Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сорбенты распределение по размеру

    В работе [25] предложен принцип бимодального распределения размеров пор, который позволяет составлять наборы колонок с значительно лучшими рабочими характеристиками. В соответствии с этим принципом, для составления набора колонок с линейной калибровочной зависимостью в широком интервале молекулярных масс нужно использовать только два сорбента с размерами пор, отличающихся на один-полтора порядка и имеющих умеренно узкое распределение пор по размеру. Разделительная емкость Сг колонок с этими сорбентами должна быть примерно одинаковой. Полученные бимодальные наборы колонок, как правило, имеют линейный участок калибровочной кривой, перекрывающий около четырех порядков изменения молекулярной массы, и умеренную разрешающую способность. За счет сокращения числа колонок соответственно уменьшается продолжительность разделения. Так, бимодальные наборы, выпускаемые фирмой Дюпон и состоящие из колонок с зорбаксами РЗМ-60 и РЗМ-ЮОО длиной по 25 см, имеют линейную калибровку в диапазоне молекулярных масс от 2-10 до 10 и гарантированную эффективность не менее 20 ООО т. т. [c.45]


    X — константа в уравнении Ван-Деемтера, характеризующая неравномерность распределения зерен сорбента по размерам и их кон фигурации ц, — дипольный момент т] — вязкость р — плотность [c.5]

    Х — константа в уравнении Ван-Деемтера, характеризующая неравномерность распределения зерен сорбента по размерам и их конфигурацию [c.6]

    Результаты, полученные методом ТСХ (а особенно — их воспроизводимость), очень зависят от неизменности толщины слоя и распределения размеров гранул, поскольку эти параметры сильно влияют на скорости течения элюента и миграции веществ. Вот почему в исследовательской практике предпочитают, если это возможно, пользоваться готовыми пластинками, промышленное производство которых хорошо стандартизовано. Если же возникает необходимость изготовления пластинок в лаборатории, то надо принять все меры для достижения однородности слоя сорбента. В качестве подложек для самодельных пластинок используют зеркальное стекло с гладкими краями. Перед нанесением слоя оно должно быть тщательно промыто детергентом и хромовой смесью. Способы приготовления и гомогенизации суспензий сорбентов указаны в предыдущем разделе. Важно иметь в виду, что при стоянии частицы суспензий незаметно для глаза оседают, так что распределение их размеров по объему становится неоднородным, поэтому наносить суспензию на пластинку надо сразу же после окончания гомогенизации. В простейшем варианте эту операцию можно осуществить с помощью пипетки с расширенным отверстием. В нее набирают заранее рассчитанный объем суспензии, быстро и более или менее равномерно распределяют его по поверхности пластинки, двумя-тремя покачиваниями во взаимно перпендикулярных направлениях обеспечивают надежное покрытие всей поверхности пластинки, а затем кладут ее на установленный строго горизонтально (по уровню) стол. С этого момента в течение получаса пластинку не следует трогать с места, но можно прикрыть ее от пыли коробкой из плексигласа. После предварительного подсушивания пластинки можно [c.466]

    Основные параметры, характеризующие закрепленный на ТСХ-пластинках слой, описаны в работах 1,2]. Адсорбция и десорбция, как было показано, происходят в порах и на наружных поверхностях гранул сорбента. Специфические хроматографические свойства сорбента определяются средним размером пор, их распределением по размерам, а также типом группировок атомов на поверхности сорбента. Так же как и в жидкостной хроматографии высокого давления, высота тарелки в тонкослойной хроматографии в значительной степени зависит от средних размеров частиц сорбента, распределения частиц по размерам и качества слоя. Однако в ТСХ значительно труднее провести разделение нри оптимальных условиях, поскольку длительность этого процесса нельзя регулировать путем изменения давления в системе. Длительность разделения зависит только от величины капиллярных сил в слое, т. е. от вторичных свойств сорбента. [c.113]


    Дальнейшие исследования показали, что необходимое распределение пор сорбента по размерам, обеспечивающее линейную калибровку в любом заданном диапазоне молекулярных масс, в общем случае является мультимодальным и может быть рассчитано на ЭВМ [26]. [c.45]

    Диаметр частиц сорбента. Помимо расстояния гг, проходимого фронтом растворителя, наиболее важными параметрами, от которых зависит высота тарелки Н в ТСХ, являются размер частиц <1р и распределение частиц сорбента по размерам. На рис. 34 уже было показано, каким образом величина др влияет на зависимость Н от гг (чем крупнее частицы сорбента, те.м меньше сказывается зависимость Н от гг). При рассмотрении практических результатов такое объяснение кажется разумным мелкие частицы более сильно замедляют скорость потока растворителя через слой в случае более протяженных участков разделения (свыше 10 с.м) время элюирования оказывается недопустимо большим. [c.114]

    Слои с широким распределением размеров частиц нежелательны, поскольку они дают высокие значения Н, характерные для крупнозернистых сорбентов, но лишь низкие скорости потока (как для мелкозернистых фракций). [c.130]

    В заключение подчеркнем, что активность слоя силикагеля зависит от размера ого пор, строения поверхности и текстуры основного вещества. Стандартные марки силикагелей имеют поры различных диаметров с различным распределением этих диаметров по величине, но определенного объема. Они характеризуются разными поверхностными свойствами и специфическими изотермами адсорбции воды. Эти параметры определяют хроматографические свойства сорбентов. Помимо первичных свойств, связанных с размерами пор и активностью поверхности, важными характеристиками сорбента являются размеры частиц и их распределение, которые определяют скорость потока растворителя в пространстве между отдельными частицами, а также внутри пор. Длительность разделения, величины и высота тарелок в значительной степени зависят от вторичных параметров. Таким образом, стандартизация нескольких видов силикагелей с узким распределением пор и частиц по размерам является необходимым условием получения воспроизводимых результатов хроматографического разделения. [c.114]

    В литературе опубликовано недостаточно конкретных данных по изменению площади сорбентов 5 , размера пор и их распределения после прививки функциональных групп. [c.235]

    Целесообразно выделение одного признака, могущего наиболее полно, качественно и количественно характеризовать широкий диапазон свойств и параметров текстуры сорбентов. Именно такой рациональной классификацией по одному главному признаку (по размеру пор) и является предложенная Дубининым. Следующими по важности признаками, по моему мнению, являются характер распределения размеров пор или частиц и знак кривизны поверхности. Безусловно, реальные адсорбенты не могут быть представлены одним каким-либо типом в чистом виде. Однако нет надобности вводить в каждый классификационный признак дополнительный тип смешанной структуры. При характеристике адсорбента достаточно указывать преобладающий тип и, если возможно, доли представительства других типов. Нежелательно также классифицировать адсорбенты по форме пор. [c.55]

    Размер частиц. Частицы заданной формы и одного размера, очевидно, характеризуются только одним параметром I, имеюш им размерность длины. Для полидисперсных систем необходимо еш,е знать функцию распределения по размерам [25, 26]. Для многих сорбентов, основные размеры частиц которых более 0,1—0,2 мм, крайние фракции могут различаться в 5—10 раз. Их фракционный состав определяется рассевом на механических ситах. [c.55]

    При адсорбции на углях веществ с крупными молекулами, а также частиц с коллоидной степенью дисперсности, для которых микропоры являются практически недоступными, основное значение приобретают мезопоры. Макропоры во всех случаях играют роль транспортных каналов. Параметры мезо- и макропор активных углей (удельную поверхность, объем и распределение объема пор по размерам) определяют обычными для катализаторов и сорбентов методами — адсорбционным, по вдавливанию ртути, пикнометрическим. [c.391]

    Величина зерна носителя. При выборе диаметра зерна твердого носителя следует иметь в виду, что размеры зерен оказывают влияние как на величину Н через члены Л и С в уравнении (54), так и на перепад давления по длине слоя сорбента в колонке. При этом имеет значение не только абсолютный размер зерен носителя, но и их фракционный состав, т. е. распределение частиц по величине их диаметра. Если размер зерен достаточно мал, то член А в уравнении (54), а отсюда и значение Н уменьшаются, что должно повысить эффективность колонки. Однако частицами малых размеров нельзя так равномерно заполнить колонку, как более крупными зернами. Поэтому коэффициент Хв в уравнении (53), как мера неоднородности заполнения колонки, возрастает при уменьшении диаметра зерен сильнее, чем уменьшается диаметр. Следовательно, эффективность колонки снизится. [c.73]


    Селективность сорбента нлн жидкой фазы нео()ходима для разделения данной конкретной смеси и обеспечивается надлежащим выбором нх, который делается на основе анализа природы сил межмолекулярного взаимодействия между молекулами неподвижной фазы и разделяемых веществ, а также на основе чисто эмпирических проб разделения на колонках одних и тех же размеров, но с разными сорбентами. Выбирают тот сорбент, который дает на хроматограмме наибольшее количество пиков с наиболее равномерным распределением их по времени и обеспечивает подходящее время аналнза. [c.128]

    Влияние геометрических размеров зерен. Размеры зерна входят в константу А уравнения Ван-Деемтера и в состав третьего члена уравнения (IV.61) в первой степени и в степени %. Поэтому практически ВЭТТ прямо пропорциональна эффективному диаметру частиц, а также величинам к и Ь) уравнения (1У.61), которые зависят от формы частиц и равномерности их распределения по размерам. Таким образом, насадочные колонки с более мелким сорбентом работают более эффективно, чем колонки с более крупным сорбентом. Однако нельзя уменьшать размер частиц до пылевидного состояния, так как при этом динамическое сопротивление колонки станет слишком большим и трудно обеспечить в этих условиях нормальную скорость потока газа-носителя. Оптимальное значение ВЭТТ в аналитической газовой хроматографии получается в минимуме кривой Н (а) и составляет около 0,2 см при среднем диаметре зерен сорбента около 0,2— [c.134]

    В отношении скорости потока следует пойти на компромисс, так как увеличение скорости хотя и уменьшает влияние диффузии (происходящей по длине разделительного слоя сорбента), но затрудняет установление равновесия между фазами. Уменьшение размеров частиц сорбента, обусловленное членом А, должно также иметь границы, так как в противном случае слишком большим станет сопротивление потоку в колонне, т. е. скорость движения потока недопустимо уменьшится. Величина члена С зависит от значения коэффициента распределения. Его определяют как отношение количества вещества в стационарной фазе к количеству вещества, находящегося а подвижной фазе. Он связан с соотношением стационарной и подвижной фазы на участке разделения. Более подробное рассмотрение вопросов теории хроматографии можно найти в специальной литературе [19, 28]. [c.348]

    Приведенные данные справедливы для тех случаев, когда сорбенты разного зернения имеют одинаковые кривые распределения частиц по размеру, колонки набиты одинаковым способом и имеют одинаковый фактор сопротивления колонки. Следует иметь в виду, что трудность получения узких фракций сорбента возрастает по мере уменьшения размера частиц и что фракции от разных производителей имеют разный фракционный состав. Поэтому фактор сопротивления колонок будет меняться в зависимости от зернения, типа сорбента, способа упаковки колонок и др. [c.15]

    Все молекулы, размер которых больше размера пор сорбента, не могут попасть в них (полная эксклюзия) и проходят по каналам между частицами. Они элюируются из колонки с одним и тем же удерживаемым объемом, равным объему подвижной фазы Уо. Коэффициент распределения для этих молекул равен нулю. [c.41]

    Таким образом, имея несколько сорбентов разной пористости с известным распределением пор по размеру, можно рассчитать состав смешанного линейного сорбента. [c.45]

    Каждому хроматографисту приходится решать, какой же из доступных для него обращенно-фазных сорбентов является наиболее приближающимся к идеальному. При этом ему приводится пользоваться данными фирмы о размере пор (среднем) У их кривой распределения, об объеме пор, поверхности сорбента, прививаемом агенте, наличии или отсутствии дополнительной обработки ( энд кэппинга ). Эти данные, как правило. [c.93]

    Главной характеристикой сорбентов для эксклюзионной хроматографии является размер пор, определяющий диапазон молекулярных масс, которые можно разделить на данном геле. Этот диапазон определяют по соответствующей калибровочной кривой, построенной в координатах /Р—1д М. Сорбенты с очень узким распределением пор по размерам характеризуются высокой разрешающей способностью в небольшом диапазоне молекулярных масс. Напротив, более широкое распределение пор приводит к увеличению диапазона разделения за счет снижения разрешающей способности. Наилучшими характеристиками обладают сорбенты с умеренно узким распределением пор, которые имеют максимальную длину линейного участка калибровки. [c.102]

    Значительно лучшие результаты достигаются при использовании зорбакса Р8М, получаемого по особой технологии. Этот сорбент выпускают с тремя размерами пор, перекрывающих диапазон молекулярных масс от 10 до 2-10 . Для снижения адсорбции при работе в органических растворителях его поверхность силанизируют, а в водных системах используют не обработанный сорбент. Зорбакс Р8М характеризуется исключительной однородностью пор, что в сочетании с малым диаметром частиц и их умеренно узким распределением по размеру обеспечивает высокую эффективность колонок. [c.107]

    И1. Что касается пропорций, то хроматографии уделено несколько больше внимания, чем скоростной седиментации и диффузии. Это связано с двумя обстоятельствами. Во-первых, седиментация и диффузия старше , и о них написано гораздо больше. [Из этого, впрочем, не следует, что теория применений этих методов завершена со скоростной седиментацией дело обстоит почти так же, как ко времени выхода в свет знаменитой-монографии Сведберга и Педерсена Ультрацентрифуга (1939 г.) метод относительно прост в реализации, но теория его и сейчас весьма далека от завершения это будет достаточно наглядно показано в I части и особенно П1 этой книги.] Во-вторых, мы хотели преодолеть некий психологический барьер, на который нам (и не только нам) нередко приходилось наталкиваться при дискуссиях с исследователями, привыкшими иметь дело с однозначными приборами типа ультрацентрифуги, диффузометров, гонионефелометров и т. п. Этим исследователям представляется, что в хроматографию а priori заложена избыточная неопределенность и субъективность , ибо сорбент (который, к тому же, надо готовить, а потом заполнять им колонки — отсюда субъективность разные операторы могут по-разному проделать эту процедуру), строго говоря, не подходит под привычные определения элементов прибора. Однако эта неопределенность лишь кажущаяся многими методами (например, ртутной порометрией в случае макропористых стекол — см. стр. 181) сорбент может быть охарактеризован по своей топологии количественно настолько полно, что он превращается как бы в зеркало , отражающее ММР, конформации в разных растворителях, композиционную неоднородность и т. п. Действительно, если воспользоваться простейшим примером — колонкой или набором колонок, одинаково заполненных макропористым стеклянным сорбентом с известным распределением размеров пор однозначно предопределяет распределение полимера с заданным (или подлежащим определению) ММР между порами и проточной (жидкой) фазой. [c.5]

    Главный из них —проблема механических потерь сорбентов (особенно высокоемких ГАУ) за счет истирания, достигающих от 2 до 8% за цикл. Другая проблема — потеря устойчивости работы аппаратов при увеличении их площади выше 15—20 м . Кинетика сорбции из воды на ГАУ лимитирована в основном внутридиффузионными процессами. Поэтому интенсификация внешнего массообмена лишь незначительно увеличивает общий коэффициент массообмена Ро и связанное с ним Тк. Так, увеличение Уф от 9 до 24 м/ч изменило Ро лишь от 0,0031 до 0,0049 м- (в то время как в плотном слое он был равен 0,0035—0,0054 мин [1, с. 142]. По этой причине времена контактов в аппаратах с псевдоожиженным и плотным слоем должны быть соизмеримы. Известно, что высота промышленных аппаратов Яр " с плотным слоем намного превышает длину зоны массопередачи мп, поскольку это устраняет частые остановки в работе для замены сорбента, а высота адсорберов кипящего слоя Яр " близка к п- Но эти адсорберы, так же как и с плотным движущимся слоем, имеют значительные по размерам системы загрузки и выгрузки сорбента, распределения и сбора воды, переточные устройства. Кроме того, п > мп вследствие перемешивания и размыва. Поэтому реальная высота адсорберов кипящего слоя колеблется от 3 до 10 м, а строительная высота— от 5 до 14 м. Именно вследствие указанных и не решенных пока проблем сорбционная очистка в аппаратах кипящего слоя используется сравнительно редко. [c.57]

    Приготовление колонок для ВЭЖХ из частиц сорбента размером от 3 до 12 мкм долго было для специалистов по ВЭЖХ труднопреодолимой проблемой. Так как при измельчении любых твердых тел их поверхность контакта резко возрастает, мелкие частицы приобретают способность заряжаться, слипаться в трудно разрушаемые комочки либо отталкиваться друг от друга с образованием неравномерно распределенных пустот. [c.114]

    В конце 60-х годов интерес к жидкостной хроматографии резко возрос. Родилась высокоэффективная жидкостная хроматография. Этому способствовало создание высокочувствительных детекторов (ультрафиолетовый, рефрактометрический), новых селективных полимерных сорбентов, новой аппаратуры, позволяющей работать при высоких давлениях. Все это привело к значительному увеличению скорости хроматографического процесса, повышению эффективности разделения смеси веществ и возможности определять малые концентрации. Если в классической жидкостной хроматографии разделение смеси обычно проводилось в довольно длинных колонках диаметром 10—12 мм, заполненных сорбентом с диаметром зерен 150—250 мкм, то в современной высокоэффективной жидкостной хроматографии (ВЭЖХ) применяют колонки диаметром 1—3 мм и сорбенты с размером частиц менее 50 мкм. Благодаря этому по эффективности разделения веществ жидкостная хроматография практически не уступает газовой. Таким образом, современная жидкостная (не ионообменная) хроматография, во многом благодаря использованию опыта газовой хроматографии, стала высокочувствительным, селективным и экспрессным методом разделения и определения многокомпонентных смесей в растворах и методом определения компонентов, главным образом органических [5]. Однако все это относилось не к жидкостной хроматографии вообще, а лишь к ее вариантам, основанным на адсорбции, а также на распределении между двумя жидкостями. [c.6]

    В данном случае адсорбция пронодится под давлением. Энергетические затраты на преодоление гидравлического сопротивления слоя должны быть несущественными по сравнению с затратами на сжатие газа. Поэтому оптимальные размеры адсорбера можно определить, исходя из минимального объема сорбента, т. е. при = 16 см/с. Отметим, что для определения высоты слоя сорбента нет необходимости определять полный профиль концентраций, достаточно найти распределение концентраций по длине слоя в узкой области вблизи концентрации проскока. [c.72]

    Сорбционные и хроматографические процессы, основанные на использовании эксклюзионных (молекулярно-ситовых) явлений — одно из важнейших современных средств фракционирования. Применение в анализе нефтяных ГАС твердых молекулярных сит (цеолитов, широкопорнстых силикагелей и стекол с узким распределением пор по размерам) ограничено из-за сильного проявления адсорбционных эффектов, которые часто действуют противоположно ситовым эффектам, что ухудшает результаты чисто эксклюзионного разделения в соответствии с размерами и формой молекул [109]. Наибольшее распространение получили методы эксклюзионного разделения па пористых, набухающих в растворителях органических полимерах (пространственно сшитых сополимерах стирола и дивинилбензола, полидекстранах и т. д.) или неорганических макропористых сорбентах с поверхностью, модифицированной прочно сорбированной или химически связанной неполярной органической стационарной фазой [117]. [c.16]

    Другой способ получения активного углерода из каменных углей заключается в модифицировании каменного угля щелочными металлами, что обеспечивает способность угля к поглощению веществ большей молекулярной массы, а также высокую скорость процессов адсорбции-десорбции. Традиционные методы получения адсорбет-ов из ископаемых углей приводят обычно к продукту с широким распределением пор по размерам, в связи с чем углеродные сорбенты из углей имеют низкую селективность и относительно невысокую удельную поверхность и, как следствие, ограниченные возможности для практического использования. Было установлено, что свойства угля во многом определяются кислородсодержащими группами. В каменном угле, кроме кислородсодержащих, существенную роль играют ароматические и гидроароматические фрагменты. Исходя из этого, модифицирующие обработки были направлены на карбоксильные, карбоксилатные, гидроксильные и другие кислородсодержащие группы, а также на ароматические структуры. Химическое модифицировании каменных углей приводит к получению адсорбентов, сорбирующих метиленовый голубой до 150-170 мг/г, йод до 130%. Полученные результаты явились предпосылкой изучений свойств углей с целью получения из них углеродного материала с высокой удельной поверхностью. [c.51]

    Не следует пропитывать бумагу раствором легко растворимой соли-осадителя с последующим высушиванием без промывания, так как вскоре после начала впитывания хроматографируемого раствора избыток осадителя, не закрепленного на носителе, будет из него вымыт. Только при быстром проведении процесса, например при капельных реакциях, вещество более или менее полно успеет прореагировать с осадителем. В обычных же условиях бумажной осадочной хроматографии данная техника оказывается мало эффективной. Тем более она не применима при количественном анализе веществ по размеру зон осадка на бумаге, в основе которого лежит требование равномерного распределения осадителя на бумаге или в тонком слое носителя-сорбента. [c.195]

    Разделение компонентов смеси может происходить по различным признакам коэффищ1ентам адсорбции, распределения, растворимости, ро способности к ионному обмену или размерам молекул и т. д Хроматографический анализ можно проводить в колонках, кациллярах, в тонком слое сорбента. Компоненты смеси собирают по фракциям на выходе из колонки после элюции соответствующим растворителем или вытеснителем. [c.169]

    Химической модификации подвергают, как правило, только силикагель. Силанольные группы на поверхности силикагеля заменяют на различные органические соединения, что приводит к значительному изменению селективности НФ. В качестве полярных модифицированных сорбентов используют силикагели с привитыми цианопропильными группами —(СН2)4— N, аминопропильными —(СН2)4—NH2- и оксипропильными —(СН2)4—ОН-группами. На модифицированных полярных сорбентах значительно быстрее, чем на силикагеле, устанавливается равновесие при переходе от элюента к элюенту, воспроизводимость результатов на них значительно лучше по сравнению с силикагелем. В качестве неполярных модифицированных сорбентов используют силикагели с привитыми этильными (Сг), октильными (Са), окта-децильными ( ia) и фенильными радикалами. Эти сорбенты имеют большое сродство к гидрофобным молекулам. Наиболее распространены рктадецильные сорбенты с поверхностью 300—350 м /г, содержащие около 20 % углерода. Для ВЖХ используют сорбенты правильной сферической формы с узким распределением по размерам (3 0,5 5 1 10 1 мкм) и поверхностью 200—6(30 м г. Для обычной колоночной хроматографии используют гораздо более крупные частицы сорбентов (50—500 мкм) нерегулярной формы. [c.598]

    Молекулы, имеющие в р-ре большой размер, или совсем ие проникают, или проникают только в часть пор геля и вымываются из колонки раньше, чем мелкие молекулы. В результате обеспечивается разделение молекул по размеру. Объем удержания Уя, -того компонента определяется ур-нием Уя, = Vo + Vfs , где Vo — объем движущегося р-рителя (пространство между частицами сорбента), — объем пор сорбента, доступных для молекул данного размера, Vfs, — KiVs, Ki — коэф. распределения молекул данного размера, Vj — объем р-рителя в порах сорбента (полный объем пор сорбента). Так как доступная часть объема пор Vfs, не превышает общего объема жидкости в порах сорбента Vs, то Ki не может быть больше 1. В связи с этим в Э. X. концентрация компонента внутри неподвижной фазы прямо пропорциональна его концентрации в подвижной фазе и пики на хроматограмме симметричны. Все анализируемые компоненты всегда элюируются в пределах объема (Vo 4- Vs), что позволяет вводить в колонку и разделять в-ва с неизвестными характеристиками удерживания. [c.693]

    Для ВЭЖХ используют фракции сферона с размером зерен менее 25 мкм, которые очень желательно дополнительно седиментировать. С 1985 г. начат выпуск сорбентов сферой микро с размером зерен 12, 16 и 20 мкм, которые отличаются более узким распределением по размеру частиц и повышенной механической прочностью. В литературе приведено много примеров использования сферонов для разделения гидрофильных полимеров, белков, нуклеиновых кислот и других биологических объектов. При этом неоднократно наблюдали заметную адсорбцию некоторых биополимеров на матрице геля, что иногда повышает эффективность разделения. [c.105]

    Свойства многих блочных и пленочных полимеров во многом зависят от плотности упаковки макромолекул, а для таких систем, как сорбенты, иониты и др., которые применяются в гельхроматофафии и для изготовления ионооб-менников, наиболее существенное значение имеют суммарный объем пор, распределение их по размерам, а также их удельная поверхность. [c.55]

    При Э. X. молекулы, имеющие в р-ре большой размер, или совсем не проникают, или проникают только в часть пор сорбента (геля) и вымываются из колонки раньше, чем небольшие моЯекулы. Соотношение эффективных размеров макромолекул и пор сорбента определяет коэф. распределения Kj, от к-рого зависит объем удерживания компонента Vk в колонке  [c.411]


Смотреть страницы где упоминается термин Сорбенты распределение по размеру: [c.413]    [c.51]    [c.37]    [c.500]    [c.257]    [c.61]    [c.411]    [c.24]    [c.76]   
Хроматография полимеров (1978) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Сорбенты



© 2025 chem21.info Реклама на сайте