Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация разветвленности

    Свойства полимеров резко зависят от геометрической формы макромолекул. Так, линейные полимеры, обладая большой прочностью, эластичностью, могут образовывать растворы с высокой вязкостью. Это связано с высокой степенью ориентации линейных макромолекул друг относительно друга и их довольно плотной упаковкой. Разветвленные полимеры обладают иногда даже большей растворимостью по сравнению с линейными полимерами. Степень разветвленности определяет их прочность и вязкость растворов. Например, полимеры с высокой степенью разветвления образуют растворы с пониженной вязкостью, что объясняется меньшей гибкостью этих макромолекул, а значит, и незначительной их асимметрией. Разветвленность макроцепи является еще одним видом нерегулярности макромолекул полимера, который мешает и даже препятствует процессу кристаллизации. С увеличением степени разветвленности макромолекул полимеры приближаются по физическим свойствам к обычным низкомолекулярным веществам. Сетчатые полимеры по свойствам очень отличаются от линейных и разветвленных полимеров. Они не растворяются и не плавятся без разложения, практически не кристаллизуются. Все эти и другие свойства зависят от степени связывания макромолекулярных цепей [c.382]


    Температура начала кристаллизации — максимальная температура, при которой в топливе невооруженным глазом обнаруживаются кристаллы. Эта температура характеризует в основном температуру фильтрования. Температура кристал -лизации зависит от углеводородного состава топлив и, в первую очередь, от их температуры плавления. С увеличением молекулярной массы температура плавления повышается. Однако температура плавления при одной и той же молекулярной массе в зависимости от строения углеводорода колеблется в очень широких пределах. Углеводороды с разветвленным строением имеют, как правило, более низкую температуру начала кристаллизации. Наиболее высокой температурой начала кристаллизации отличаются парафиновые углеводороды, затем ароматические и нафтеновые. [c.31]

    Способность индивидуальных углеводородов кристаллизоваться, а также их температура кристаллизации (или плавления) зависят от строения молекул, в частности, от их симметричности и степени разветвленности входящих в них радикалов. [c.40]

    Не только термодинамическая устойчивость парафиновых углеводородов определяется их строением, в частности расположением метиль-ных групп. Длина углеводородной цепи и степень ее разветвления, положение метильных групп во многом определяют физические свойства парафинового углеводорода, в том числе температуру кристаллизации. Наличие в керосиновых, дизельных и других фракциях значительных количеств линейных парафиновых углеводородов обуславливает их высокую температуру кристаллизации. Наглядным примером служит зависимость температуры кристаллизации парафиновых углеводородов Сю— i6. имеющих различную структуру (рис. 4.3). Обращает на себя внимание общая закономерность, обнаруженная авторами работы [130], - ступенчатый рост температуры кристаллизации парафиновых углеводородов различных гомологических рядов. При перемещении метильной группы внутрь углеводородной цепи температура кристаллизации понижается, хотя это изменение носит неравномерный характер (рис. 4.4). Высококипящие парафиновые углеводороды в процессе гидроизомеризации претерпевают наиболее существенные превращения в продукты гидрокрекинга и изомеризации, и это обеспечивает значительное снижение температуры кристаллизации перерабатываемых фракций. [c.113]

    Для кристаллизации комплексов мочевины с парафиновыми углеводородами из нефтей и нефтяных фракций углеводородное сырье разбавляют метилизобутилкетоном, который вследствие разветвленного строения не образует комплексов с мочевиной, и энергично перемешивают этот раствор с концентрированным, насыщенным при высокой температуре раствором мочевины при этом происходит быстрое взаимодействие. [c.57]


Рис. 93. Зависимости Уоо—У1)1(У —Уа) от времени кристаллизации разветвленного полиэтилена. Рис. 93. Зависимости Уоо—У1)1(У —Уа) от <a href="/info/1572097">времени кристаллизации</a> разветвленного полиэтилена.
    Аналогичное допущение (т. е. возможность кристаллизации разветвленных алканов в угловой конформации) объясняет и закономерности в изменениях температуры кристаллизации изомерных монометилзамещенных алканов. [c.29]

    Исследовано влияние структуры каучуков, длины цепи, способности к кристаллизации, разветвленности молекул на клейкость каучуков Изучена летучесть ингредиентов из каучуков и резин 3, предложен механизм процесса испарения и эмпирическое уравнение, позволяющее определять количество испарившегося ингредиента в различных условиях. [c.800]

    Гибкие группы в макромолекуле, допуская свободное вращение сегментов цепи, понижают температуру стеклования введение жестких групп ее повышает . С увеличением сил межмолекулярного взаимодействия температура стеклования повышается. Ориентация макромолекул, кристалличность полимера и стереорегулярность заметно влияют на температуру стеклования . Пространственные затруднения и введение полярных групп повышают температуру стеклования. Алифатические боковые цепи до определенной длины понижают температуру стеклования. Однако при удлинении боковых цепей начинается кристаллизация разветвленных участков и температура стеклования повышается . [c.10]

    Ширина полос при кристаллизации существенно уменьшается [66, 69, 338, 441], как это видно, например, но приведенным спектрам этапа (рис. 11, 12), нормальных и разветвленных алканов (рис. 25, 26, 30, 31а), бензола (рис. 77). [c.488]

    Кинетике кристаллизации разветвленных полиэтиленов (высокого давления) посвящено большое число работ iss, 197,200 Типичные примеры изотерм кристаллизации приведены на рис. 41. Эти кривые имеют обычную S-образную форму" и хорошо согласуются с данными Ковача [c.227]

    Кинетические параметры кристаллизации разветвленного полиэтилена [c.229]

    Из подробного рассмотрения строения кристаллических решеток в гребнеобразных полимерах с л>10 следует, что высказывавшиеся ранее предположения о возможности кристаллизации разветвленных полимеров с п= 16- 18 в ромбической решетке парафинового ряда [4—6] неточны. Рентгенографическое исследование показало, что межплоскостные расстояния для гребнеобразных полимеров отличаются от таковых для парафинов и полиолефинов. Именно в этом сказывается то обстоятельство, что боковые ответвления не являются независимыми единицами, а на их способность к упорядочению накладывается влияние той макромолекулярной цепи, на которой они закреплены, и хотя эта цепь достаточно гибка и позволяет боковым ответвлениям упорядочиваться, однако характер упорядочения цепей иной, чем в независимых парафиновых цепочках. [c.207]

    Углеводороды симметричной малоразветвленной структуры более склонны к кристаллизации, чем углеводороды других структур. Внесение асимметрии и разветвленности в молекулу углеводо— рода снижает его способность кристаллизоваться. [c.252]

    Смолы, содержащиеся в масляных фракциях нефти, неоднородны по структуре молекул. В их молекулах содержатся как нафтеновые, так и ароматические структуры, парафиновые цепи разных длины и степени разветвленности и атомы 5, О и N. При помощи фенола смолы можно разделить на растворимые и нерастворимые в нем [6]. В молекулах смол, не растворимых в феноле, содержатся длинные алкильные цепи, экранирующие циклические структуры и гетероатомы. Смолы, не растворимые в феноле, при совместной кристаллизации с парафиновыми углеводородами изменяют структуру кристаллов последних (рис. 40, а). Это объясняется ориентацией боковых цепей молекул смол и самой цепочки -парафина так, что полярные группы смол направлены наружу. В результате получаются крупные кристаллы неправильной формы. Поскольку полярность этих смол недостаточно велика, они не могут вызывать агломерацию кристаллов. В то же время, увеличение концентрации смол в растворе приводит к блокировке растущих центров кристаллов, затрудняя диффузию к ним молекул твердых углеводородов, что ведет к уменьшению размеров кристаллов. [c.134]

    Наиболее высокая температура кристаллизации наблюдается у углеводородов с симметричным ст[)оением молекул. Сильно разветвленные алканы, а также содержащие несколько алкильных заместителей (моноциклические циклоалканы, арены и гомологи нафталина) не кристаллизуются, а переходят в аморфное состояние. [c.52]

    Парафины, не содержащие в своем составе в преобладающем количестве углеводородов разветвленных структур, могут быть получены в любой из трех основных кристаллических форм (иглы, пластинки, мелкокристаллическая масса с кристаллами неправильной формы) при управлении процессом кристаллизации только изменением температуры и скорости его. [c.99]


    Фазовые превращения. С изменением температуры алканы подвергаются фазовым превращениям. Это плавление, кристаллизация, переход из одной кристаллической модификации в другую, растворение одной фазы в другой, насыщение или пересыщение одной фазы другой. Они определяются характером сил межмолекулярного взаимодействия. Для длинноцепочечных и слабо разветвленных алканов это аддитивные дисперсионные силы, направленные перпендикулярно оси цепи нормального строения, что обусловливает возможность сближения молекул. [c.190]

    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной, триклинной, моноклинной и орторомбической формах. Некоторые [c.190]

    ДВОЙНЫХ связей, участки макромолекул с длинными боковыми ответвлениями. Разветвленные макромолекулы образуются в результате реакций передачи цепи через полимер. С повышением температуры полимеризации и количества катализатора или инициатора нерегулярность структуры полимера возрастает, увеличивается количество звеньев, соединенных в положении 1—2 или 3—4, а также разветвленность макромолекул. Наличие неодинаковых по структуре звеньев и различных боковых ответвлений в макромолекуле препятствует кристаллизации полимера и уменьшает подвижность отдельных сегментов макромолекул. Средний молекулярный вес синтетических каучуков обычно меньше среднего молекулярного веса натурального каучука. Все эти структурные различия между синтетическими полимерами и натуральным каучуком определяют более низкую прочность, мень шую морозостойкость и пониженную эластичность резин на основе синтетических полимеров непредельных углеводородов по сравнению с резинами из натурального каучука. [c.237]

    А) даже при беспорядочном размещении, вдоль цепи не ме-щают плотной укладке скрученных в спирали полимерных цепей. Не слишком сильно мешает кристаллизации линейных полимеров и некоторое количество разветвленных макромолекул., [c.42]

Рис. 41. Изотермы кристаллизации разветвлен- Рис. 42. График Аврами для ного полиэтилена в полулогарифмическом мае- разветвленного полиэтилена, штабе Рис. 41. <a href="/info/311639">Изотермы кристаллизации</a> разветвлен- Рис. 42. График Аврами для ного полиэтилена в полулогарифмическом мае- разветвленного полиэтилена, штабе
    Низкозастывающие вещества могут встречаться среди всех категорий углеводородов, входящих в масляные фракции нефтей, кроме алканов нормальной структуры, которые все без исключения являются кристаллизующимися веществами. Каких-либо общих и строгих закономерностей между химической структурой углеводородов, их способностью кристаллизоваться и температурой застывания до настоящего времени еще не установлено. Имеются лишь отдельные частные правила, относящиеся к тем или иным группам химических структур углеводородов, показывающие некоторую приближенную зависимость между строением их молекул и температурой застывання. Здесь может быть отмечено только одно общее, имеющее ряд исключений приближенное правило — углеводороды простой, симметричной, малоразвет-вленной структуры более склонны к кристаллизации, чем углеводороды других структур. Внесение асимметрии и разветвленности в молекулу снижает способность углеводорода кристаллизоваться. [c.36]

    Температура плавления кристаллизующихся углеводородов имеет тенденцию к повышению с увеличением молекулярного веса, усилением поляризуемости и симметричности молекул. Повышение температуры плавления с увеличением молекулярного веса закономерно для углеводородов одного гомологического ряда и однотипной структуры. Температура плавления кристаллизующихся углеводородов с молекулами различной структуры зависит в основном от строения молекул. Углеводороды с несимметричной, разветвленной структурой характеризуются низкой температурой кристаллизации, а в некоторых случаях вообще неспособны кристаллизоваться. Симметричность молекул и простота их строения способствуют образованию кристаллических структур и повышению температуры плавления углеводородов. Ван-Нес и Ван-Вестен [8] считают, что разветвление молекул оказывает решающее влияние на температуру плавления углеводородов, и отмечают общее правило, что наиболее симметричные молекулы имеют наиболее высокую температуру плавления. Это правило указанные авторы объясняют тем, что чем более симметрична молекула, тем больше имеется способов построить из нее кристаллическую решетку, что согласно статистическим положениям приводит к более высокой температуре плавления. Правило молекулярного веса, указывающее, что температура плавления углеводородов возрастает с их молекулярным весом, может быть подавлено правилом симметрии. [c.40]

    Из углеводородов различных структур наиболее устойчивые комплексы дают углеводороды, имеющие прямую цепь. Разветвление углеводорода и включение в него колец препятствуют образованию комплекса. Для углеводородов различных структур имеется минимальная длина алкильной цепи, при которой может образоваться комплекс. Так, к-алканы способны давать комплексы при длине цепи, состоящей не менее чем из шести атомов углерода алканы с одной метильной боковой группой способны образовать комплексы при наличии в боковой цепи не менее 10—13 атомов углерода, углеводороды с боковой этильной группой должны иметь в прямой цепи не менее 24 атомов углерода, а углеводороды с более длинными боковыми цепями или с несколькими цепями или кольцами не образуют комплексы вообще [33 ] несмотря даже на высокую температуру кристаллизации некоторых из этих углеводородов. Способны к образованию комплекса и некоторые циклические углеводороды, имеющие длинную алкильную цепь, например 1-фенилоктадекан, 1-фенилэйкозан и др. Но циклические углеводороды с недостаточно длинной цепью или имеющие, кроме кольца, ответвления цепи не дают комплексов с карбамидом [34]. Отдельные углеводороды, неспособные сами по себе образовывать комплекс, например 3-метилгептан, в присутствии комплексообразующих углеводородов могут также дать комплекс [29]. [c.141]

    Получаемый при карбамидной депарафинизации застывающий компонент обычно содержит значительное количество углеводородов с невысокими и очень низкими температурами застывания. Это обусловливается, с одной стороны, способностью карбамида давать комплексы с рядом углеводородов разветвленных и циклических структур, не обязательно обладающих высокими температурами кристаллизации, и, с другой стороны, трудностями освобождения комплекса от увлекаемых им значительных количеств депарафинированного продукта. Для получения из застывающего компонента технических парафинов должной чистоты и тем более для выделения из них относительно чистых к-алканов требуется значительная дополнительная обработка этих продуктов — обезмасливание, деароматизация, очистка, а иногда даже и повторное комплексообразование, проводимое, в частности, при несколько повышенных температурах и при пониженной кратности обработки карбамидом. [c.152]

    Только в пэследное время была изучена кристаллизация ряда чистых синтетических углеводородов, имеющих температуры плавления, соответствующие температуре плавления парафина [5. Интересным выводом этой работы является подтверждение того факта, что парафины, состоящие преимущественно из нормальных парафиновых углеводородов, могут кристаллизоваться в форме пластинок, иля в виде малькристаллической формы при изменении температуры и скорости кристаллизации, или в форме игл при добавлении небольших количеств нефтяных смол. Парафины, состоящие преимущественно из парафиновых углеводородов с разветвленными цепями или имеющие нафтеновые кольца, при изменении температуры и скорости кристаллизации могут кристаллизоваться в виде игл, пластинок или малькристаллических частиц. [c.45]

    Из этих примеров высокомолекулярных алифатических углеводородов видно, что полиметиленовые ряды кристаллизуются очень легко благодаря компактности и регулярности их структуры. Другие углеводороды с регулярной структурой, как полиизобутилен, полиэтилиден и полипропилиден, менее склонны к кристаллизации вследствие большой длины цепей. Более или менее нерегулярно разветвленные углеводороды показывают различную степень кристалличности в зависимости от расположения метиленных групп в молекуле. [c.170]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    Эффективность депарафинизации карбамидом снижается при повышении пределов кипения сырья если у дизельного топлива и легких масел температуру застывания можно понизить до —70° С и более, то у вязких масел такую низкую температуру застывания получить нельзя. Причина этого заключается в преобладающей роли гибридных структур для фракций нефтей выше 300° С [90]. Во многих нефтях с повышением пределов кипения нефтяных фракций возрастает содержание циклических углеводородов с разветвленными цепями, которые, хотя и имеют повышенную температуру кристаллизации, в комплекс с карбамидом пе вовлекаются. В то же время с повышением температуры кипения фракций снижается содержание ароматических и нафтеновых углеводородов с длинными боковыми цепями [45, 53, 59]4Дапные табл. И, в которой приведены характеристики трех масляных фракций до и после депарафинизации (растворитель — МЭК, отношение сырья к растворителю 1 2, [c.45]

    Карбоцепные полимеры часто содержат боковые цепи в виде алкильных радикалов разной длины. Чем больше регулярность строения, тем выше способность полимера к кристаллизации и соответственно выше прочность волокон. К таким полимерам относятся регулярные полипропилен, поливинилхлорид, поливиниловый сп[[рт. С увеличением разветвленности и нарушенпем регулярности увеличиваются эластические свойства полимеров, например, полимерных парафинов (полипропилены, полибутены и т. д.). В качестве боковых групп в углеродной основной цепи могут быть не только углеводородные радикалы, но и многие функциональные группы, придающие полимерам разнообразные свойства. Их вводят с мономером нри синтезе полимеров или с помощью реакций замещения в готовых полимерах. [c.308]

    Твердые парафины в нефтях находятся в растворенном или взвешенном кристаллическом состоянии. При перегонке мазута в масляные фракции попадают парафины, имеющие состав i8 —Сз5. В гудронах концентрируются более высокоплавкие углеводороды Сза — Сбз- Количество возможных изомеров для этих углеводородов огромно. Так, уже гексадекан имеет 10 359 изомеров, кипящих в пределах 266—288,5 °С. Но, как показали многочисленные исследования, около половины всех твердых парафинов нефти имеет нормальное строение, а остальные представлены мало-разветвленными структурами с небольшим числом боковых цепей (в основном, метильные и этильные группы). В ряде нефтей обнаружено наличие непрерывного ряда углеводородов, начиная от Сп- Например, в битковской нефти найдены все углеводороды нормального строения от С17 до С42. Вместе с тем сейчас уже не подлежит сомнению, что наряду с углеводородами СпНгп+2 в нефтях имеются твердые, способные к кристаллизации органические вещества с циклической структурой. Однако эти углеводороды главным образом входят в состав не парафинов, а церезинов — смесей более высокомолекулярных и высокоплавких углеводородов, которые выделяются либо из остаточных нефтепродуктов, либо из горючего минерала озокерита. [c.24]

    Рассмотрим эти превращения на примере ряда алканов [17]. При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибкта кристаллов. [c.54]


Смотреть страницы где упоминается термин Кристаллизация разветвленности: [c.27]    [c.28]    [c.66]    [c.402]    [c.9]    [c.151]    [c.501]    [c.124]    [c.137]    [c.76]    [c.26]    [c.52]    [c.50]    [c.57]    [c.75]    [c.96]   
Кристаллизация полимеров (1966) -- [ c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Разветвление

Разветвленность



© 2025 chem21.info Реклама на сайте