Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алкил галогениды получение

    Реакция обратима. По закону действия масс выход продуктов реакции возрастает при увеличении концентрации исходных ве-ществ или при удалении из реакционной массы продуктов реакции. Следовательно, реакцию нужно проводить, отгоняя воду или алкил-галогенид, если он обладает достаточно низкой температурой кипения. Полезно также применять галогеноводородную кислоту максимально высокой концентрации или заменить ее смесью соответствующей соли и серной кислоты. Следует, однако, помнить, что серная кислота является окислителем, поэтому во избежание окислительно-восстановительной реакции между серной и галогеноводородной кислотами следует применять серную кислоту такой концентрации, при которой ее окислительное действие минимально. Подобный вариант проведения синтеза не может быть использован для получения иодидов. [c.106]


    Алкилфосфоновые кислоты. Способы получения. 1. Нуклеофильное замещение алкилфосфитами у насыщенного атома углерода алкил-галогенидов. [c.302]

    Большинство систем содержит соединения ванадия. Возможность получения чередующегося сополимера на основе алкил-галогенидов алюминия пока нельзя считать строго доказанной, учитывая, что хлористый алюминий, как правило, содержит примеси соединений ванадия. В свое время в одной из наших работ [65] была показана возможность получения кристаллического гранс-полибутадиена с количественной ненасыщенностью под влиянием хлористого алюминия, однако оказалось, что этот эффект был связан с наличием следов хлоридов ванадия и что после тщательной очистки хлористого алюминия от следов ванадия реализуется обычный процесс катионной полимеризации [66]. Не исключалась возможность протекания процесса по радикальному механизму, причем чередование звеньев определяется участием в росте цепи эквимолекулярного комплекса бутадиена с акрилонитрилом. Большой интерес представляют опубликованные в последние годы работы Фурукава и др. [67], связанные с синтезом чередующихся сополимеров диенов и олефинов, особенно чередующегося сополимера бутадиена с пропиленом, в котором бутадиеновое звено имеет гракс-конфигу-рацию. Это новый тип стереорегулярного полимера, в котором повторяющееся элементарное звено имеет структуру [c.255]

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    Кроме получения реактивов Гриньяра, важное применение рассматриваемая реакция находит для превращения алкил- и арилгалогенидов в литийорганические соединения [327] она также была проведена и для многих других металлов, например Na, Ве, Zn, Hg, As, Sb и Sn [328]. Для натрия заметным побочным процессом является реакция Вюрца (реакция 10-87). В случае калия образуется сложная смесь продуктов с очень низким содержанием RK [329]. Иногда, если реакция между галогенидом и металлом слишком медленная, можно использовать сплав металла с калием или натрием. Показательным примером служит получение тетраэтилсвинца из этилбромида и сплава РЬ—Na. [c.466]

    Реакция обмена между галогенидами и металлоорганическими соединениями практически ограничена случаями, когда М —литий, а X —бром или иод [337], однако было показано, что реакция происходит и с магнийорганическими соединениями [338]. Обычно R =алкил, чаще всего бутил, хотя и не всегда, а R = ароматический радикал. Как правило, алкилгалогениды недостаточно реакционноспособны, в то же время аллил- и бензилгалогениды дают обычно продукты реакции Вюрца. Естественно, что с галогеном связывается та группа R, для которой RH более слабая кислота. Винилгалогениды реагируют с сохранением конфигурации [339]. Реакцию можно использовать для получения а-галогенозамещенных литий- и магнийорганиче-ских соединений [340], например [341]  [c.467]

    Наиболее широко применяемый метод синтеза простейших алкил- и ариллитиевых соединений аналогичен методу получения реактивов Гриньяра и основан на взаимодействии лития и соответствующего органического галогенида  [c.225]

    Основные методы получения С.о. 1) Взаимод. неорг. сульфидов или тиолатов металлов с алкил(арил)-галогенидами, сульфатами или тозилатами. Для получения диарилсульфидов применяют также р-ции с солями арилдиазония. [c.461]

    Спирты, способы получения которых уже известны, можно превратить в другие соединения, имеющие такой же углеродный скелет из сложных спиртов можно получить сложные альдегиды, кетоны, кислоты, галогениды, алкены, алкины, алканы и т. д. [c.516]

    Получение. В пром-сти иаиб. распространены окислительные и гидролитич. методы, а также гидрокарбонилирование. Окисление в присут. солей Со, Мп, Ре, N1, Се применяют, напр., при получении к-т из альдегидов, уксусной к-ты из бутана, бензойной к-ты из толуола. Гидрокарбонилнрова-ние (гидрокарбоксилирование) проводят присоединением СО и Н2О к алкеиам, алкинам, арил(алкил)галогенидам и тозилатам ароматич. и алифатич. спиртов под давлением в присут. катализаторов - комплексов РЬзР с солями Рс1, я-аллильных комплексов Ni либо действием карбонилов Ni или Со, напр. [c.327]

    Гексениллитий. Настоящая методика [15] иллюстрирует использование трет-бутиллития для получения растворов литийорганических соединений, не содержащих алкил галогенидов, а также применение очень низких температур. [c.35]

    Так же как синтез Барбье [15] был возрожден в качестве альтернативы постадийному получению реактивов Гриньяра с последующей реакцией с карбонильным соединением, было обнаружено, что одностадийная реакция лития, алкил галогенида и карбонильного соединения может давать хорошие результаты и позволяет реально уменьшить вклад а-депротонирования. Много примеров с подробным описанием эксперимента было опубликовано Пирсом, Ричардсом и Сцилли [16]. При последующих синтезах использовали аналогичные условия. [c.73]

    Природа взаимодействий ОН- - -галоген была за последние несколько лет довольно хорошо изучена при многочисленных исследованиях межмолекулярной связи у галогензамещенных фенолов и спиртов и в меньшей мере межмолекулярной связи с алкил-галогенидами. Несмотря на это, остались нерешенными некоторые интересные проблемы, особенно связанные с относительным порядком силы связи с различными галогенами. Несомненно, что наибольшие смещения частот (AvOH) для галогензамещенных фенолов и этанолов имеют место в случае иода, как акцептора протонов последовательность смещений с изменением атома галогена такова I>Br> l>F. Относительное количество несвязанных ОН-групп будет соответствовать той же последовательности. Однако измерения энтальпии указывают на иной порядок. Между различными группами авторов существуют расхождения относительно последовательности, в которой располагаются эти заместители, но все они согласны с тем, что наименьшее значение АН соответствует ассоциации с иодом, и обычный порядок расположения заместителей таков С1>Вг>Р>1. Полученные результаты привели к дискуссии по вопросу о том, не указывает ли это кажущееся отклонение от правила Бэджера на влияние каких-то иных эффектов, кроме водородной связи. [c.265]

    Фтористые алкилы были получены реакцией между элементарным фтором и парафинами , присоединением фтористого водорода к олефинам реакцией алкилгалогенидов с фтористой ртутью 3, с двухфтористой ртутью с фтористым серебром или с фтористым калием под давлением . Изложенная методика основана на способе Гофмана , который заключается во взаимодействии безводного фтористого калия с алкил галогенидом при атмосферном давлении в присутствии этиленгликоля, который берется в качестве растворителя неорганического фторида. Получаемый фтористый алкил обычно содержит небольшую примесь олефина, которую легко удалить обработкой раствором брома и бромистого калия. Опубликован обзор методов получения алкилмонофторидов . [c.70]


    Алкиларилсульфонаты отличаются более высокими моющими свойствами, чем алкилсульфонаты, и являются одними из наиболее распространенных в промышленности ПАВ. Схема их производства состоит из следующих стадий получения веществ, пригодных для использования в процессе синтеза в качестве алкильных боковых цепей (непредельные углеводороды и алкил-галогениды) конденсации этих веществ с бензолом по Фриде-лю — Крафтсу с применением кислотных катализаторов, сульфирования полученных алкилбепзолов, очистки образовавшихся сульфокислот, их нейтрализации едким натром или содой и выделения натриевых солей. [c.7]

    Способность ацилпроизводных тетракарбонила кобальта реагировать со спиртами с образованием эфиров и карбонилгидрида кобальта открыла возможность получения слоншых эфиров из алкилгалогенидов. Алкил-галогениды просто вводят в реакцию с анионом карбонилкобальтата в присутствии окиси углерода, чтобы получить ацилтетракарбонилы кобальта, которые затем обрабатывают спиртом. [c.292]

    Автор синтезировал девять алкилфенилселенидов с выходом 85—95% теоретического количества при действии спиртовых растворов натриевой соли (для получения которых селенофенол растворяют в вычисленном количестве 50%-ного водного раствора едкого натра, разбавленного спиртом) на соответствующий алкил-галогенид или диалкилсульфат. [c.388]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    Хотя, как было показано выше, вторичные бромиды в условиях МФК-замещения дают главным образом алкены, более активные мезилаты превращаются во вторичные галогениды с относительно хорошими выходами. Из оптически активного 2-октилмезилата были получены оптически активные хлорид (выход 83%, оптическая, чистота 89%) и бромид (выход 78%, оптическая чистота 82%). Реакцию проводили в присутствии 5 мол.% аликвата 336 или трибутилгексадециламмонийброми-да при 100 °С в течение 1,5 или 0,5 ч соответственно. Для уменьшения рацемизации в результате повторного обмена при получении фторида, который реагирует слишком медленно, использовали эквимолярное количество неорганической соли. [c.113]

    Моющая и противокоррозионная присадка, содержащая азот и серу, была синтезирована реакцией алкенилянтарного ангидрида со свободной серой и дальнейшей обработкой полученного соединения полиалкенилполиамином [пат. США 3306908]. Для синтеза сукцинимидной присадки, обладающей моющими, противокоррозионными и противоизносными свойствами, продукт реакции алке- нилянтарного ангидрида с амином обрабатывали солями (нитратами, нитритами, галогенидами, фосфатами, фосфитами, сульфатами, сульфитами, карбонатами, боратами) и оксидами кадмия, никеля и других металлов для образования комплексных соединений [пат. США 3185697]. К сукцинимидным относится также присадка Олоа-1200, производимая в промышленных масштабах в США, Англии, Франции. [c.92]

    Бор сам по себе не активен по отношению к галогенутлеводоро-дам и другим соединениям, поэтому для получения алкил- и арилбораион исходят из галогенидов или гидридов бора. [c.202]

    Бензин, полученный из нефти простой перегонкой (разд. 8.2.1), имеет октановое число от 50 до 55 и непригоден для непосредственного использования в двигателях. Бензин более высокого качества получается при крекинге его октановое число составляет 70—80 в зависимости от типа крекинга. Поскольку для современных высококомпрессионных двигателей требуется топливо с октановым числом по крайней мере около 90, нужно было разработать методы улучшения бензинов, добываемых как непосредственно из нефти, так и крекингом. Иногда октановое число увеличивают, добавляя соединение, которое само имеет высокое октановое число [например, некоторые арены или тетраэтилсвинец РЬ(С2Нб)4] (разд. 9.8.1.1). Бензин улучшают также химическим путем, так называемым риформингом и алкилированием. Риформинг заключается в изомеризации, при которой неразветвленные или малоразветв-ленные алканы при нагревании с подходящим катализатором (например, оксидами молибдена, алюминия, галогенидами алюминия, платиной на оксиде алюминия) превращаются в более разветвленные алканы илн в ароматические углеводороды с большим октановым числом, чем октановое число исходных алканов. Превращение неразветвленных алканов в разветвленные можно схематически представить следующим образом  [c.280]

    Получение смешанного магиийорганического соединения ВМдХ (реактива Грииьяра) из галогенида КХ (где К —алкил, арил и др.) и магиия является первой стадией магиий-органического синтеза  [c.219]

    Этот синтез является косвенным методом получения углеводородов из алкил-, арил- или циклоалкилгалогенидов [прямой метод — это, конечно, гидрогенолиз галогенида (разд. А. 3)1. Косвен- [c.31]

    Этот Синтез [66] приводит к олефинам с нечетным "числом атомов углерода и с двойной связью в центральной части молекулы. Используют реактив Гриньяра или литийалкил и дифтордибромметан или трифторбромметан в качестве тетрагалогенида углерода. Из первичных галогенидов получают алкены, из вторичных — преимущественно непредельные галогениды. Предполагается [66], что образуется дигалокарбен, например Ср2, и что он сначала внедряется между атомами углерода и металла. Подробно механизм реакции рассмотрен в оригинальной работе. Метод этот простой, и выходы, исходя из ряда первичных галогенидов, колеблются от 37 до 72%. а) Получение нонена-4. К реактиву Гриньяра, полученному [c.151]

    АЛКИЛИРОВАНИЕ ВИН ИЛ ГАЛОГЕНИДОВ - СПОСОБ ПОЛУЧЕНИЯ АЛКЕНОВ. Мы только что показали, что присоединение галогеноводородов по тройной связи приводит к винилгалогенидам. Прп алкилирова-нии винилгалогенидов можно получать алкены (реакцпп сдваивания). Алки- [c.364]

    По этой же методике можно синтезировать и другие алкил-ацетилены, исходя из первичных бромистых алкилов. При получении н-пропилацетилена продолжительность прибавления бромистого н-пропила должна равняться 45—60 мин., причем выход получается более низким (40—50%), что объясняется увлечением вещества вместе с аммиаком, если только не применять холодильник с сухим льдом (т. кин. 39—40° 1,3850). н-Амилацетилен (т. кип. 98° По 1,4088) и изоамил ацетилен (т. кип. 91—92° 1,4060) можно синтезировать по этой же методике с выходом, равным 70—80%. Продолжительность прибавления галогенида составляет 1,5—2,0 часа. н-Гексиладетилен [т. кип. 76—77° (150 мм) по 1,4157] получается с выходом 65%, если применить избыток ацетиленида натрия, равный 1 молю. Галогенид прибавляют в течение 1 часа, и смесь перемешивают дополнительно в продолжение еще 3 час., прежде чем подвергать ее гидролизу. [c.113]

    АМИНОЛИЗ (от амины и греч. lysis - разложение, распад), обменная р-ция между в-вом и первичным или вторичным амином. Путем А. можно заменить в орг. соед. на аминогруппу галоген (напр., в алкил- и арилгалогенидах, галоген-ангидридах к-т), гидроксил (в спиртах и фенолах) А. подвергаются также неорг. соединения, напр, гидриды щелочных металлов, нек-рые оксиды и галогениды. Р-ция применяется, напр., для пром. получения диметиланилина из анилина и метанола, алканоламинов из анилина и метанола, из хлоргидринов и аминов. См. также Окислительный аммонолиз. [c.139]

    Алканы, особенно изоалканы, взаимодействуя с алкенами в присутствии таких катализаторов, как галогениды алюминия, трехфтористый бор, фтористый водород и серная кислота, дают высшие члены ряда. Каталитическое алкилирование, таким образом, является методом получения топлив с высокими октановыми числами из некоторых газообразных низкомолекулярных алканов, образующихся в процессе переработки нефти. Как видно из предыдущего, изоалканы, необходимые для реакции алкилирования, могут быть легко получены с помощью процессов изомеризации. Так, изобутан, имеющий наибольшее промышленное значение как алкилиру-ющий реагент, получают изомеризацией н-бутана. Олефины, необходимые для каталитического алкилирования, например пропен и бутен, являются побочными продуктами другого процесса переработки нефти — каталитического крекинга. Алкилирование приводит к довольно сложным смесям продуктов. Так, например, алкилирование нзобутана пропеном в присутствии фтористого водорода при 40°С дает следующие продукты пропан, 2,3-диметилпентан, 2,4-ди-метилпентан, 2,2,4- и 2,3,4-триметилпентаны, 2,2,3- и 2,3,3-триэтил-пентаны. Продукт реакции является, таким образом, смесью высо-коразветвленных алканов, обладающих высокими октановыми числами. Реакция представляет собой цепной процесс, инициированный протонированием олефина фтористым водородом. Изопропил-катион отрывает гидрид-ион от изобутана, давая грег-бутил-катион, который присоединяется к пропену. Образующийся при этом диметил-пентил-катион, может претерпевать внутримолекулярную перегруппировку, давая изомерные катионы, которые превращаются в диме-тилпентаны за счет отрыва гидрид-иона. Продукты состава Сз образуются в результате взаимодействия изобутена, образующегося путем элиминирования протона из грег-бутил-катиона, с пропеном. [c.157]

    По-видимому, наиболее широко используемым методом синтеза оловоорганических хлоридов и бромидов является реакция пере-распределения, протекающая при нагревании тетраалкильных (или тетраарильных) производных олова с соответствующими количе-ствами галогенидов олова (IV) при 200 °С (схемы 132—134) (Х = = С1 или Вг, К = алкил или арил). При этом первоначальным про-цессом, самопроизвольно протекающим даже при комнатной тем-пературе, является образование эквимольной смеси три- и моно-галогенидов (схема 135) [116]. Продукты, образующиеся при последующих реакциях (схемы 132—134), зависят от соотношения реагентов эти реакции идут при более высоких температурах. Реакция (134) пригодна для получения винил- и фенилоловотригалоге-нидов, по неприменима для получения соответствующих алкилза-мещениых. [c.183]

    Промышленные методы получения оловоорганических галогенидов основаны на реакциях перераспределения для получения моно- и дигалогенидов в лабораторном масштабе более удобны методы, основанные на расщеплеЕгии связей Sn—С галогенами (схемы 138, 139 Х = С1, Вг, I), Активность галогенов в этих реакциях уменьшается в ряду С1>Вг>1 на практике эти реакции применяют для получения бромидов и иодидов. Реакция с бромом обычно проводится в растворе при температурах от О до —50 °С путем постепенного прибавления разбавленного раствора брома. Аналогичная реакция с иодом медленно протекает при температуре кипения растворителя, например хлороформа. Обобщения относительно сравнительной реакционной способности органических групп к отщеплению под действием галогенов следует делать с осторожностью, поскольку не все эти реакции протекают по одному механизму однако легкость отщепления обычно уменьшается в ряду фенил > бензил > винил > алкил. В общем случае отщепление органических групп от олова действием галогенов следует рассматривать как элсктрофильную атаку на связанный с оловом углеродный атом, сопровождающуюся нуклеофильным содействием со стороны растворителя или избытка реагента. Расщепление [c.184]

    Алкилирование аминопиримидинов обычно осложняется одновременным алкилированием атомов азота пиримидинового ядра, поэтому алкил- (или арил-)-аминопиримидины получают, как правило, взаимодействием 2-, 4- или 6-хлорпиримидинов с соответствующими аминами. Диалкиламиноалкиламинопири-мидины, многие из которых были испытаны в качестве возможных антималярийных препаратов, синтезировали обычно этим способом [201]. Адамс и Уитмор [202], действуя амидом натрия на 2-аминопиримидины в толуоле и вводя полученные натриевые производные в реакцию с диалкиламиноалкилгалогенидами, также синтезировали 2-диалкиламиноалкиламинопиримидины. Однако этот метод алкилирования, по-видимому, не имеет общего значения, поскольку натриевые производные плохо реагируют с такими галогенидами, как бромистый триметилен или этиленхлоргидрин. [c.224]

    Алкил- и арнллнтневые производные получают с высокими выходами обработкой галогенида 2 экв Л. в сухом эфире в основном по методике, используемой прн получении реактива Гриньяра 17, 8]. Л. реагирует легче и с большей скоростью, чем магний. [c.139]

    Особое место среди реакций нуклеофильного присоединения по карбонильной группе альдегидов и кетонов занимает реакция, открытая Виттигом. Она позволяет замещать карбонильный кислород на метиленовую и замещенную метиленовую группы и синтезировать таким образом из альдегидов или кетонов соответствующие алкены. Реактив Виттига, который используют для этого превращения, готовят, смешивая соответствующий галогенид с трифенилфосфином (получают из хлорида фосфора(Ш) и фенилмагнийбромида, см. разд. 2.3.1) и далее обрабатывая полученную соль сильным основанием (бутилли-тий, этилат натрия, трет-бутияат калия, амид натрия и т. д). [c.238]


Смотреть страницы где упоминается термин Алкил галогениды получение: [c.307]    [c.352]    [c.167]    [c.727]    [c.508]    [c.5]    [c.136]    [c.9]    [c.31]    [c.275]    [c.128]    [c.27]    [c.152]    [c.230]   
Органическая химия (1964) -- [ c.60 , c.61 , c.218 , c.219 , c.257 , c.337 , c.417 , c.418 ]




ПОИСК





Смотрите так же термины и статьи:

Алкил галогениды

Галогениды получение



© 2025 chem21.info Реклама на сайте