Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись углерода сжиганием

    Кокс удаляют путем сжигания его кислородом воздуха в регенераторе непрерывного действия с зонами сжигания и зонами охлаждения. Кокс состоит в основном из углерода (89—92%) и водорода (8—10%). Образующийся при переработке сернистых дестиллатов кокс содержит также некоторое количество серы. При сжигании кокса углерод окисляется в углекислый газ и окись углерода, водород в пары воды, а сера в двуокись серы. [c.88]


    Природные газы кроме метана содержат также небольшие количества других низкокипящих летучих углеводородов и ряд микрокомпонентов, которые, как правило, выводятся из газа до его поступления в газораспределительную сеть. Поэтому природные газы являются исключительно чистыми видами топлива, сжигание которых не вызывает сколько-нибудь значительного загрязнения окружающей среды. И наоборот, твердые и в некоторой степени жидкие топлива при сжигании выделяют окислы серы, частично окисленные углеводороды, окись углерода, сажу и другие твердые органические вещества и неорганическую летучую золу. Преобразование жидкого или твердого топлива в газы позволяет очищать топливо до его распределения и сжигания и, следовательно, снижать или вообще исключать возможное загрязнение атмосферы. Таким образом, газификация разных видов ископаемого топлива целесообразна по следующим причинам  [c.19]

    I — метанол + катализатор 1 — окись углерода III — продукты синтеза IV — отработанный газ V — раствор катализатора V/ — метанол VII — кислота-сырец VIП — товарная уксусная кислота X — кубовый остаток на сжигание. [c.270]

    Очищенный газ подогревается в теплообменнике 4, смешивается с необходимым количеством водяного пара, имеющим температуру 380—400 °С, и поступает сверху в печь (конвертор) 7, в которой происходит конверсия углеводородов в водород и окись углерода. В конверторе имеются вертикальные двухходовые реакционные трубы (рис. 5) из хромоникелевого сплава, в которых помещен катализатор. Тепло, необходимое для проведения эндотермической реакции конверсии, получают сжиганием природного газа в инжекционных горелках печи 7 (см. рис. 4). Отходящие газы имеют температуру около 850 °С и их тепло используется в котле-утилизаторе 8 для получения пара давлением 40 ат. В катализаторной зоне температура достигает 750—800°С. [c.30]

    Количество сгоревших углеводородов определяется но количеству получаемой углекислоты, для чего последнюю поглощают раствором щелочи в щелочном поглотителе. Чтобы удалить углекислоту, оставшуюся в фарфоровой трубке и гребенке, последние 2—3 раза промывают оставшимся газом до полного поглощения углекислоты. В процессе сгорапия, кроме углекислоты, может образоваться окись углерода, которую необходимо определить в аммиачном поглотителе. Оставшийся после сжигания предельных и поглощения окиси углерода и углекислоты газ состоит из азота и инертных газов. [c.838]


    Однако это уравнение весьма приближенное, так как очень трудно осуществить полное горение при стехиометрическом соотношении топливо —окислитель (кислород или воздух). Для достижения полного сжигания всегда требуется некоторый избыток окислителя. Если это условие не соблюдается, то некоторое количество топлива не будет сгорать до СОг и будут образовываться продукты неполного сгорания, в которых присутствуют окись углерода, водород, ненасыщенные углеводороды, формальдегид (иногда элементарный углерод). Если процесс горения остановить на промежуточной стадии, то количество высвобождаемого тепла будет значительно ниже. Для того чтобы быть уверенным в полном завершении процесса образования продуктов неполного горения, необходимо подвести дополнительное тепло, количество которого превышает количество тепла, выделяемого при реакции их образования. Процесс сжигания осложняется также цепным характером протекания реакций горения через образование промежуточных соединений перед появлением конечного продукта. Промежуточные соединения представляют собой химически недолговечные образования и радикалы, которые способствуют протеканию процесса горения и поддерживают его постоянным. Рассмотрим цепную реакцию горения метана  [c.97]

    Необходимо принимать меры для обеспечения достаточного доступа воздуха во время сжигания фильтра. При недостатке воздуха частично образуется окись углерода, которая восстанавливает сернокислый барий  [c.159]

    В дымовых газах, выбрасываемых в атмосферу при сжигании котельных топлив, содержатся и такие загрязняющие вещества, как сажа, зола, окись углерода и др., но сокращение загрязнения атмосферы этими примесями не рассматривается в данной книге. [c.152]

    Ввиду способности вступать в химические соединения с гемоглобином крови окись углерода обладает высокой токсичностью. Предельно допустимая концентрация СО в воздухе составляет 0,0024% об., или 0,03 мг/л. Пребывание в помещении, содержащем 0,4% об. СО, в течение 5— 6 мин опасно для жизни человека. Такая высокая токсичность окиси углерода вызывает повышенные требования к эксплуатации установок, в которых осуществляется сжигание газов, содержащих СО. Контроль эа отсутствием утечек из газопроводов и газовых приборов, наличие аппаратуры для определения содержания со в воздухе производственных помещений, а также строгое соблюдение правил техники безопасности — таковы средства борьбы с отравлениями окисью углерода. [c.9]

    Для получения больших количеств окиси углерода, например, для заводского производства фосгена (см. ниже)—вышеуказанные способы, конечно, неприменимы. В технике окись углерода получается сжиганием угля при недостаточном доступе кислорода, так что образую- [c.50]

    Кислород поглощается в растворе пирогаллола окись углерода поглощается аммиачным раствором полухлористой меди водород и метан определяются сжиганием над окисью меди азот определяется по остатку от сжигания отдельной пробы газа над окисью меди. [c.206]

    Газификацию осуществляют в тех случаях, когда отсутствует природный газ и требуются большие количества газообразного топлива или газа для химических синтезов. Газифицировать можно все виды твердых топлив. Этот процесс заключается в частичном сжигании, т. е. окислении кислородом углерода топлива с превращением его в горючий газ—окись углерода. [c.71]

    Важнейшим техническим процессом гетерогенного горения является горение угля. Процесс осложняется объемными реакциями двоякого рода. С одной стороны, в технике широко используются сорта каменного угля, богатые летучими компонентами. Сгоранию такого топлива предшествует частичное термическое разложение (коксование) с выделением горючих газов (углеводородов и водорода), сгорающих в объеме. С другой стороны, даже и цри сжигании чистого углерода, кроме углекислого газа СО2 на поверхности может образовываться окись углерода СО, догорающая в объеме. Теория горения угля с учетом побочных реакций достаточно сложна и рассматривается в специальных руководствах [8, 9]. Но при достаточном избытке воздуха и высокой температуре поверхности объемные реакции протекают настолько быстро, что заканчиваются в непосредственной близости от поверхности. При этом становится допустимой приближенная трактовка процесса как чисто гетерогенного. Вопрос о гетерогенном горении в такой постановке относится к диффузионной кинетике и тепловому режиму гетерогенных экзотермических реакций и рассматривается нами в соответствующих главах. [c.264]

    Основными горючими компонентами большинства горючих газов ЯВ.ПЯЮТСЯ водород, окись углерода, метан и другие углеводороды. Поэтому при сжигании газов большое практическое и теоретическое значение имеют механизм и кинетика реакций горения именно этих компонентов. [c.107]


    При сжигании угольной пыли основная масса летучих не успевает выделиться до момента воспламенения частиц. Летучие при этом сгорают параллельно с горением кокса. Вокруг горящих частиц образуется оболочка пламепи, в которой сгорают летучие и выделяющаяся окись углерода, ири этом часть диффундирующего кислорода перехватывается и его доступ к углеродной поверхности уменьшается. В рассматриваемом случае летучие не могут играть роль активаторов процесса горения, которая им обычно приписывается. Процесс воспламенения пыли определяется пе выходом летучих, а реакционной способностью топлива, т. е. его физико-химической структурой, пористостью и т. п. [c.179]

    Получение водорода из твердого, жидкого и газообразного топлива сжиганием в генераторе в присутствии водяного пара получающийся газ содержит 5—15% окиси углерода после удаления углекислого газа промыванием водой при обычном или повышенном давлении окись углерода с водяным паром конвертируется над катализатором в водород и углекислый газ, последний удаляют обычным способом получающийся водород содержит лишь 0,8% окиси углерода [c.233]

    Реакции глубокого каталитического окисления можно применить для очистки воздуха от выхлопных газов автомобильного транспорта. Мы знаем, что эти газы содержат ядовитую окись углерода и другие вредные для здоровья человека примеси — продукты неполного сжигания бензина. А между тем автомобилей в больших городах становится все больше, все сильнее загрязняют они воздух. [c.33]

    Так, например, двуокись углерода можно получить сжиганием угля в кислороде непосредственно до двуокиси углерода или получая сначала окись углерода и затем сжигая ее до двуокиси. [c.111]

    В обоих случаях начальные состояния системы (С и Ог) и конечное состояние (СОг) — одинаковы. Количество теплоты, выделяющейся при сгорании в данных условиях, зависит от состояния, в котором находится углерод в горючем материале, например от вида угля. Однако для любого данного вида исходного материала тепловые эффекты перехода углерода в двуокись углерода должны по закону Гесса быть одинаковы как при сжигании его непосредственно до двуокиси углерода, так и при сжигании через окись углерода. Так, для графита имеем  [c.112]

    Органические кислоты, альде- Абсорбционный с последующей гиды, кетоны, углеводороды, десорбцией и сжиганием паров окись углерода, спирты, фу- каталитическое дожигание, ран и др. сжигание в печах [c.259]

    В ряде случаев по технико-экономическим соображениям целесообразно сжигать вредные органические вещества, содержащиеся в отходящих газах в малых концентрациях. При сжигании углеводороды и их производные, окись углерода и сажа сгорают до двуокиси углерода-и воды. [c.259]

    Топочные газы. В зависимости от использованного топлива и условий его сжигания образуется смесь газов самого разного состава. В состав продуктов сгорания чаще все о входят азот, углекислый газ, водяной пар, окись углерода, кислород (если сжигание велось в избытке воздуха), соединения серы, углеводороды, хлористый водород. В топочных газах часто имеются частицы и взвеси различных твердых и жидких веществ минерального и органического происхождения. В зависимости от состава среды металл, находящийся в контакте с продуктами сгорания, может подвергаться окислению, науглероживанию, сульфи-дированию все эти явления могут протекать и одновременно. Наибольший вред приносит наличие в газах соединений серы и особенно сероводорода. [c.70]

    I — окись углерода И — олефины III — катализатор IV — вода V — реакционная смесь VI — катализатор на регенерацию VII — сырые кислоты VIII — промывная вода на очистку IX — товарные нео-кислоты X — кубовый остаток на сжигание. [c.267]

    На рис. 8.11 приведена технологическая схема синтеза уксусной кислоты из метанола, освоенная в промышленном масштабе фирмой BASF в Людвигс-хафене. Процесс проводят с применением каталитической системы кобальт + + иод. Раствор катализатора в метаноле поступает в верх колонны синтеза 1, а снизу подается окись углерода. Синтез осуществляется при 250 С и 70— 75 МПа. Реакционная смесь из колонны синтеза поступает вначале в сепаратор высокого давления 2, а затем — в сепаратор низкого давления 3. Непрореагировавшая окись углерода из сепаратора 3 сиова возвращается в процесс. Жидкие продукты далее отделяются на колонне 4 от катализатора и подаются на ректификационную колонну 5. Раствор катализатора возвращается в колонну синтеза. С верха колонны 5 отбирается непрореагировавший метанол, а кислота-сырец подается в колонну 5, где выделяется товарная уксусная кислота. Кубовый остаток колонны 6 периодически отводится на сжигание. [c.271]

    Последовательность поглощения такова. Сначала, как и в анализе топочных газов, поглощают раствором щелочи углекислый газ, затем раствором брома — непредельные углеводороды, раствором пирогаллола — кислород и аммиачным раствором закисной меди — окись углерода. После этого определяют водород по реакции с окисью меди и, наконец, предельные углеводороды — сжиганием. [c.448]

    Для полного и быстрого горения газа необходимо создать хорошие условия перемещивания его с воздухом в соотнощени-ях, обеспечивающих протекание реакций взаимодействия между горючими компонентами и кислородом. Реакции полного сгорания комлонентав горючего газа и тепловой эффект горения представлены в табл. 27. Приведенные данные показывают, что при горении газов получаются продукты горения, состоящие из углекислоты и водяных паров. Если в газе содержатся сернистые соединения (например, сероводород), то в продуктах сгорания будет находиться сернистый газ. В дымовых газах также будут содержаться азот воздуха, поступивщего на сжигание таза, и избыточное (неизрасходованное) количество кислорода воздуха. При недостаточном поступлении воздуха в продуктах сгорания, как правило, содержится и окись углерода — продукт неполного горения углеводородных газов, а также несгоревшие компоненты газа. [c.115]

    Наща промышленность выпускает достаточно совершенные по-конструкции газовые плиты, однако следует иметь в виду, что ори сжигании газа и в хорошо отрегулированных пламенных горелках всегда выделяется токсичный газ — окись углерода, который будет попадать в помещение кухни. Следовательно, для предохранения людей от отравления продукты сгорания газа необходимо отводить из помещения. При нормально действующей-вентиляции, которой оборудуется каждый жилой дом, продукты, сгорания будут своевременно отводиться из помещения и в кухне будут поддерживаться санитарнонгигиенические условия. [c.183]

    Процесс основан на многоступенчатом сжигании мазута при малых избытках воздуха (35—45% от теоретически необходимого для1 полного сжигания топлива) с превращением его в малокалорийный топливный газ и извлечением из газов сгорания серы, а также ценных компонентов, содержащихся в золе. Органическая часть топлива при сжигании превращается главным образом в водород и окись, углерода, сернистые соединения в сероводород. Часть углерода топлива (около 2%) выделяется в виде сажи. Полученный газ с теплотворной способностью 4,6—8,3 МДж/м охлаждается с использованием тепла для выработки пара высокого давления, очищаете от сажи и золы, промывается водой, а затем очищается от НаЗ-и 80а жидкими сорбентами. Сероводород и сернистый ангидрид используются в производстве серы или серной кислоты. Очищенный газ направляется в топку котла. Процесс может быть осуществлен на движущемся слое кокса или неорганическом теплоносителе, обладающем большой теплоемкостью и высокой механическо прочностью. [c.138]

    Газы обладают способностью излучать и поглощать лучистую энергию. Для разных газов эта способность различна. Излучение и поглощение обычных одно- и двухатомных газов, в частности азота (N2), кислорода (О2), водорода (На), гелия (Не), столь незначительны, что в инженерных расчетах эти газы можно рассматривать как абсолютно прозрачные (диатермичные) среды. Значительной способностью излучать и поглощать лучистую энергию обладают многоатомные газы, в частности двуокись углерода (СО2), водяной пар (Н2О), сернистый ангидрид (ЗОг), аммиак (ЫНз) и др. Двухатомный газ — окись углерода (СО) также имеет заметный уровень излучения. Для теплотехнических расчетов наибольший интерес представляют пары воды п двуокись углерода. Эти газы входят в состав продуктов сгорания при сжигании различных видов топлива. [c.199]

    НОМ 3, И Нг К Н2О, превышающем 1,2, окалины на стали (не образуется. Поскольку от сжигания топлива до СО получается мало тепла, а несгоревший водород и вовсе не дает тепла, то невозможно при вышеуказанных соотношениях достичь температуры 1200°, если не принять каких-либо специальных мер для повышения температуры печи. Такими мерами могут быть сжигание топлива в кислороде или дожигание его в регенераторах или рекуператорах, которые служат для подогрева воздуха, расходуемого на горение или дожигание газов в особой камере, из которой тепло передается в нагревательное пространство через тонкую муфельную стенку. Номограмма на рис. 151 применима только для железа и стали. Разные металлы имеют различное химическое сродство с кислородом. Чтобы для других металлов получить номограмму, аналогичную изображенной на рис. 151, надо ее продлить в направлении обеих стрелок. Такое распространение номограммы на другие металлы было выполнено тем же Нейманном (рис. 152). Номограмма дана в логарифмических координатах со следующими делениями 1, 2, 5, 10, 20, 50, 100 и т. д. Более мелкие деления показаны на вспомогательных шкалах. iMeждy прочим, из рис. 152 видно, что никель в так называемой окислительной атмосфере печи не окисляется. Количество водорода может составлять нё более 1% от количества водяного пара, а окиси углерода — всего 1 % от количества углекислого газа, никель окисляться не будет. Кривая равновесия марганца располагается вблизи противоположного конца номограммы. При температурах, поддерживаемых в печи, марганец будет окисляться даже в том случае, если атмосфера печи будет состоять из чистого водорода, окиси углерода и инертного газа, например азота. Активность марганца при высоких температурах по отношению к кислороду используется для восстановления стали в мартеновских печах. В атмосфере, состоящей из окиси углерода и инертного газа, марганец при температурах печи окисляется благодаря реакции 2С0 = С -f СО2. Хотя окись углерода (СО) при повышенных температурах является весьма устойчивым соединением, указанное выше явление временной и исчезающей диссоциации обусловливает и эту быстг ро протекающую реакцию. Вновь возникающие молекулы углекислого газа диссоциируют таким же способом, и марганец окисляется временно освобождающимся кислородом. На рис. 152 приведены также кривые равновесия других используемых в промышленности металлов. [c.201]

    Точность определения в значительной мере зависит от точности титрования. При анализе газа, содержащего менее 1% метана, следует применять растворы 0,025 нормальности и бюретки емкостью 25 мл с делениями на 0,1 мл. Титр соляной кислоты необходимо периодически проверять также следует проверять и соотношение раство])ов едкого барита и соляной кислоты. Кислород, применяемый для сжигания, проверяют па окись углерода и при наличии последней вводят соответствующую поправку. При проведении сжигания одевают предохраиительные очки илп закрывают прибор экраполг из плексигласа. [c.94]

    К рассматриваемой группе химических процессов в псевдоожиженном слое относятся также сжигание топлива [392] прямой синтез алкилхлорсиланов [410, 425] хлорирование рутила получение хлористого алюминия производство фтористого урана из рутила и фтористоводородной кислоты [694] получение водорода железопаровым методом получение цианамида кальция из карбида кальция и азота производство сероуглерода получение губчатого железа из рудно-топливных гранул получение губчатого железа из рудных материалов восстановлением газом, содержащим окись углерода и водород, или природным газом [61, 71, 72] очистка аморфного бора окислительным обжигом [277] восстановление сульфатов водородом [451] сжигание элементарной серы получение элементарной серы восстановлением двуокиси серы коксом [348] очистка никелевого электролита от меди получение [c.443]

    На рис. 16 показана простейшая схема топочного устройства — слоевая топка с неподвижной колосниковой решеткой для сжигания на ней угля или другого топлива. Подача топлива осуществляется сверху на горящий слой вручную или с помощью механических приспособлений, причем топливо проходит в общем через те же стадии, что и в газогенераторе (см. рис. 1а). Воздух вводится снизу, под колосниковую решетку. Если в слой топлива будет поступать недостаточно кислорода, топка будет работать, как газогенератор. Но при избытке кислорода продукты газификации и сухой перегонки первичного (рабочего) топлива и твердый углерод откоксованного топлива подвергаются полному сжиганию. При наличии большой высоты слоя топлива в нем получают развитие восстановительные процессы, и в дымовых газах появится окись углерода и другие горючие газы, что и характеризует химическую неполноту сгорания. В таком случае в топочное пространство (над слоем топлива) приходится вводить вторичный воздух, необходимый для дожигания окиси углерода, а также летучих, выделившихся в верхней части слоя. При не особенно высоком слое топлива весь воздух, необходимый для горения, вводится снизу, через колосниковую решетку.При ручном или частично механизированном обслуживании топка, по выражению известного русского теплотехника Кирша, есть функция кочегара. От него зависит поддержание надлежащей высоты равномерного слоя путем своевременного забрасывания топлива, шуровки и выгрузки шлака. [c.15]

    Если сжигание газовоздушиой смеси происходит ири содержании воздуха пе ниже 70—80% от теоретически необходимого для полного горения, то в продуктах неполного горения из горючих компонентов обна-рун ивается только окись углерода и водород. При меньшем количестве воздуха в продуктах юрсння обнаруживаются метан и тяжелые углеводороды. [c.131]

    В технике сжигания и газификации твердого топлива долгое врелш существовало представление о том, что в кислородной зоне образуется только один окисел СО2, а окись углерода получается в восстановительной зоне в результате восстановления углекислоты (редукционная теория). В соответствии с этой теорией длительное врел1я существовало ошибочное мнение, что с увеличением скорости дутья, т. е интенсивности газификации, время контакта газов в восстановительной зоне уменьшается, углекислота не успевает восстанавливаться и качество газа ухудшается. Для сохранения качества газа при интенсификации ироцесса газификации рекомендовалось увеличивать высоту слоя. [c.195]

    Сжигание высокосернистых мазутов сопровождается образованием окислов азота и серного ангидрида, обладающирс большой токсичностью. Наряду с этими токсичными окислами в продуктах сгорания топлив содержится некоторое количество окиси углерода. Однако, как показано Д. А. Франк-Каменецким, в процессе горения углеводородных топлив окись углерода образуется в начальной стадии и затем догорает в завершающей стадии горения. Поэтому основными загрязнителями воздуха вредными газами являются окислы азота и серы, а при сжигании природного газа — окислы азота. [c.217]

    Райдел [70] в дальнейшем исследовании этой проблемы учитывал необходимость определения соотношения между средним диаметром капиллярной трещины и глубиной, на которую спускается каталитически активная поверхность. В действительности, в газовой смеси, содержащей окись углерода, водород и кислород и подвергаемой поверхностному сжиганию, отношение окисш углерода к водороду колеблется в зависимости от характера катализатора... На основании этого Райдел пришел к заключению, что оценка роли диффузии неправильна, так как водород, имеющий большую подвижность, проникал бь . очень быстро в адсорбированный слой двуокиси углерода и водяного иара, окру.- - [c.130]

    Сжиганием определяемого газа анализируют такие горючие газы, как окись углерода, ацетилен, этан, пропан. Данные об изменении параметроо, по которым можно найти содерлсание газа после сжигания, для некоторых часто встречающихся газов собраны в табл. XIV. I. [c.435]

    Применение температур, превышающих 1000° С, с газообразным теплоносителем использовано в новой технологической схеме процесса совместного производства ацетилена и этилена, разработанной независимо фирмами Фарбверке Хехст [4] и Сосьете бельж де л азот [5]. Хотя, как показано выше, процессы с газообразным теплоносителем основаны на тех же основных принципах, что и адиабатический процесс крекинга с паром фирмы Келлог , процесс фирмы Фарбверке Хехст протекает при значительно более высоких температурах и требует совершенно другой аппаратуры. На практике применяется особого типа горелка для сжигания газов. После отделения углекислого газа, ацетилена и этилена остаточный газ содержит водород, окись углерода и немного метана, в то время как остаточный газ крекинга в трубчатой печи и адиабатического крекинга с паром состоит из водорода и метана. [c.20]

    Во многих из вышеописанных методов тепло, потребное для реакции, получается из какого-либо внешнего источника или от раскаленного слоя топлива, а в других — температура поддерживается за счет сжигания отделившегося угля. Температурные условия, необходимые для разложения, могут быть получены путем неполного сгорания части самого углеводородного материала, что также является основой некоторых процессов. Окись углерода, один из продуктов горения, сама способна разлагаться или же сгорать в двуокись углерода поэтому в наше обсуждение мы д<мжны включить также краткое упоминание о тех немногочисленных процессах, в которых это происходит. Другая большая и более изученная группа методов, основанных на неполном сожжении углеводородов (с целью поддержания температуры разложения), обсуждается в гл. 8, где рассматривается осаждение угля из пламени. Эти процессы являются, повидимому, также чисто термическим разложением, вызываемым теплотой сгорания части углеводородного материала. Пожалуй в этом месте следует указать на два других метода поддержания температуры, потребной для разложения, а именно — на подогревание вольтово) дугой и подогревание с помощью металлической бани, поддерживаемой при высокой температуре. [c.240]

    Применение метода для определения углерода, азота, кислорода и серы в органических соединениях было детально рассмотрено Гроссе, Гиндиным и Киршенбаумом [794—796, 798, И17, 1118]. Для того чтобь создать равномерное распределение изотопов каждого из этих элементов в различных присутствующих соединениях, необходимо нагревать компоненты до температуры красного каления в течение часа, иногда в присутствии катализатора. Предварительные опыты со смесями двуокиси углерода, воды и обогащенного кислорода показали, что. в условиях эксперимента достигается равновесие для кислорода. Кислород, обогащенный 0, использовали в качестве изотопного индикатора при определениях кислорода [1119]. Добавлять достаточное количество кислорода для полного превращения органического материала в двуокись углерода и воду нет необходимости. Даже в том случае, когда присутствует окись углерода, кислород полностью распределяется среди различных кислородных соединений. Для измерения распространенности 0 в различных образцах лучше всего использовать молекулярные ионы в масс-спектре двуокиси углерода. Для определения углерода использовалась смесь СОг и кислорода в количестве, обеспечивающем полное сжигание. В этом случае, ввиду количественного образования двуокиси углерода при сжигании, нет необходимости в установлении равновесия, и СОг нужно лишь смешать с образцом газа. [c.113]


Смотреть страницы где упоминается термин Окись углерода сжиганием: [c.29]    [c.200]    [c.178]    [c.172]    [c.57]    [c.175]    [c.129]    [c.298]    [c.145]   
Технология связанного азота Синтетический аммиак (1961) -- [ c.277 ]




ПОИСК





Смотрите так же термины и статьи:

Сжигание



© 2025 chem21.info Реклама на сайте