Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины, очистка

    Далее рассматривается процесс пиролиза, направленный исключительно на получение олефинов. Жидкая часть продуктов пиролиза при этом не имеет особого значения. После надлежащей очистки она используется как компонент бензина. [c.55]

    Бензольная составляющая может быть удалена очисткой серной кислотой. Парафи- новый углеводород удаляется в виде продуктов крекинга, для чего >фракцию подвергают пиролизу при 550—650° со временем пребывания в реакторе 10—20 сек. После повторной перегонки и очистки серной кислотой для удаления небольших количеств олефинов получают 96%-ный циклогексан. Очистка циклогексана может производиться также методами экстрактивной, вернее азеотронной перегонки. О путях промышленного решения этой задачи надежных данных нет. [c.100]


    Легче всего протекает образование хлористых алкилов при осуществлении десульфирования в присутствии инертного растворителя. Целесообразно выбрать такой растворитель, чтобы при кипячении с обратным холодильником температура раствора лежала в пределах 140—150°. Во многих случаях с успехом применяют ксилол. Условием хорошего течения реакции десульфирования в сторону образования хлористого алкила является применение чистых продуктов, не содержащих солей, особенно железа, олова и алюминия. В промышленной переработке продуктов сульфохлорирования можно столкнуться с наличием солей железа, очистка от которых не всегда легко осуществима, в результате чего при десульфировании образуются заметные количества смолистых веществ и олефинов. [c.386]

    ОЧИСТКА ОЛЕФИНОВ И ПАРАФИНОВ [c.426]

    Дейтерообмен. Результаты опытов [11], в которых происходил обмен дейтерия из бромистого дейтерия с атомами водорода бутанов при изомеризации в присутствии бромистого алюминия, подтвердили механизм цепной реакции с образованием иона карбония. Предполагается, что обмен происходит в то время, когда бутаны находятся в виде соответствующих ионов карбония. При. тщательной очистке от олефинов обмен происходил в ничтожно малой степени. [c.19]

    Гидрогенизацию в том виде, как она применяется для очистки крекинг-нефтепродуктов и сланцевых масел, обычно принято называть недеструктивной гидрогенизацией. Это значит, что при этом процессе в минимальной степени идет превращение углеводородных компоиентов в более низкокипящие (меньшего молекулярного веса) углеводороды. Процесс состоит в присоединении водорода к олефинам, в некоторых случаях по ароматическим связям, и, следовательно, в повышении содержания водорода при практически полном исключении разрыва углерод-углерод-пых связей в продукте. [c.275]

    Реакции, вызываемые кислотной обработкой с целью очистки, являются в основном полимеризацией и образованием моно- и диалкил-сульфатов часть последних удерживается маслами и разлагается с обугливанием и выделением двуокиси серы при повторной перегонке масел. Было показано также, что олефины определенного структурного типа R H = G(R)2 и диены полимеризуются быстрее и полнее, чем олефины [c.352]

    Несмотря на важность разработки эффективных методов пиролиза необходимо иметь в виду, что около 70—75% капитальных и 65—75% эксплуатационных затрат в производстве низших олефинов приходится на стадию газоразделения и очистки мономеров. Это предопределяет значимость выбора наиболее рациональной и эффективной схемы газоразделения. [c.38]


    Крафтса, например хлорид цинка [82], трехфтористый бор [83 и безводный треххлористый алюминий. Последний селективно поли-меризует реакционноспособные олефины и одновременно переводит сернистые соединения в легко удаляемые комплексы химизм превращений, которым при этом подвергаются сернистые соединения, очень сложен, так как одновременно протекает целая серия первичных и вторичных реакций. Подвергалась изучению глубина сероочистки хлористым алюминием для различных типов сернистых соединений [84]. В общем случае 1 г хлористого алюминия на 100 мл сильно разбавленного раствора сернистых соединений в лигроине (нафте) удаляет от одной трети до половины сернистых соединений. Для некоторых сульфидов очистка идет еще глубже. Катализат подвергается затем вторичной перегонке, при которой содержание сернистых соединений еще больше снижается, так как большая часть исходных сернистых соединений превратилась в высококипящие комплексы. Хлористый алюминий применяется в промышленном масштабе для глубокой очистки специальных сортов смазочных масел. [c.239]

    Реакции сульфирования и окисления-восстановления протекают в относительно меньшем масштабе, потому что большая часть отработанной кислоты может быть регенерирована. Однако нри очистке крекированных дистиллятов от серы на первый план выступает химическое воздействие кислоты при этом происходят реакции полимеризации, этерификации, конденсации ароматических углеводородов и олефинов, сульфирование и т. д. Азотистые основания при этом нейтрализуются, а нафтеновые кислоты растворяются в серной кислоте. Поэтому состав осадка очень сложный и в значительной степени зависит от природы очищаемого дистиллята, крепости кислоты и температуры очистки. [c.570]

    Наличие примесей в сырье, особенно олефинов (Се—С,,), образующихся из фракции Сз при алкилировании бензола, сильно увеличивает индукционный период и влияет на состав продуктов разложения перекиси. Для этого процесса рекомендуется изопропилбензол, полученный алкилированием бензола пропан-пропиленовой фракцией, не содержащей других олефинов, с последующей глубокой очисткой продукта алкилирования.  [c.180]

    Dy at 722 Смесь оксидов металлов на оксиде алюминия сферические гранулы Селективное гидрирование ацетиленовых углеводородов, ди- и полиенов олефинов в потоках олефинов очистка от соединений серы и мышьяка [c.32]

    Неочищенный продукт в зависимости от пределов кипения (когазин I—140—180°, когазин II—180—250°) содержит различные количества веществ, поглощаемых раствором пятиокиси фосфора в серной кислоте. Эти примеси сильно мешают сульфохлор ироваиию. Поэтому их гидрированием под высоким давлением превращают в парафины или удаляют очисткой, например, концентрированной серной кислотой. При очистке серной кислотой, практикуемой в нефтяной промышленности, составные части, подлежащие удалению, теряются. При восстановлении же под высоким давлением они превращаются в парафиновые углеводороды, участвующие в сульфохлорировании. Речь идет здесь в первую очередь об олефинах, далее — о небольших количествах спиртов, альдегидов и кислот. [c.396]

    Способ очистки олефинов и парафинов, естественно, зависит от метода их синтеза. Если они получаются пс реакции Гриньяра, то перед окончательной ректификацией следует полностью удалить галоидпро-изводные. С этой целью раньше применяли обработку горячим спиртовым раствором едкой щелочи при перемешивании, но Бурд и сотрудники [c.426]

    Избыток магния при получении реактива Гриньяра весьма желателен, так как это гарантирует вступление в реакцию всего к-тотрадецил-бромида, могущего в противном случае загрязнить образ5-ющийся олефин. Избыток магния можно разрушить избытком бромистого аллила или же отфильтровать перед его добавлением. 1-гсптадецен очищают тщательной фракционной перегонкой при давлении 20 мм рт. ст. В связи с необходимостью получения чистого образца гептадецена-1 б этой стадии силикагель не применяется для очистки, так как он катализирует перемещение двойной связи. После гидрирования /<-гептад(,кан очищают фракционной перегонкой и пропусканием через силикагель. [c.511]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]


    Нефтяные дистилляты первоначально очищались обработкой концентрированной серной кислотой с последующей промывкой щелочью, но затем этот способ очистки был вытеснен другими методами. Реакция олефинов с серной кислотой приобрела особое значение после 1912 г., когда стали широко внедряться крекинг-процессы для производства бензина. Бензин, полученный термическим крекингом при атмосферйом или невысоком давлении, содержал от 30 до 45 % непредельных углеводородов, а бензин, приготовленный в различных процессах крекинга под давлением от 17,6 до 52,7 кг/см , содержал от 30 до 40% непредельных углеводородов. Каталитический крекинг дает бензин с 8—10% непредельных углеводородов. [c.352]

    В точение ряда лет, когда очистка бензина, керосина и смазочных масел серной кислотой была почти универсальным мотодом, он был в значительной степени эмпирическим, очень мало было известно о реакции серной кислоты с индивидуальными олефинами. Процесс этот все еще остается в значительной степени эмпирическим, он применяется для очистки смазочных масел и для производства бесцветных фармацевтических масел. [c.352]

    Хлористая медь и другие соединения меди весьма полезны для выделения и очистки диенов с сопряженными двойными связями. По Френсису в 1951 г. в США был выдан 21 патент на процесс поглощения олефинов модными солями [5]. Твердая безводная полухлористая медь образует твердый комплекс с этиленом [231, а также с пропиленом и изобутиленом, однако эти комплексы оказываются стойкими только нри высоком парциальном давлении этих олефинов. Водный раствор полухлористой меди и хлористого аммония образует комплексы с циклопентеном и циклогексеном, которые разлагаются приблизительно при 90 с выделением олефинов [18]. Было предложено применять водные растворы медных солей, содержащие соли дныетиланплина, для поглощения этилона из газов с 10% этилена для нолучения концентрированного этилена рекомен/ овалось нагревание [12]. [c.388]

    Недеструктивные процессы применяются также и при селективном гидрировании олефинов в бензинах каталитического крекинга. Одновременно гидрирование влечет за собой и очистку нефтепродуктов от серы, азота и кислорода. Они удаляются из нефтепродуктов в виде таких соединений, как сероводород, аммиак и вода. Сущность изл1енений, происходящих ири недеструктивном гидрировании бензина каталитического крекинга, демонстрируется в табл. П-6 [203—205]. [c.94]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]

    Хлористый алюминий до сих нор применяется при глубокой очистке масляных дистиллятов для удаления чрезмерно больших молекул ароматического типа и соединений, содержащих кислород, азот и серу. В военное время он применялся для изомеризации нормального бутана в изобутан. Реакции синтеза с участием хлористого алюминия демонстрируются его способностью полиме-ризовать низшие олефины в масляные фракции и алкилировать с олефинами как изопарафины, так и ароматику. Многосторонняя реакционная способность хлористого алюминия иногда даже затрудняет его применение, так как легко протекают и побочные реакции. Подобные явления особенно часто наблюдаются в случае углеводородов с более высоким молекулярным весом.  [c.136]

    Ароматические углеводороды. При обычных условиях ароматические углеводороды взаимодействуют с серной кислотой в незначительной степени, если их концентрация не слишком велика. При работе же с дымящей серной кислотой или при высокой температуре может происходить сульфирование. Реакция между серной кислотой и ароматическими углеводородами имеет существенно важное значение для нефтяных фракций, богатых ароматикой или алкилароматикой, а также для процессов получения белых масел и керосина, требующих глубокой сернокислотной очистки. В тех случаях, когда в очищаемой фракции присутствуют не только ароматические углеводороды, но и олефины, как например, в крекинг-дистиллятах, может иметь место алкилирование ароматических колец. Это явление было открыто сравнительно давно [7, 8]. [c.224]

    Средние эфиры, образующиеся при взаимодействии серной кислоты с олефинами, содержащимися в крекинг-дистиллятах, растворимы пе только в кислотной, но и частично в углеводородной фазе. Растворимость средних эфиров в углеводородной фазе возрастает с ростом молекулярного веса соответствующего оле-фипа. Средние эфиры с трудом поддаются гидролизу и, следовательно, не отмываются щелочью при защелачиванип. Однако средние эфиры нестабильны и при длительном хранении разлагаются. Наблюдалось выделение сернистого газа и смолообразование в крекинг-бензинах, обработанных серной кислотой. Средние эфиры также легко разлагаются при нагревании [24], так что крекинг-дистиллят, прошедший сернокислотную очистку, после вторичной перегонки обычно вновь требует защелачивания. В нефтезаводской практике вторичную перегонку очищенных крекинг-дистиллятов зачастую ведут под вакуумом, что предотвращает разложение средних эфиров и связанные с этим явления (напрп-мер, порчу цвета) [25]. [c.225]

    Разбавленная серная кислота, например 75%-ной концентрации, заполимеризует диолефины и удалит вещества, портящие цвет нефтепродукта, но не сможет обеспечить очистки дистиллята от серы [12, 40—45]. Удаление олефинов из бензина вызывает уменьшение октанового числа, в то время как очистка от сернистых соединений улучшает приемистость бензина к тетраэтилсвинцу. Таким образом, суммарный эффект очистки в отношении октанового числа может оказаться равным нулю [46]. В нефтезаводской практике наблюдались случаи, когда в результате сернокислотной-очистки у крекинг-дистиллята, полученного из парафинового сырья, октановое число снижалось, а у крекинг-дистил-лята, полученного из ароматизированного газойля, октановое число повышалось. [c.229]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Правильный выбор сырья и метода очистки гарантирует отсутствие в продукте значительных количеств ароматики. Так, сернокислотная очистка керосина, полученного из парафинистых нефтей, позволяет удалить ароматику и олефины, образовавшиеся при переработке.,  [c.462]

    Олефины и ароматические углеводороды высокотоксичны по отношению к насекомым, по в то же время вредно воздействуют на растения, поэтому масляные дистилляты, из которых затем получаются инсектицидные масла, подвергают очистке, особенно при получении летних инсектицидных масел, соприкасающихся с листвой. В этих маслах несульфирующийся остаток (37 N серная кислота) доходит до 90% и выше в маслах, применяемых в период неактивности насекомых, эта цифра может уменьшаться до 60—70%. Что касается парафинов и нафтенов, являющихся основными компонентами масла, то первые, по-видимому, более токсичны [151]. [c.568]

    Утилизация отработанной кислоты после очистки масляных дистиллятов была проблемой уже на заре нефтеперерабатывающей промышленности. Сам процесс утилизации отработанной кислоты был предложен Спллименом (Silliman) в 1855 г., немногим раньше были открыты методы выделения побочных продуктов. Химизм сернокислотной очистки был кратко разобран в гл. IV. Низшие парафины и нафтены на холоде сравнительно стойки но отношению к серной кислоте. Даже при обработке крекинг-бензинов (т. е. бензинов, содержащих олефины и ароматику) низкая температура и малое время контактации могут эффективно задержать ход реакций сульфирования. [c.571]

    Масло SAE 15W/40 (группы SE/ D), содержащее 12,2% объемн. присадки ТС 10179 и 8,25% объемн. вязкостной присадки TLA 347А типа сополимера олефинов, относится к долгоработающим маслам. При смене данного масла (одновременно с фильтрующим элементом фильтра тонкой очистки масла) через 80 000 км в условиях эксплуатации грузовых автомобилей с дизельными двигателями за городом обеспечивается необходимая чистота деталей двигателя в течение срока, установленного автомобилестроительными фирмами при этом показатели качества работавшего масла достигают следующих значений щелочность около 3,0 мг КОН/г (исходная щелочность 6,7 мг КОН/г) содержание органических нерастворимых продуктов загрязнения (сажа и др.) 0,6—1,0% прирост вязкости масла при 100 °С около 20%. [c.180]

    Глубина очистки бензиновых фракций от серы и других примесей, а также стабильность работы катализатора, зависят от температуры процесса, парциального давления водорода, объёмной скорости подачи сырья и от соотношения водород сырьё. Рабочий диапазон температур находится в интервале 300-380°С. В начале рабочего цикла устанавливается минимальная температура, обеспечивающая заданную глубину очистки сырья. Несвоевременное повышение температуры ускоряет закоксовывание катализатора, не увеличивая сколько-нибедь существенно глубины очистки. Кроме того, при высокой температуре на катализаторе с высокой активностью протекают реакции дегидрирования, что приводит к повышению содержания олефи-нов в гидрогенизате, при этом взаимодействие олефинов с сероводородом с образованием меркаптанов приводит к дезактивации катализатора риформинга.  [c.84]

    НИИ получения синтетической нефти из органических материалов. Особо значительными в этом отношении являются опыты К. Энглера и его учеников (1888 г.). Исходным материалом для своих опытов К. Энглер взял животные и растительные жиры. Для первого опыта был взят рыбий (сельдевый) жир. В перегонном аппарате К. Крэга при давлении в 10 аттг и при температуре 400°С было перегнано 492 кг рыбьего жира, в результате чего получились масло, горючие газы и вода, а также жир и разные кислоты. Масла было получено 299 кг (61%) уд. веса 0,8105, состоящего на 9/10 из углеводородов коричневого цвета с сильной зеленой флуоресценцией. После очистки серной кислотой и последующей нейтрализации масло было подвергнуто дробной разгонке. В его низших фракциях оказались главным образом предельные. углеводороды — от пентана до нонана включительно. Из фракций, кипящих выше 300° С, был выделен парафин с температурой плавления в 49—51° С. Кроме того, были получены смазочные масла, в состав которых входили олефины, нафтены и ароматические углеводороды, но в весьма небольших количествах. Продукт перегонки жиров под давлением по своему составу отличался от природных нефтей. К. Энглер дал ему название про- топеТролеум . Образование углистого остатка при этом не происходило, чему К. Энглер придавал особое значение, поскольку при перегонке растительных остатков (углей, торфа, древесины) в перегонном аппарате всегда образуется углистая масса. А так как в нефтяных месторождениях не наблюдается более или менее значительных скоплений угля, К. Энглер сделал вывод, что только животные жиры, без остатка превращающиеся в прото-петролиум, могли быть материнским веществом для нефти. Несколько позднее К. Энглер получил углеводороды из масел репейного, оливкового и коровьего и пчелиного воска [ ]. Штадлер получил аналогичные продукты при перегонке льняного семени. [c.311]

    Кроме того, В. С. Гутыря занимался изучением каталитической очистки жидкофазного пресс-дистиллята, гидратации олефинов, термической дегидрогенизации пропана и бутана, а также получением данных для проектирования пефтестабилизационных и газолиновых заводов, технико-экономического анализа перегонки мазутов, подготовки нефтей к переработке, переработки искусственных нефтяных газов бакинских заводов. Несмотря на большое разнообразие изучаемых вопросов в основе всех разработок В. С. Гутыри зало-/кеи единый принцип бережного отношения к нефти как бесценному народному достоянию, универсальному сырью, из которого мояшо получить множество полезных продуктов. [c.8]

    В середине 30-х годов делались серьезные попытки использовать каталитическое гидрирование в процессах очистки масел и крекинг-бензина. С распространением в промышленных масштабах процессов общей и селективной полимеризации газообразных олефинов гидрирование было применено для превращения олефинового полимер-бензина в гидробензин, состоящий из предельных углеводородов, и диизобутилена — в изооктан. [c.39]

    А. А. Михновская и А. В. Фрост [55] предположили, что содержание олефинов в бензинах термического крекинга при парофазной очистке их актив- [c.50]

    Высказано прздноложение [55], что сущность метода термокаталитической очистки состоит в полимеризации олефинов, но фактически помимо полимеризации протекают процессы изомеризации и гидрирования, масштаб которых преиышает возмо/кную в данных условиях полимеризацию. [c.65]

    Вальде [5] изучи. процесс каталитической очистки, по-видимому, над активным оксидом алл)миния, в котором гладко протекал процесс изомеризации олефино ) ] реки11г-бензииа без удаления их из состава последнего. В данном случае можно говорить об изомеризационной каталитической очистке. [c.73]


Смотреть страницы где упоминается термин Олефины, очистка: [c.425]    [c.579]    [c.138]    [c.415]    [c.210]    [c.595]    [c.310]    [c.65]    [c.73]    [c.73]    [c.74]   
Нестехиометрические соединения (1971) -- [ c.511 ]




ПОИСК







© 2025 chem21.info Реклама на сайте