Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиамиды кристаллизация

    Синтетические полиамиды (поликапроамид, полигексаметиленадипамид и т. д.) отличаются большей склонностью к кристаллизации, чем волокнообразующие белки. Почему  [c.157]

    Присутствие алифатических заместителей в метиленовых звеньях диаминов и дикарбоновых кислот затрудняет кристаллизацию полимера и ориентацию его макромолекул. Плотность упаковки в полимере нарушается, при этом снижается температура плавления полимера и уменьшается его механическая прочность. Например, температура плавления полиамида, полученного из метиладипиновой кислоты [c.450]


    Особо прочные полярные связи между макромолекулами в значительной степени способствуют кристаллизации. Однако и в этом случае необходима симметричность строения макромолекулы и пространственная регулярность боковых групп. Полярные связи (стр. 54) образованы притяжением электрических диполей, возникающих в результате неуравновешенного распределения зарядов в валентных связях между атомами с различной электроотрицательностью. Частным случаем является водородная связь (связь между атомом водорода одной полярной группы и атомом кислорода, азота, фтора другой полярной группы). Благодаря этой связи, в кристаллическом состоянии в широком диапазоне температур находятся полиамиды и поли- [c.24]

    Поликарбонат обладает частично кристаллической структурой. При длительной термической обработ.че возможна последующая кристаллизация, которая в отличие от полиэтилена и полиамидов не вызывает изменения внешнего вида изделия и стабильности его размеров. [c.123]

    Силы межмолекулярного взаимодействия, действующие при кристаллизации полиамидов, главным образом обусловлены образованием водородных связей (рис. 3.3)  [c.78]

    Межмолекулярные силы при кристаллизации полимеров играют двоякую роль. С одной стороны, с увеличением межмолекулярного взаимодействия облегчается образование прочных агрегатов и упрочняются кристаллические образования. Температура плавления кристаллических полимеров повышается с ростом величины межмолекулярных сил, например, в ряду гуттаперча, полиэтилен, полипропилен, полиамид. С другой стороны, увеличение межмолекулярного взаимодействия обусловливает повышение вязкости полимера, затрудняющее перегруппировку молекул при кристаллизации. Таким образом, кристаллизации благоприятствует некоторое оптимальное значение межмолекулярных сил. [c.137]

    При малых значениях г з и и , характерных для расплавов с высокой вязкостью (например, полиэтилен, полиамиды), процесс кристаллизации определяется уже не интенсивностью отвода тепла, а кинетикой зародышеобразования и роста кристаллов. Дело в том, что по мере охлаждения и увеличения вязкости расплава падает скорость его обмена с кристаллами, в результате чего рост последних замедляется, а при определенной температуре ст. называемой температурой стеклования, он вообще прекращается. В данном случае лишь часть расплава переходит в кристаллическое состояние, а остальная его часть — в аморфное состояние. При этом степень перехода расплава в кристаллическое состояние несколько возрастает по мере удаления от поверхности охлаждения вследствие возрастания температуры (уменьшения величины переохлаждения). Полное отверждение рассматриваемых расплавов достигается лишь при очень медленном их охлаждении или же при ступенчатом охлаждении с промежуточными выдержками для выравнивания температурного поля. [c.705]


    Комбинация двух или трех методов очистки кристаллов адипиновой кислоты позволяет получать кислоту, пригодную для синтеза полиамидов. Как правило, проводят 2—3 кристаллизации в аппаратах непрерывного действия вначале из растворов в азотной кислоте, а затем из водных растворов. Для растворения осадка используют деминерализованную воду, а растворы тщательна фильтруют от механических и окрашивающих примесей. [c.117]

    Если Гст ниже комнатной температуры, то кристаллизация происходит при обычных условиях (полиэтилен, полиамиды, политетрафторэтилен). У полимеров с несимметричным расположением полярных групп, когда Гст нередко оказывается выше температуры разложения, можно добиться кристаллизации, искусственно снижая температуру стеклования, например введением пластификатора. В случае же полимеров с низкой Гст (натуральный каучук) некоторые пластификаторы, наоборот, тормозят кристаллизацию. [c.443]

    Подобная точка зрения подтверждается тем, что при достаточно гибких цепях (полиэтилен, полиамиды, полиэфиры и т. д.) кристаллизация протекает очень быстро. Кроме того, при этом почти не наблюдаются некоторые аномалии, характерные для более жестких молекул каучука. [c.446]

    Сорбция жидкой среды полимером может изменить соотношение аморфной и кристаллической фаз в полимере. Известны случаи кристаллизации полимера при температурах более низких, чем Тс [13, с. 5]. Иногда в процессе сорбции степень кристалличности полимера уменьшается, например для систем алифатические полиамиды— водные растворы фенолов [14, с. 17]. [c.8]

    Примеры систем типа 8 ароматические полиамиды (кристаллизующиеся полимеры) в комбинации с любой низкомолекулярной органической жидкостью , диацетат целлюлозы (некристаллизующийся полимер)—глицерин. Большой практический интерес представляют системы с участием термостойких кристаллизующихся полимеров. Они перерабатываются через растворы в концентрированной серной кислоте . Гипотетический путь переработки таких полимеров через раствор—попадание в область аморфного расслоения (например, в точку а — см. рис. 34) до начала кристаллизации, чтобы успеть провести формование изделия. Но попадание в точку а (температура Гн, концентрация х) возможно только одним путем — синтезом полимера в соответствующем растворителе. Близко к этому приему стоит способ формования волокон и пленок путем межфазной иоликонденсации, когда процесс формования совмещен с процессом синте- [c.95]

    Визуализация течения полиэтилена высокой плотности и исследование потока методом двулучепреломления показывают, что размеры мертвых зон при ламинарном течении гораздо меньше, чем в случае полиэтилена низкой плотности. Линии тока на входе при увеличении расхода пульсируют, но не разрываются. Неустойчивое течение возникает внутри капилляра. При этом наблюдаются разрывы изоклин (линий постоянных скоростей), а изохромы приобретают зернистую структуру. Увеличение длины капилляра не влияет на момент начала неустойчивого течения [79, 187]. Аналогичные результаты получены и при исследовании течения полиамида 6,6, полиформальдегида и сополимера тетрафторэтилена с гексафторпропиленом. Проведенные наблюдения свидетельствуют о том, что возникновение неустойчивого течения связано с потерей текучести пристенных слоев расплава. Подробно вопрос о возможных причинах неустойчивого течения, связанных с ориентационной кристаллизацией (стеклованием), рассмотрен в работе [193]. [c.108]

    На рис. 3 приведены результаты измерения линейной скорости роста сферолитов в случае чистого полиамида и полимера с добавками красителя 1 в соотношении 1 100. Как видно, введение в полиамид поверхностно-активных добавок приводит к уменьшению линейной скорости кристаллизации за счет снижения поверхностной энергии на границе сферолит — расплав. Подобное снижение поверхностной энергии на растущей грани кристалла, как хорошо известно [9], приводит к снижению скорости ее роста. [c.394]

    Температура стеклования и кристаллизации, а также скорость кристаллизации зависят от химического строения полимера и степени гибкости макромолекул. С повышением гибкости макромолекулы температура плавления и стеклования снижается, интервал между ними увеличивается и скорость кристаллизации возрастает. Полиэтилен имеет высокую скорость кристаллизации, поэтому в аморфном виде его по% чить нельзя. У полиамидов скорость кристаллизации мала, и при быстром охлаждении их можно сохранить в аморфном состоянии. [c.86]

    Кристь-лличеокие полимеры образуются в том случав, если их макромолекулы достаточно гибкие и имеют регулярную структуру. Тогда при соответствупцих условиях возмошш фазовыВ переход внутри пачки и образование пространственных решеток кристаллов. Кристаллизующимися полимерами являются полиэтилен, полипропилен, полиамиды и др. Кристаллизация осуществляется в определенном интервале температур. [c.22]


    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    Если эти ответвления расположены редко, пе создается пятствий для кристаллизации отдельных сегментов макромолекул, и кристаллические образования имеют такие же размеры и форму, как и в гомополимерах полиамида. Поэтому температура плавления привитого сополимера мало отличается от температуры плавления соответствующего гомополиамида. Полиоксиэтиленовые боков1.1е ответвления выполняют функцию пластификатора, способствуя увеличению текучести расплава, повышению упругости полимера, придавая волокну большую гибкость и лучшую морозостойкость. Волокна и пленки из привитого полиамида сохраняют упругость и при —7Сг (полиамид 6 и полиамид 6-6 начинают утрачивать упругость при температуре н(i кoJ[ькo ниже О ). [c.543]

    Все синтетические волокна получают формованием из расплава, который выдавливают из сосуда через многоручьевую фильеру. Выходящий экструдат вытягивают и одновременно охлаждают. Затем не полностью отвержденные волокна подвергают продольной вытяжке, наматывая на тянущие барабаны при этом их диаметр уменьшается в 10—15 раз, что стимулирует процесс кристаллизации. Кроме того, перед использованием волокна подвергают дополнительной холодной вытяжке, чтобы увеличить степень кристалличности (см. разд. 3.7). На этой окончательной стадии обработки (структурообразования) существенно увеличивается прочность волокна. Обычно волокна получают из полиамида 6 и ПЭТФ. [c.479]

    При гидролизе полиамидов, который эффективнее протекает в кислой среде, образуются карбоксильные и аминные группы в местах разрыва макромолекул. В этом случае кристаллизация также спосоЗсгвует снижению скорости гидролиза вследствие замедления диффузии реагентов к функциональным группам макромолекул, т. е. тоже проявляются надмолекулярные эффекты. Характеристическая вязкость растворов поли-е-капролактама и полигексаметиленадипамида линейно убывает со временем гидролиза. [c.256]

    И, наконец, третья возможность — это упаковка длинных рас-грямленных цепей, характерная для полиамидов, полиуретанов и Др. В Этом случае существенна конфигурация цепи боковые заместители не Должны препятствовать правильной укладке соседних 1епей. При наличии больших разветвлений кристаллизация затруднена. [c.133]

    В ю время как результаты рентгеноструктурного анализа, говорящие о сосуществовании в полиамидах аморфных и кристаллических областей, удовлетворительно объясняются моделью бахромчатой мицеллы , данные оптической поляризационной микроскопии свидетельствуют о наличии упорядоченных образований, значительно превышающих по размерам кристаллиты. Такие образования называют сферолитами. Они хорошо видны в поляризационном микроскопе как двулучепреломляющие области с характерным мальтийским крестом, как это показано на рис. 3.3. Сферолиты в полиамидах являются полностью кристаллическими образованиями, а часть полимера, не входящая в сферолиты, составляет аморфную прослойку. Сферолиты обычно образуются из первичных зародышей (роль которых могут выполнять гетерогенные частицы), но они могут возникать и самопроизвольно. Электронномикроскопические исследования показывают, что сферолиты обладают ламелярной структурой и их кристаллизация протекает по механизму роста ламелей. [c.79]

    Перерабатываемость любого полиамида в значительной степени определяется его молекулярной массой и молекулярно-массовым распределением. Например, изменяя среднюю молекулярную массу, можно обеспечить требуемое значение показателя текучести расплава, соответствующего выбранному способу переработки. Для достижения определенных свойств в полимер вводят различные добавки. Так, для повышения термостабильности и светостойкости, а также стойкости к гидролизу, добавляют стабилизаторы. Для создания равномерной структуры, увеличения степени кристалличности полимера и скорости кристаллизации из расплава используют структурообра-зователи, такие как, например, коллоидный кремнезем. Такие добавки одновременно уменьшают термический коэффициент расширения и сокращают цикл [c.169]

    Прочность и модуль волокон из простых и смешанных параароматических полиамидов без особых ухищрений сразу получаются соответственно 2—5 и 100—150 ГПа. Однако, так же, как и суперволокна из малополярных полимеров, полученные с помощью (правильно проведенной ) ориентационной вытяжки или ориентационной кристаллизации, они обладают одним существенным дефектом их прочность в поперечном направлении ничтожна по сравнению с продольной. Волокна и пленки претерпевают сильную фибриллизацию, т. е. самопроизвольно или при деформации (особенно кручении) распадаются на чрезвычайно тонкие фибриллы, которые при дальнейшей деформации образуют еще более тонкие линейные монокристаллы типа усов , столь хрупкие, что манипулирование ими практически невозможно. Они обнаружены уже достаточно давно, но детально до сих пор не исследованы. По-видимому, именно они образуют упоминавшийся каркас в ориентационно закристаллизованных волокнах. [c.389]

    Так же как в случае полиэфиров, чем дальше полярные группы в цепи полиамида отстоят друг от друга, тем меньше температура плавления полимера и тем больше растяжимость и эластичность его. Можно регулировать способность полиамидов к кристаллизации и, следовательно, их свойства в широких пределах путем сополиконденсации (нарушения регулярности строения цепи) или путем более или менее полного замещения водорода в группах ONH алкильными группами (сокращение числа водородных связей). Замещение осуществляется или в готовом полимере, или как результат применения N-замещенных диаминов или лактамов. Подобными приемами удается синтезировать каучукоподобные полиамиды, пригодные для производства эластичного волокна. [c.311]

    Вопросы эпитаксии также имеют непосредственное отношение к затронутой проблеме. Эпитаксия — ориентированное нарастание слоев — известна давно. В частности, этим вопросом еще в XIX веке занимался Франкенгейм. Обширная библиография по эпитаксии приведена в работах [40, 346—348]. Свойства эпитаксиальных слоев различных материалов, главным образом полупроводников, интенсивно исследуются. Обнаружена зависимость от типа подложки не только структуры, но и прочностных, электрических и магнитных характеристик вакуумных конденсатов различных полупроводниковых материалов [346—348]. Впервые эпитаксиальный рост полимерных кристаллов на поверхности твердого тела описан в работах [349, 350], затем этот эффект был подробно изучен [245—249, 340, 351—359]. В частности, было обнаружено, что аминокислоты и олигопептиды образуют ориентированные наросты на минералах [345]. Свежеобразованные сколы галогенидов металлов (Na l, K I, KI, LiF), а также кварц оказывают ориентирующее влияние на расположение кристаллов полиметиленоксида, полипропиленоксида, полиэтилена, полиэти-лентерефталата, полиакрилонитрила, полиуретана, полиамидов. Эпитаксиальные явления в подобных системах могут быть следствием [354] ориентирующего влияния ионов подложки, расположенных в определенной последовательности. Кроме того, дислокации, образующиеся при расщеплении галогенидов металлов, также могут оказывать влияние на зародышеобразование, так как они имеют определенную ориентацию и сообщают поверхности повышенную энергию. В работе [359] указывается на эффект своеобразного фракционирования полимеров, заключающийся в том, что при определенных условиях склонность к эпитаксиальной кристаллизации обнаруживают самые большие макромолекулы [359]. [c.140]

    С помощью специальных методов электронно-микроскопических исследований (декорирования) удалось показать, что ориентирующее и зародышеобразующее действие подложки проявляется не по всей поверхности, а локализовано в активных центрах, которыми в случае кристаллических подложек являются места выхода дислокаций, центры вакансий, границы блоков, структурные дефекты. Дефекты обладают избыточной свободной энергией, и на них происходят поверхностные реакции. В результате структура граничных слоев, формирующихся на этих поверхностях, оказывается измененной. Так, кристаллизация полиэтилена на стекле сопровождается развитием обычной сферолитной структуры, в то время как на свежем сколе кристалла КаС1 возникает [379] двухосная текстура игольчатых кристаллов [379], расположенных под углом 82° друг к другу (рис. 111.33, см. вклейку). Аналогичные результаты получены в работе [359]. Полистирольный латекс на поверхности слюды образует равномерные небольшие скопления, а на угольной пленке возникаюг крупные агломераты [357] (рис. 111.34, см. вклейку). Дальнодействие проявляющихся в этих случаях сил оказывается весьма значительным, оно достигает иногда несколько сот и даже тысяч ангстремов [378—381]. Было установлено [221], что структурноактивные добавки, т. е. вещества, в присутствии которых преобразуется надмолекулярная структура полимеров, способны к химическому взаимодействию с макромолекулами. Так, в частности, с помощью ИК-спектров удалось наблюдать взаимодействие хлоридов меди и цинка с полиамидами, точнее, с модельным веществом форманилидом. Изменения в ИК-спектрах свидетельствовали об участии групп С= О и КН форманилида в образовании хелатных комплексов с добавками. Хлорид свинца в этих [c.141]

    Дальнейшим развитием этих исследований явился метод структурной модификации [385], основанной на применении искусственных зародышеобразователей не в дисперсном состоянии, а в виде сплошной поверхности. Например, полиамид, политетрафторэтилен, полиэтилентерефталат могут быть зародышеобразова-телями по отношению к полипропилену. Поверхностный слой изо-тактического полипропилена, отпрессованного на этих подложках, обладает своеобразной структурой. Сферолиты в этом слое благодаря большой концентрации центров кристаллизации расположены очень плотно, растут в одну сторону и состоят преимущественно из половинок. [c.142]

    Изучение процессов кристаллизации проводили в пленках, полученных из растворов и расплава. Образцы для исследования готовили следующим образом. В расплав полигексаметиленадипинамида или 5%-ный его раствор в муравьиной кислоте добавляли красители в отношении к полимеру 1 100 и 1 1000. После достюкения гомогенного смешения полиамида с поверхностно-активным веществом образцы, в случае расплава полиамида предварительно нагретые до 280°, кристаллизовали охлаждением со скоростью 4—5° в 1 мин. до комнатной температуры. В том случае, когда поверхностноактивные вещества вводили через раствор, образцы готовили в виде пленки путем полного испарения растворителя и последующей кристаллизацией в условиях, одинаковых с расплавом. [c.391]

    Хотя к настоящему времени наилучшим образом исследованы кристаллы линейного полиэтилена, пластинчатые кристаллы наблюдаются также при кристаллизации из разбавленных растворов множества других полимеров. Сюда относятся производные целлюлозы [49, 50], полиамиды 51], полиэфиры [52], полиолефины, такие как полипропилен [13] и поли-4-метилпен-тен-1 [53], полиакрилонитрил [54]. Ламеллярные кристаллы образуются также при кристаллизации из разбавленных растворов разветвленного полиэтилена [16, 55]. В последнем случае ламелли овальны, толщина их меньше 90 А и они гораздо менее совершенны, чем у полимеров регулярной структуры. Хорошо ограненные ламеллярные структуры также наблюдаются при кристаллизации из разбавленных растворов политрифторхлор этилена в мезитилене [56]. Для этих систем, как показывают электронограммы, оси цепей также ориентированы перпендикулярно к широкой грани пластинки. [c.296]

    Жидкостную хроматографию используют для выделения и очистки синтетических красителей, однако первой стадией является экстракция исходных материалов (продуктов питания, косметических средств и т. п.) или кристаллизация (в случае анализа коммерческих красителей). Затем красители концентрируют на колонке и отделяют от сопутствующих примесей. Следующим этапом может быть хроматография на бумаге, хроматография в тонком слое или спектрофотометрия. Общей задачей является также определение примесей (добавок, солей) в коммерческих красителях, которые затем должны быть проанализированы на колонке с сорбентом. Наконец, иногда требуется разделить смесь красителей на отдельные компоненты. В настоящее время к синтетическим красителям относятся вещества, сильно различающиеся по химическим и физическим свойствам. Поэтому выбор хроматографического метода зависит от поставленной задачи и типа красителя. Практически здесь применяют все известные неорганические сорбенты, иониты, гели декстрана, порошкообразную целлюлозу и полиамиды. Достаточно перспективным методом является также колоночная хроматография высокого разрешения. Возможности жидко-жидкостной хроматографии продемонстрированы на примере определения примесей в антрахиноновых красителях [1]. Хроматографию проводили в системе с обращенными фазами в качестве стационарной фазы использовали пермафазу ODS (Permaphase ODS), в качестве подвижной фазы — систему метанол—вода (15 85). [c.261]


Смотреть страницы где упоминается термин Полиамиды кристаллизация: [c.50]    [c.55]    [c.55]    [c.407]    [c.217]    [c.125]    [c.217]    [c.217]    [c.101]    [c.141]    [c.394]    [c.317]    [c.190]    [c.201]    [c.258]    [c.34]    [c.103]    [c.139]   
Кристаллизация полимеров (1966) -- [ c.296 ]

Синтетические гетероцепные полиамиды (1962) -- [ c.37 , c.360 , c.364 , c.366 , c.370 , c.375 , c.375 , c.377 ]




ПОИСК







© 2025 chem21.info Реклама на сайте