Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Частицы стадии образования

    Оценки линейного натяжения дают для воды и водных растворов значения х, по порядку величину равные 10 °— 10 Н [568]. Таким образом, вклад третьего члена в правой части уравнения (13.18) становится ощутимым при г<10 — 10 см, т. е. для капель и пленок очень малого радиуса. Весьма заметным проявление линейного натяжения -может быть, в частности, при флотации — на начальной стадии сближения пузырьков газа с частицами, а также при конденсации воды на твердых поверхностях — на стадии образования зародышей конденсата. [c.224]


    Если концентрация твердых частиц в суопензии невелика, ее трудно разделить на фильтрах непрерывного действия, где продолжительность стадии образования осадка нужной толщины ограничена минимальной скоростью перемещения перегородки по замкнутому пути. Поэтому такие суспензии предварительно сгущают в отстойниках под действием силы тяжести или в фильтрах-сгустителях под действием разности давлений. [c.16]

    Да-в— нормальная ковалентная энергия связи . Логику вывода уравнения (4) удобно проследить по статье [32], где процесс комплексообразования в газовой фазе расчленяется на три стадии передачу электронов от лиганда к катиону металла, электростатическое взаимодействие между образовавшимися частицами и образование ковалентных связен. [c.184]

    В то время как лимитирующей стадией образования осадка является процесс на поверхности раздела, растворение осадка и его созревание по Оствальду, вероятно, лимитируются процессами диффузии [11]. Свободная энергия поверхности системы, содержащей частицы осадка различного размера, понижается за счет агломерации или созревания по Оствальду. Мелкие частицы находятся в равновесии с раствором при некоторой степени пересыщения Si, более крупные частицы — при более низкой степени пересыщения 52. В системе устанавливается пересыщение, промежуточное между 5i и S2, что ведет к растворению мелких частиц и дальнейшему росту более крупных. Агломерация является другим путем снижения общей поверхностной энергии. Скорость агломерации зависит от количества частиц и заряда их поверхностей. Для систем, содержащих менее 10 частица/мл, скорость агломерации незначительна даже при отсутствии заряда на частицах, а если заряд поверхностей частиц высок, то агломерации вообще не наблюдается. К числу стабилизируемых таким образом систем принадлежит коллоидный оксид кремния. [c.21]

    Полимеризация — это сложная химическая реакция, включающая несколько элементарных стадий. Обязательными элементарными стадиями являются инициирование и роет цепей. При инициировании в реакционной среде возникают активные частицы, способствующие процессу роста, заключающемуся в последовательном присоединении молекул мономера к активной (инициирующей) частице с образованием полимерных цепей  [c.372]

    Методика изучения механизмов образования и гибели частиц в данном квантовом электронном и колебательном состоянии А (/ ) включает в себя следующие этапы [172] 1) запись всех энергетических возможных элементарных стадий образования и гибели частиц Л (/ ) с учетом законов сохранения энергии, массы, элементарного состава 2) предварительный расчет и оценка скоростей отдельных стадий, отбрасывание тех стадий, скорости которых значительно меньше скоростей стадий, для которых существуют надежные основания включения их в механизм реакции и достаточно надежные теоретические или экспериментальные данные по скорости их протекания 3) составление из выбранных стадий различных вариантов механизма, расчет по ним концентраций частиц А (/ ) и сравнение с экспериментально измеренными концентрациями с одновременным подбором коэффициентов скорости и отдельных стадий с целью наилучшего описания экспериментальных данных. Вариант механизма считается вероятным, если он в пределах суммарной погрешности эксперимента и расчета описывает экспериментальные данные во всем исследованном диапазоне параметров 4) выбор из вероятных механизмов наиболее вероятного путем сопоставления полученных в процессе поиска механизмов коэффициентов скорости с наиболее надежными известными данными. [c.172]


    Эта реакция протекает по цепному механизму через стадию образования бирадикальных частиц  [c.352]

    Одним из основных объектов исследования в электрохимической кинетике является стадия перехода заряженных частиц через границу раздела фаз — стадия разряда-ионизации. Поскольку электрохимические реакции представляют собой гетерогенные процессы, то неотъемлемыми их стадиями служат подвод реагирующих частиц к границе раздела фаз и отвод продуктов реакции. Поэтому изучение закономерностей этих стадий также составляет предмет электрохимической кинетики. Соответствующий раздел кинетики электродных процессов называют диффузионной кинетикой или электрохимической макрокинетикой. Электродные процессы часто включают химические стадии, протекающие в объеме раствора или на поверхности электрода, стадии образования новой фазы, поверхностной диффузии и др. В общем случае закономерности электрохимической реакции [c.6]

    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]

    Пунктирными линиями указаны пути процесса, которые носят более предположительный характер. Через i обозначены активные частицы с одним углеродным атомом, которые могут непосредственно, минуя стадию образования более прочно хемосорбированных частиц типа I, давать конечный продукт окисления — СО2. Заполнения частицами типа III, не окисляющимися при потенциалах выделения кислорода, невелики ( 0,1). Классификация других частиц отвечает принятой в третьей главе. [c.272]

    Стадия превращения вещества А в вещество О называется предшествующей химической реакцией, а стадия превращения R в В — последующей химической реакцией. Часто электродные процессы осложняются стадией образования новой фазы. Так, при электроосаждении металлов реализуется стадия образования кристаллических зародышей, а при электрохимическом выделении газов — стадия зарождения пузырьков газа. В ходе электрохимического процесса может происходить перемещение частиц по поверхности электрода (стадия поверхностной диффузии) от центров, на которых идет разряд, до некоторых других, где продукту реакции находиться энергетически наиболее выгодно. Если поверхность электрода несет заряд, одинаковый с зарядом реагирующей частицы, то электрическое поле двойного слоя препятствует адсорбции этой частицы и необходимо учитывать стадию вхождения реагирующей частицы в двойной электрический слой. [c.202]

    Возникновение аморфных частиц в первой стадии образования твердой фазы при кристаллизации связано с тем, что ее образование вызвано случайной встречей молекул, атомов или ионов. К этому следует добавить, что образование твердой фазы [c.387]

    Ряд химических реакций протекает через стадию образования активных частиц — чаще всего это свободные атомы, неустойчивые молекулы или радикалы. Активные частицы вступают в реакции с исходными веществами, в результате снова возникают активные частицы. Такая последовательность периодически повторяющихся химических процессов называется цепной реакцией. [c.55]

    За этой стадией следует группа непрерывно повторяющихся реакций с участием активных частиц и образованием новых активных частиц без воздействия света — продолжение цепи  [c.56]

    Теория активных столкновений и теория переходного состояния включают ряд важных общих положений (необходимость столкновения частиц для протекания реакции, условие обладания частицей энергии активации, требование надлежащей ориентации частиц в момент столкновения, отражаемое энтропией активации, и др.). Вместе с тем теория переходного состояния точнее описывает закономерности реакций, протекающих через стадию образования активного комплекса. К таким относятся следующие реакции  [c.68]


    TOB. До температуры 1473 К процесс агломерации протекает по схеме твердофазного спекания и путем агрегирования частиц в локальных объемах за счет поверхностного натяжения жидкости. Поскольку неравновесные точечные расплавы, растворяя компоненты, быстро кристаллизуются, их роль в процессе агломерации, по-видимому, непостоянна и случайна. Формирование крупных гранул клинкера начинается с появления в системе равновесного расплава — около 20—30%. Наиболее интенсивно растут гранулы в местах повышенного содержания расплава. Механизм роста гранул с участием расплава подчиняется общим закономерностям жидкофазного спекания. Процесс образования зерен клинкера в присутствии равновесного расплава условно можно разделить на три стадии стадию соединения и перегруппировки частиц, стадию уплотнения гранул за счет реакций растворения — кристаллизации и стадию охлаждения с кристаллизацией и застыванием расплава. Деление процесса жидкофазного спекания на стадии условно, поскольку в реальных условиях процессы соединения и перегруппировки и растворения — кристаллизации протекают параллельно и накладываются друг на друга. [c.230]

    Стадию образования коллоидно-дисперсных. частиц осадка можно считать доказанной экспериментально при быстрой фильтрации раствора очень часто можно наблюдать появление весьма устойчивого золя на выходе из колонки. Е. И. Гапон и И. М. Беленькая [153] предложили использовать осадочный процесс в колонке с оксидом алюминия как метод получения коллоидных растворов. [c.204]

    Появление атомов хлора в момент диссоциации представляет собой стадию зарождения цепи. Последующие стадии образования НС1 называются реакциями продолжения цепи. Наконец, если радикал захватывается стенкой реакционного сосуда или взаимодействует с частицами примесей и продуктом взаимодействия является малоактивная частица, не способная продолжать цепь, то цепь обрывается. В этих случаях скорость реакции обрыва пропорциональна концентрации радикалов (линейный обрыв). [c.318]

    При взаимодействии л-электронов бензольного кольца и электрофильной частицы предполагается в первой стадии образование )г-комплекса, в данном случае имеющего [c.105]

    Хемилюминесценция отличается от фотолюминесценции только природой стадии образования возбужденных частиц. Если нри фотолюминесценции /молекула переходит в возбужденное состояние, поглощая энергию падающего излучения, то при хемилюминесценции молекула возбуждается за счет преобразования энергии химического элементарного акта в энергию возбуждения. Простейшая схема реакции, сопровождающейся хемилюминесценцией, [c.118]

    Несмотря на свою неполноту, приведенные схемы отражают основные стадии электрохимического выделения кислорода. По I варианту молекулярный кислород образуется за счет рекомбинации его атомов, полученных после разряда одновалентных ионов кислорода 0 , а по варианту И — в результате распада высшего неустойчивого оксида МОж+ , возникшего из низшего устойчивого оксида МОд после разряда на нем ионов 0 . Вариант HI исключает участие в электродном процессе каких бы то ни было заряженных частиц, кроме гидроксил-ионов. Выделение кислорода происходит здесь через промежуточные стадии образования и распада гидроксидов и оксидов металла. В IV варианте непосредственным источником кислорода являются его молекулярные ионы О2 , образовавшиеся из гидратированных ионов 02 -2Н20 после отнятия от них воды. Эти гидратированные ноны кислорода можно рассматривать как отрицательно заряженные бимолекулы пероксида водорода Н2О2 , которые служат промежуточным звеном при анодном выделении кислорода. [c.425]

    Влияние степени дисперсности Pt в катализаторах на протекание реакций дегидроциклизации и изомеризации исследовалось в ряде работ [70—78]. Обнаружено [75], что при увеличении среднего размера частицы Pt от 1,0 до 45,0 нм увеличивается выход продуктов дегидроциклизации. Однако в работе [70] показано, что количественное распределение продуктов реакции и скоростей дегидроциклизации и изомеризации не зависит от размеров частиц (в интервале 1,5—5,0 нм). Интересные закономерности получены на образцах Pt/AbOa, содержащих 0,2 и 10% Pt [71, 73]. На высокодисперсном катализаторе [(0,2%) Pt)/Al20a] преобладают одиночные, главным образом одноатомные, активные центры и, следовательно, изомеризация и другие превращения углеводородов проходят через промежуточную стадию образования циклического переходного состояния. На катализаторе с большими кристаллитами [(10% Pt)/Al203] ак- [c.200]

    Механизм действия противодымных присадок окончательно не 5 тановлен. В работе [196] показано, что барий препятствует дегидрогенизации молекул углеводородов и тем самым снижает образование сажи на первой стадии этого процесса.. Другие исследователи [197, 198] основную роль в снижении сажеобразования при сгорании топлив отводят каталитическому снижению температуры сгорания углерода в воздухе в присутствии бария. При киносъемке в камере сгорания дизеля обнаружен распад бариевой присадки, способствующий окислениЮ несгоревших частиц углерода. Из этого был сделан вывод, что бариевые присадки не влияют на скорость сгорания в стадии образования сажи [199]. [c.177]

    Любая законченная теория эмульсионной полимеризации должна обладать способностью предсказывать число частиц полимера, образующихся в единице объема в начальной стадии полимеризации, в стадии образования частиц, так как это в свою очередь определяет скорость реакции в дальнейшем. Подобная теория была разработана Смитом и Эвартом [136], и она приводит к уравнению [c.133]

    Результаты исследования системы алкилгалогенид — катализатор свидетельствуют об ионном характере промежуточных реакционных частиц, что доказывается наличием перегруппировок в вводимой алкильной группе. Согласно теории перегруппировок, если алкильная группа изомеризуется, то она должна в какой-то момент реакции пройти через стадию образования карбониевого иона. [c.77]

    Дисперсное строение нефтяных систем обнаруживается на различных стадиях и.х добычи, транспорта, переработки и применения. Иерархия компонентов нефтяных систем по интенсивности межмолекулярных взаимодействий является фактором, пре Т-располагающим к сложной внутренней организации систем. Кроме того, в ходе технологических операций в нефтяных системах создаются условия для развития фазовых переходов, которые протекают через стадию образования дисперсных частиц. При этом возможно формирование полигетерофазных НДС. В таких случаях несомненно влияние дисперсной структуры нефтяных систем на иротекание в них теплообменных и гидродинамических процессов, на их физико-химические макросвойства. [c.63]

    Формирование частиц мыльного загустителя проходит через следующие стадии образование центров кристаллизации (зародышей), рост и развитие этих центров. Первичный центр кристаллизации мылнной частицы представляет собой определенную комбинацию молекул мыла (ассоциат), дальнейший рост которого и образование частицы оптимальных размеров осуществляются в результате диффузии молекул мыла из пе1ресыщенного раствора к поверхности кристаллического зародыша. Таким образом, формирование структуры мыльных смазок связано с образованием ми-.целл, последующего построения из них волокон (надмицеллярных структур) и формирования структурного каркаса смазки, придающего ей пластичность и другие характерные свойства. [c.364]

    При анализе стадии образования осадка необходимо учитывать значительные сжимающие усилия, действующие на осадок в поле центробежных сил. В нромьинленных центрифугах давление в жидкости достигает 1,5-10 н1м (15 ат) вместо давлений, меньших 0,1 10 н/м (1 ат) в вакуум-фильтрах и обычно не превышающих 0,5-10 н м (5 ат) в фильтрах, работающих под давлением. Это приводит к тому, что пористость сильно сжимаемых осадков при центрифугировании значительно уменьшается, а их гидравлическое сопротивление соответственно возрастает. В результате существенного понижения скорости центрифугирования может случиться, что применение фильтрующей центрифугЕ вместо фильтра окажется нецелесообразным. В отдельных случаях не исключено, что скорость процесса разделения суспензии в фильтрующей центрифуге будет меньше, чем па фильтре, при относительно небольшой рлзности давлений. Это особенно вероятно в тех случаях, когда при действии центробежной силы твердые частицы в слое осадка, соприкасающемся с фильтровальной перегородкой, будут деформироваться и закрывать устья пор. Поэтому на центрифугах не всегда следует разделять суспензни, которые дают сильно сжимаемый осадок свойства осадка надлежит исследовать предварительно (см. стр. 195). [c.217]

    В зависимости от количественного соотношения контактов различного типа между частицами ДФ различают дисперсные структуры коагуляционные, псевдокоагуляционные, конденсационные, кристаллизационные, коагуляционно-ковденсационные и коагуляционно-кристаллизационные. При этом структуры с обратимыми по прочности контактами имеют универсальное значение, поскольку все виды дисперсных материалов в процессе формирования проходет через стадию образования структур с коагуляционными или атомными контактами [186... 193]. [c.97]

    Ниже показано, что при проведении конкретных реакций электрофильного замещения в качестве интермедиатов образуются различные катионоидные частицы. Поэтому можис утверждать, что реакции электрофильного замещения в ароматическом ядре проходят через стадию образования а-комплексов. [c.321]

    В равной мере можно рассматривать и обратный переход от макрогетерогенной системы (кристаллы ПАВ в воде), через стадию образования геля и его самопроизвольное диспергирование, к появлению мицеллярных систем при температурах выше точки Крафта. В этом случае возникновению коллоидного раствора предшествует набухание кристаллов мыла по мере проникновения воды между плоскостями, образованными полярными (сильно гидратирующимися) группами. При достаточном разбавлении системы, под действием теплового движения происходит отщепление от кристалла отдельных частиц, например пластинок (самопроизвольное диспергирование), которые образуют сначала ленточные, а затем, по мере уменьшения общего содержания ПАВ, цилиндрические, эллипсоидальные и, далее, сферические мицеллы. [c.231]


Смотреть страницы где упоминается термин Частицы стадии образования: [c.77]    [c.137]    [c.60]    [c.104]    [c.30]    [c.430]    [c.225]    [c.7]    [c.146]    [c.317]    [c.155]    [c.7]    [c.146]    [c.317]    [c.276]    [c.530]    [c.200]    [c.274]    [c.277]   
Дисперсионная полимеризация в органических средах (1979) -- [ c.64 ]




ПОИСК







© 2025 chem21.info Реклама на сайте