие элементы, а также устройства для отделения расплава от нерасплавленного полимера. В общем случае желательна установка диспергирующих эле.ментов перед смесительными. [c.148]

    При заданном материале и известной его сыпучести, имея сведения о процессах плавления полимера, хотя бы исходя из экспериментальных исследований на одночервячных экстрз де-рах (скорость плавления, изменение объема по Р—У—Г-диаг-рам.ме) можно с помощью упомянутой кривой изменения объема достичь удовлетворительного проект рова1 ия зон двухчервячного экструдера, Гсометр1 ческая степень сжатия для двух- [c.191]

    Фактическая длина зоны дозирования определяется кинетикой процессов плавления и суш,ественно зависит от температурного режима и производительности экструдера. Модельный процесс эк tpy-дера в соответствии с взглядами Тадмора и его школы может быть представлен следуюпщм образом. Сначала для выбранного рёжима рассчитывается объемная производительность зоны дозирования. Затем по определенной производительности при заданной температуре цилиндра определяется суммарная длина зон плавления и питания. После этого определяется давление и температура расплава на выходе из червяка. [c.229]

    При расплавлении лранул полимера в плавильных головках (полиамиды, полиэфиры) пузырьки газов попадают в расплав в незначительной степени. Поскольку слой расплава очень тонок, они успевают частично удалиться и практически не попадают в зону забора расплава насосиком. При рашлавлении в экструдерах удаление части пузырей производится путем их выдавливания в зоне плавления. [c.85]

    В пластицирующем экструдере можно выделить два самостоятель ные участка транспортировки. Первый участок расположен непо средственно за областью плавления здесь можно применять модели описанные в предыдущем разделе, без какой-либо модификации Кроме того, транспортировка расплава происходит в слое расплава который граничит с твердой пробкой. На этом участке ширина слоя по мере продвижения по каналу увеличивается. Более того, непрерывно увеличивается также и массовый расход находящегося перед толкающей стенкой расплава в результате притока расплава из пленки. Обе эти величины, а также средняя температура пленки расплава могут быть рассчитаны на основании модели плавления. Следовательно, модель движения расплава в зоне дозирования можно использовать для приблизительного расчета локального градиента давления и изменения температуры в пределах малых шагов расчета, используя средние значения локального расхода и локальную ширину слоя расплава [2, 27]. На рис. 12.20 представлены результаты таких расчетов. При этом предполагают, что процесс плавления оказывает сильное влияние на процесс нагнетания расплава, а возможное влияние последнего на плавление пренебрежимо мало. В действительности расплав, находящийся перед пробкой, сжимает ее и создает на ее поверхности тангенциальные напряжения, которые наряду с вязким трением в пленке расплава и силами трения, действующими у сердечника червяка и винтового канала, определяют распределение напряжений в твердой пробке передней стенки. Попытки такого анализа взаимодействия двух фаз, которые в принципе могут позволить прогнозировать деформационное поведение пробки, ее ускорение и разрушения, можно найти в работах [13, 28]. [c.452]

    Экструзия, так же как и литье иод давлением, наиболее производительный и распространенный способ переработки ТФП. Для экструзии используют червячные экструдеры с отношением длины к диаметру червяка (2025) 1. В длинных цилиндрах создается большая площадь теплопередачи и нагревание полимера происходит равномерно. Отношение длины зоны питания, транспортирования и плавления к длине зоны гомогенизации и сжатия расплава до давления, достаточного для выдавливания его через мундшт к, составляет примерно 3 1. Решетка в головке экструдера способствует переводу вращательного движения расплава в прямолинейное. Необходимо регулирование частоты вращения червяка от 1 до 60 об/мин. Приспособления для приема изделий должны обеспечивать быстрое охлаждение и точную стабилизацию температуры. [c.199]

    Большинство одночервячных экструдеров, применяемых в промышленности переработки пластмасс, является пластицирующими, т. е. полимер загружают в них преимущественно в виде твердых частиц (гранул). Гранулы перемещаются в загрузочной воронке под действием сил тяжести и заполняют канал червяка, в котором они транспортируются и сжимаются за счет сил трения, затем плавятся или пластицируются под действием сил трения. Наряду с плавлением происходят процессы генерирования давления и смешения полимера. Таким образом, процесс пластнцирующей экструзии (рис. 12.7) включает все четыре элементарные стадии транспортировку твердых частиц в зонах 1, 2 я 3 плавление, перекачивание и смешение в зоне 4. Удаление летучих может происходить в зонах 3 и 4 благодаря особой конструкции червяка. [c.428]

    В результате экспериментов установлено, что на большей части червяка экструдера сосуш,ествуют твердая и жидкая фазы, однако разделение их приводит к образованию слоя расплава у толкающего гребня червяка и твердой полимерной пробки у тянущего гребня. Ширина слоя расплава постепенно увеличивается в направлении вдоль винтового канала, в то время как ширина твердой пробки умень -шается. Твердая пробка, имеющая форму непрерывной винтовой ленты изменяющейся ширины и высоты, медленно движется по каналу (аналогично гайке по червяку), скользя по направлению к выходу и постепенно расплавляясь. Все поперечное сечение канала червяка от точки начала плавления до загрузочной воронки заполнено нерасплавленным полимером, который по мере приближения к загрузочному отверстию становится все более рыхлым. Уплотнение твердого полимера позволяет получать экструдат, не содержащий воздушных включений пустоты между частицами (гранулами) твердого полимера обеспечивают беспрепятственный проход воздушных пузырьков из глубины экструдера к загрузочной воронке. Причем частицы твердого полимера движутся по каналу червяка к головке, а воздушные пузырьки остаются неподвижными. Хотя описанное выше поведение расплава в экструдерах является достаточно общим как для аморфных, так и для кристаллических полимеров, малых и больших экструдеров и разнообразных условий работы, оказалось, что при переработке некоторых композиционных материалов на основе ПВХ слой расплава скапливается у передней стенки канала червяка [12]. Кроме того, в больших экструдерах отсутствует отдельный слой расплава на боковой поверхности канала червяка, чаще наблюдается увеличение толщины слоя расплава на поверхности цилиндра [131. Как отмечалось в разд. 9.10, диссипативное плавление — смешение возможно в червячных экструдерах в условиях, которые приводят к возникновению высокого давления в зоне питания. В данном разделе будет рассмотрен процесс плавления, протекающий по обычному механизму. Отметим, что на большей части длины экструдера [c.429]

    В загрузочной воронке мы начинаем медленное и в некоторой степени неустойчивое движение вниз, которое сопровождается многократно повторяющимися столкновениями с соседними гранулами и кратковременными зависаниями в своде. Это продолжается до тех пор, пока мы не достигнем зоны сужения — горловины питающего отверстия. Здесь винтовой гребень подхватывает гранулы и толкает их вперед. Он мгновенно догоняет нашу гранулу, и она начинает вращаться (при этом изменяется ее система координат). Теперь мы регистрируем свое движение относительно червяка, и поэтому кажется, что цилиндр вращается в противоположном направлении. Мы находимся в мелком канале, ограниченном гребнями червяка, его сердечником и поверхностью цилиндра, и начинаем медленное движение по каналу, сохраняя свое местоположение относительно ограничивающих канал стенок. По мере передвижения соседние гранулы нажимают на нашу гранулу со все возрастающим усилием, причем пространство между гранулами постепенно уменьшается. Большинство гранул испытывает такое же воздействие, за исключением тех, которые контактируют с цилиндром и червяком. Движущаяся поверхность цилиндра оказывает интенсивное тормозящее воздействие, в то время как трение о поверхность червяка приводит к возникновению силы трения, направленной вдоль винтового канала. Из разд. 8.13 известно, что это торможение о поверхность цилиндра является движущей силой, вызывающей перемещение частиц твердого полимера в канале червяка. Оба эти фрикционных процесса приводят к выделению тепла, возрастанию температуры полимера, и в особенности слоя, расположенного у поверхности цилиндра. В каком-то сечении температура слоя может превысить температуру плавления или размягчения полимера, и фрикционное торможение переходит в вязкое трение, т. е. твердый полимер перемещается по каналу червяка за счет напряжений сдвига, генерируемых в пленке расплава. Однако в более общем случае еще до начала сколько-нибудь значительного фрикционного разогрева экстремальные условия достигаются на тех участках, где цилиндр разогрет до температуры, превышающей температуру плавления, что ускоряет появление пленки расплава. Это означает окончание той части процесса транспортировки гранул, которая происходит в зоне питания, когда в экструдере присутствует только твердый нерасплавленный материал. К этому моменту наша гранула оказывается до некоторой степени деформированной соседними гранулами, с которыми она тесно контактирует, образуя вместе с ними достаточно прочный, хотя и деформируемый твердый блок, движущийся подобно пробке по каналу червяка. Тонкая пленка, отделяющая слой нерасплавлениого полимера от цилиндра, подвергается интенсивной деформации сдвига. Разогрев твердой пробки происходит как за счет тепла, генерируе- [c.431]

    Возвращаясь к нашей грануле, отметим, что зона задержки заканчивается, когда находящийся на пробке расплавленный полимер начинает медленно двигаться по поверхности цилиндра. В какой-то точке экструдера нанга гранула окажется на поверхности раздела пленка расплава — твердый полимер в этот момент ее температура экспоненциально повышается до температуры плавления полимера. Образовавшаяся жидкая частица быстро переместится в область, занятую расплавом и расположенную у толкающей стенки. При экструзии аморфных полимеров размягченные частицы движутся по направлению как к поверхности цилиндра, так и к толкающей стенке канала. [c.432]

    Профиль пробки в червячных экструдерах. Определите профиль пробки и продолжительность плавления ПЭНП, перерабатываемого в экструдере с одно-заходным червяком диаметром 6,35 см (шаг диаметральный), имеющим следующие характеристики, при следующих условиях зона питания состоит из 3,5 витка глубиной 1,27 зона сжатия с постоянной величиной конусности и сердечника состоит из 12 витков зона дозирования состоит из 12 витков глубиной 0,318 см ширина гребня витка 0,635 см зазор между гребнем витка и поверхностью цилиндра незначителен. Параметры процесса частота вращения червяка 82 об/мин, температура цилиндра 150 °С, производительность 54,4 кг/ч. Используйте показатели физических свойств полимера из Примера 12.3 и предположите, что плавление начинается за один виток до конца зоны питания. Отвепг. В конце зоны питания XlW = 0,905, в конце зоны сжатия XlW = 0,023.) [c.459]

    Схема прядильной головки экструзионного типа с горизонтальным червяком приведена на рис. 10.3. Прядильная экструзионная машина представляет собой комбинацию червячного экструдера, широко используемого при переработке пластических масс, II прядильного шестеренчатого насосика. Для плавления полипропилена достаточно одночервячной экструзионной машины с червяком определенной степени сжатия [33]. Отношение длины червяка к диаметру должно составлять (15н-20) 1, а коэффициент сжатия 4, Основную техническую трудность при формовании волокон на прядильных головках экструзионного типа составляет регулировка давления расплава полимера в переходной зоне между червяком и шестеренчатым прядильным насосиком. [c.239]

    При замене перерабатываемого материала необходимо продолжать вращение червяка до полной очистки цилиндра. Температуру по зонам цилиндра снижают, либо уменьшая подвод тепла, либо вуслючив охлаждение. При этом новый материал поступает в цилиндр с более низкой температурой, чем это требуется для нормального ведения процесса. Далее машину постепенно вводят в рабочий режим, соответствующий условиям переработки нового материала. Таким образом устраняют опасность разложения нового перерабатываемого материала. Продолжительность перехода машины на другой режим работы может быть сокращена путем кратковременного пропускания полимера с низкой температурой плавления, например полиолефина или полистирола. Это устраняет возможность холостой работы оборудования. Необходимо не допускать охлаждения полиамида на червяке экструдера ниже температуры его отверждения. Остановка экструдера даже на несколько минут может привести к резкому охлаждению расплава. [c.191]

    ОТ расположенных снаружи цилиндра нагревателей й теплоты внутреннего трения в материале. При плавлении объем полимера уменьшается. Соответственно в этой зоне уменьшается глубина канала червяка. В последней зоне — дозирующей — весь винтовой канал червяка заполнен расплавом. Б винтовом канале червяка в этой зоне выделяют четыре потока расплава прямой (вынужденный), направленный к формующей головке, обратный — уменьшение прямого потока вследствие сопротивления головки и стенок цилиндра, циркуляционный — в плоскости, перпендикулярной оси винтового канала, и поток утечки — в зазоре между червяком и внутренней поверхностью цилиндра, направленный к загрузочному бункеру. Производительность экструдера определяют прямой и обратный потоки. Циркуляционный поток не влияет на производительность, а поток утечки обычно настолько мал, что им часто пренебрегают при расчетах. Соотношение длин зон червяка определяется характером перерабатываемого материала Для переработки аморфных термопластов, плавящихся в широком интервале температур, применяют червяки с длинной зоной сжатия, для кристаллизующихся полимеров —с короткой зоной сжатия (длиной около одного диаметра), а для переработки нетермостойких материалов, например поливинилхлорида,— червяки без зоны сжатия, с постепенным уменьшением глубины канала, чтобы избежать paз ioжeния полимера за счет тепловыделения в зоне сжатия,. Для перемещения материала внутри цилиндра нужно, чтобы коэффициент трения о поверхность червяка был меньше, чем о стенку цилиндра, так как иначе полимерный расплав будет только вращаться с червяком без перемещения в осевом направлении. Чтобы снизить коэффициент трения, червяк охлаждают, подавая воду внутрь полости в его сердечнике. При перемещении расплава внутри цилиндра часть механической энергии переходит в тепловую, тепловыделение увеличивается с повышением частоты вращения червяка. В машинах с быстроходными червяками (частота вращения более 2,5 об/с) тепловыделение настолько велико, что при установившемся режиме работы отпадает надобность в наружном обогреве (адиабатические экструдеры). [c.276]

    Вскоре после исследования движения жидкости появилась известная работа Дарнелла и Молла (1956 г.), подробно рассмотревших движение порошкообразного материала в зоне питания червячного экструдера. Затем наступил длительный период экспериментальных исследований, в процессе которых формировались качественные представления о механизме плавления полимера в червяке экструдера. После ряда работ Маддока, Стрита, Маршалла и др. удалось выяснить, что плавление полимера напоминает плавление толстой пластины, одна сторона которой скользит по горячему металлическому [c.11]


Смотреть страницы где упоминается термин Зона плавления экструдера: [c.456]    [c.200]    [c.238]    [c.474]    [c.64]    [c.429]    [c.616]    [c.204]   
Теоретические основы переработки полимеров (1977) -- [ c.237 , c.240 ]




ПОИСК







© 2024 chem21.info Реклама на сайте