Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопы выделения разделения

    МЕТОДЫ ВЫДЕЛЕНИЯ, РАЗДЕЛЕНИЯ И КОНЦЕНТРИРОВАНИЯ РАДИОАКТИВНЫХ ИЗОТОПОВ [c.164]

    В связи с потребностью для нужд ядерной энергетики больших количеств таких изотопов, как В и многие методы И. р. получили, начиная со времени второй мировой войны, промышленное использование метод диффузии — для выделения с применением газообразного иР , методы ректификации, химич. обмена и электролиза для выделения дейтерия. Промышленное значение имеет также разделение изотопов лития. Разделение других изотопов осуществляется в лабораторном масштабе. [c.98]


    Методы мембранного разделения нашли широкое применение в процессах разделения изотопов, выделения компонентов с близкими или совпадающими точками кипения и т. п. Поскольку процесс разделения определяется двумя факторами (отношение коэффициентов диффузии и отношение коэффициентов растворимости), совместное влияние этих величин может быть значительным даже в случае близких веществ. Например, молекулы орто-, мета- и пара-изомеров ксилола имеют различную площадь поперечного сечения (13,9 13,2 12,8 см /моль) и различные коэффициенты диффузии через полиэтиленовую пленку (71,4 98,3 125 г см ч см ). Изменяя коэффициент диффузии путем обработки пленки растворителем, нагреванием и т. п., можно добиться еще большей разницы. [c.153]

    Установки для газовой диффузии невыгодно отличаются от термодиффузионных большим числом ячеек, работающих под низким давлением. Однако эти установки сравнительно легко могут быть выполнены на большую производительность для разделения изотопов, выделение которых другими методами неосуществимо [90]. [c.185]

    Изотопное разбавление применяют в тех случаях, когда трудно вьще-лить все анализируемое вещество из сложной смеси. В этом методе небольшое количество компонента, на который проводится анализ, добавляют к анализируемой смеси. Причем добавляемое соединение содержит 100% (или по крайней мере известный процент) радиоактивного изотопа какого-либо элемента. Чтобы охарактеризовать радиоактивность образца, используется понятие удельной активности, которая измеряется числом радиоактивных распадов в единицу времени на грамм вещества. Добавляемое вещество тщательно перемешивают с анализируемой смесью. Затем из нее изолируют компонент, на который производится анализ, для чего используют какой-нибудь метод, дающий не количественное разделение, а хотя бы небольшое количество чрезвычайно чистого соединения. Уменьшение удельной активности добавленного соединения в результате разбавления нерадиоактивным исходным образцом того же соединения в смеси указывает на содержание последнего в исходной смеси. Например, если удельная активность вьщеленного образца совпадает с удельной активностью добавляемого соединения, то это означает, что данное соединение отсутствует в исходной смеси и регистрируется лишь то, что было введено в смесь. Если удельная активность выделенного образца равна половине удельной активности добавленного соединения, такое соединение присутст- [c.428]


    Следует подчеркнуть, что применение мембранного разделения для этих целей изначально рассматривалось в качестве альтернативы другим традиционным способам разделения — ректификации, абсорбции, адсорбции. Так, мембранное разделение изотопов урана с получением обогащенного гексафторидом урана ( иРб) потока используется в промышленном масштабе с 40-х годов нашего столетия [35]. Кроме того, этот метод используется для выделения радиоактивных изотопов благородных газов из ретантов заводов по переработке ядерного горючего, из защитной атмосферы ядерных реакторов на быстрых нейтронах и т. д. [99]. [c.314]

    В более сложных случаях радиоактивационного анализа после облучения исследуемого материала необходимо прибегать к химическому разделению смеси элементов с введением нерадиоактивных коллекторов. После химического разделения измеряют радиоактивность выделенных соединений отдельных элементов и, таким образом, вычисляют количество образовавшегося радиоактивного изотопа, а отсюда — содержание микропримеси в исходном материале. [c.21]

    Простота, эффективность и универсальность хроматографического метода дали возможность широко использовать его в различных областях науки, промышленности и техники. , С помощью хроматографического метода возможно разделение сложных смесей органических и неорганических веществ на отдельные компоненты разделение и выделение растительных и животных пигментов, изотопов, редкоземельных элементов и других веществ  [c.275]

    Классические методы количественного анализа разрабатываются большей частью на модельных образцах нерадиоактивных веществ с целью конечного выделения отдельных компонентов смеси. При более глубоком рассмотрении оказывается, что во многих случаях кажущиеся правильными результаты анализа достигаются компенсацией ошибок определения, а не за счет количественного разделения компонентов смеси. Так, при проверке разделения калия и натрия в виде хлороплатината и перхлората применение радиоактивного изотопа Na дает возможность обнаружить, что в этих осадках соединений калия содержится примерно 3% соли натрия ( Ыа) 116]. Применение радиоактивных индикаторов позволяет определить потери анализируемого вещества в ходе анализа, например при выпаривании, промывании, неконтролируемой адсорбции материалом аппаратуры или при соосаждении. Аналитик может использовать вещества, содержащие радиоактивные индикаторы, для контроля точности и чистоты проведения анализа. [c.315]

    Микроаналитические методы предназначены для определения малых количеств веществ (1—10 мг). Эти методы используют при наличии небольшой анализируемой пробы (например, в биохимии или клинической химии) или в тех случаях, когда из соображений безопасности следует работать с небольшими количествами веществ (радиоактивные изотопы). При проведении микрохимических определений значительно снижаются затраты времени за счет сокращения продолжительности разделений. Методы микроанализа применяют в элементном и структурном анализах. В элементном анализе при помощи микрометодов можно определить содержание основных и добавочных веществ, а также следовых веществ. Микроанализ позволяет исследовать распределение элемента в пробе (локальный анализ). Структурный анализ микропробы применяют обычно в сочетании с методами разделения для определения выделенных отдельных компонентов. Все методы микроанализа предъявляют чрезвычайно высокие требования к однородности пробы (разд. 8.2.1). [c.422]

    Разделение сложных смесей органических и неорганических веществ на отдельные компоненты разделение и выделение растительных и животных пигментов обогащение изотопов, редкоземельных и других веществ. [c.5]

    Гео- и космохронология. Изотопный состав элементов одинаков для всех пород земной коры. Разделение изотопов удается осуществить в технике лишь с большим трудом. В природных условиях процессы разделения изотопов крайне маловероятны. Считается общепринятым фактом, что все сколько-нибудь значительные аномалии в изотопном составе элементов представляют собой следствие протекания ядерных процессов. Впервые отклонения были обнаружены для свинца, выделенного из различных минералов. Затем были найдены аномалии в изотопном составе аргона, стронция и осмия. [c.415]

    Метод носителя применяется в тех случаях, когда в результате ядерной реакции из одного элемента образовался радиоактивный изотоп другого химического элемента. Для разделения к смеси изотопов прибавляют относительно большое количество стабильного изотопа того элемента, который необходимо выделить. Эта добавка называется носителем. Так, для выделения ничтожных в массовом выражении количеств радиофосфора, образующегося при облучении серы нейтронами по реакции 8 (л, р) Р , к сере добавляют некоторое количество стабильного изотопа Р , а затем проводят обычные химические манипуляции разделения соединений серы и фосфора. Очевидно, что весь Р будет отделен вместе с введенным стабильным фосфором. [c.94]


    Применение радиоизотопной индикации позволило весьма обстоятельно исследовать часто встречающееся в аналитической практике явление соосаждения. Тут уместно вспомнить, что изучение соосаждения относится к одному из центральных разделов классической радиохимии. Именно на применении этого явления основан ряд методов разделения, выделения и концентрирования радиоактивных изотопов многих элементов. [c.162]

    В-третьих, наблюдаемую селективность реакций образования макроциклических металлокомплексов можно использовать для разделения близких по свойствам ионов металлов и даже их изотопов, селективного выделения некоторых ионов в аналитических и промышленных целях [c.20]

    Антимонид индия] Аз, Аи, са. Со, Си Пробу облучают 8 час. потоком 1,8-1018 нейтрон см -сек, производят разделение и измеряют активность выделенных изотопов 1,6-10- - 1,2-10- % [146] [c.170]

    Хроматографическое отделение целевого радиоактивного производного от других компонентов реакционной смеси проводили как с добавлением нерадиоактивного производного (носителя), так и без него. При использовании носителя его количество следует выбирать с учетом возможностей применяемого способа выделения продукта реакции. Если метка индикаторным изотопом не используется, то все операции по удалению из обработанной пробы избытка реагента должны осуществляться количественно. Аликвотную часть конечного раствора подвергают хроматографическому разделению для получения ацетата и определяют его радиоактивность с помощью жидкостного сцинтилляционного счетчика. Для стандартизации этого метода можно провести количественное ацетилирование известной навески анализируемого субстрата тем же самым количеством ангидрида, после чего выделить и проанализировать определенную часть полученного продукта. Количество стероида или стерина М. (в миллимолях) в анализируемой пробе жидкости или экстракта выражается формулой [c.73]

    Фракционирование изотопов углерода происходит в процессе его геохимического круговорота (рис. 43). За начало этого круговорота можно принять выделение СОа из мантийных глубин во время вулканических процессов, а также при термическом разложении известняков и доломитов в условиях метаморфизма. Затем СОа распределяется между атмосферой и гидросферой. В морской воде СОа связывается с Са и Mg, образуя известняки преимущественно биогенного происхождения. Другая часть СОа атмосферы и гидросферы поглощается зелеными растениями в процессе фотосинтеза. Фотосинтез приводит к образованию органического вещества. Часть биомассы после гибели растений окисляется с образованием СОа, другая часть захороняется в условиях восстановительной среды> На всех этапах геохимического цикла происходит разделение изотопов углерода. [c.390]

    Наиболее часто требуется определять бериллий в присутствии Ре, А1, М , 2п, Мп, Т1, 2г, реже Мо, У (в рудах и продуктах обогащения), Си, N1, Со, Ре, А1, М (в сплавах). Все возрастающее значение бериллия в ядерной технике вызвало необходимость разработки методов отделения его от и, ТЬ и элементов с большим сечением захвата нейтронов (редкоземельные элементы, бор). Особую трудность представляет отделение следов бериллия от больших количеств других элементов. Эта проблема возникает при определении содержания бериллия в биологических пробах, в воздухе, в горных породах, а также при выделении радиоактивных изотопов. В этих случаях обычно используют соосаждение микроколичеств бериллия с коллекторами, избирательную экстракцию или ионный обмен с применением маскирующих средств. Для более эффективного разделения часто комбинируют несколько методов. [c.125]

    Книга представляет собой пособие для занятий по курсу Метод радиоактивных индикаторов в химии и содержит теоретические разделы, включающие физические и химические основы метода (радоактнвность, регистрация излучения, изотопный обмен, особенности поведения радиоактивных веществ, методы выделения, разделения и концентрирования радиоактивных изотопов) и принципы применения радиоактивных изотопов в аналитической, неорганической, физической и органической химии. Изложение иллюстрировано большим числом задач с подробными решениями. [c.2]

    Задачи, решаемые этим методом, разнообразны, но главные из них — выделение, разделение, очистка и концентрирование радиоактивных изотопов. Область применения сорбентов в аналитической и препаративной практике достаточно широка. Сорбенты используют для разделения радиоактивных продуктов ядерных реакций, получения радиоактивных изотопов в химически, или радиохимически чистом виде, при разработке и применении хроматографических методов разделения и идентификации веществ, при синтезе и очистке различных химических соединений, содержащих меченые атомы. [c.354]

    Установки разделения изотопов водорода. В топливном цикле разрабатываемого в СССР и за рубежом дейтерий-тритиевого реактора для осуществления управляемой термоядерной реакции необходимо выделение из газов плазмы и возврат в цикл не успевших прореагировать дейтерия и трития. Процесс выделения состоит из двух основных стадий выделения Не и других примесей и разделения изотопов водорода с получением смеси дейтерия и трития. Метод газового разделения с использованием многоступенчатой каскадной установки с мембранными модулями на основе палладия и его сплавов, по мнению авторов [100, 101], наиболее перспективен. [c.317]

    Установки разделения радиоактивных газов. Продуктами сгорания ядерного горючего кроме ядер тяжелых элементов являются изотопы благородных газов с различным периодом полураспада изотопов ксенона Хе и Хе всего соответствепно 126,5 ч и 9,2 ч, а у нриптона Кг— 10,6 года. Поэтому совершенно необходимо в проектах атомных электростанций и заводов по переработке ядерного горючего предусматривать выделение радиоактивных криптона и ксенона из циркуляционных и сбросных газов. И в этом случае лучшее решение — применение мембранной газоразделительной установки, высоконадежной и безопасной в работе. Создаются мобильные мембранные установки для очистки выбросных газов АЭС при аварийных ситуациях [99]. [c.318]

    Примером более слол<ного анализа является определение примесей в металлическом германии свойства этого материала, применяющегося, например, в качестве полупроводника для детекторов, чрезвычайно сильно зависят от присутствия очень малых количеств примесей других элементов. Для определения микропримесей редкоземельных элементов, сурьмы, молибдена, меди и др. поступают следующим образом . В ядерный реактор вводят испытуемый образец германия и чистый образец с известным количеством введенных примесей. После облучения образцы растворяют, вводят в качестве носителей-коллекторов нерадиоактивные изотопы определяемых элементов. Германий отгоняют в виде легколетучего тетрахлорида, а остаток подвергают разделению химическими методами, осаждая отдельно группу редкоземельных элементов, отдельно сурьму, медь и другие определяемые элементы. Активность выделенных фракций сравнивают с активностью фракций эталона и на этом основании вычисляют содержание микропримесей в испытуемом образце. Таким методом удается определить миллионные доли процента примесей редкоземельных элементов— до З-Ю / о сурьмы, молибдена и др. [c.21]

    Методы хроматографии применимы для разделения смесей паров различных веществ, в частности углеводородов. В последнее время эти мегоды нашли широкое применение в препаративной радиохимии для выделения из сложных смесей ультрамалых количеств радиоактивных изотопов. Таким путем исследуются системы, содержание радиоактивных изотопов в которых составляет 10" —10" г на 1 г смеси (ультраразбавленные системы). [c.111]

    Цитраты РЗЭ были первыми комплексными соединениями, использованными для разделения смесей РЗЭ методом ионного обмена. Выбор лимонной кислоты в качестве лиганда был сделан случайно, именно этот реактив использовался участниками Манхэттенского проекта [12], создателями первой атомной бомбы в США, для выделения радиоактивных изотопов Zr и Nb из смеси осколочных элементов продуктов деления урана. Сейчас метод ионообменной хроматографии наряду с экстракционным методом широко используется для практического разделения смесей РЗЭ и очистки как радиоактивных изотопов индикаторные, невесомые количества), так и больших количеств РЗЭ для металлургических и других целей, хотя вместо лимонной кислоты в качестве нолидентатного лиганда обычно применяют комплексоны [10]. [c.77]

    Электрохимические методы получения тяжелой воды основаны на фракционировании изотопов водорода в процессе электрохимического разряда водорода. В результате различия потенциалов выделения легкого (протия) и тяжелого (дейтерия) изотопов водорода, протий выделяется с большей скоростью, чем дейтерий. Это приводит к накоплению дейтерия в электролите (до определенного предела). Распределение дейтерия между газовой и жидкой фазой характеризуется коэффициентом разделения а [c.37]

    Практически все экспериментальные исследования термической диффу- зии до 1939 г. были посвящены выделению неорганических растворенных веществ из водных растворов или разделению смесей газов различного молекулярного веса [26, 34]. Операции разделения этого тина, но-видимому, протекают в соответствии с кинетической теорией [4], которая утверждает, что крупные и тяжелые молекулы уносятся от горячей стенки в большей мере, чем мелкие и легкие молекулы поэтому тяжелые молекулы должны копцептрироваться у холодной стенки. В литературе опубликован обзор [30] процессов разделения газообразных изотопов, протекающих в соответствии с этой теорией [4]. При работах с неорганическими водными растворами [23] удалось осуществить разделение изотопов цинка различной массы оказалось, что отношение цинк-64 цинк-68 в верху и в низу конвекционной колонны после термодиффузионного разделения равно соответ- ственно 3,2 и 2,7. Следовательно, тяжелый изотоп в этом случае концентрировался внизу. Одновременно было показано, что при разделении смесей тяжелой и обычной воды тяжелая вода (окись дейтерия DgO) также концентрируется в низу колонны. Опубликованы [22] результаты разделения смесей гексадейтерированного и обычного бензолов в жидкой фазе и в этом случае дейтерированный бензол концентрировался внизу. При этом разделение дейтерированного и обычного бензолов осуществлялось в 10 раз легче, чем разделение тяжелой и обычной воды. [c.29]

    Стабилизация Г. а. в формах, отличных от исходной, была обнаружена в 1934 Л. Сциллардом и Т. Чалмерсом при выделении радиоакт. пода из СгНа , облученного нейтронами (эффект Сцилларда — Чалмерса). Г. а. исполь-.эуют при синтезе меченых соед., разделении и обогащении изотопов и др. [c.142]

    Р. широко нримсн. в пром-сти для получ. многих продуктов сложного состава (бензин, керосин, спец. масла и др.), для разделения изотопов (напр., при получ. тяжелой воды), для выделения индивидуальных в-в (Оз, N2, этанол, бен-аол и др.). [c.505]

    С помощью Э. удается осуществлять р-ции окисления и восстановления с большим выходом и высокой селективностью, к-рые в обычных хим. процессах трудно достижимы. Это позволяет использ. Э. для пром. получения и очистки многих в-в. Так, Э. водных р-ров получают и очищают Си, 2н, Мн, Сё, № и др. металлы (см. Гидроэлектрометаллургия). Э. расплавов получают А1, Mg, Ма, Ы, Са, Ве, Тт и др. металлы, потенциалы выделения к-рых из водных р-ров более отрицательны, чем потенциал выделения водорода (см. Электрохимический ряд напряжений). Произ-во фтора основано на Э. расплавл. смеси КР и НР, хлора — на 3. водных р-ров или расплавов хлоридов. Водород и кислород высокой чистоты получают Э. водных р-ров щелочей. О других применениях Э. см. Электросинтез, Гальванотехника, Анодное оксидирование. Изотопов разделение, Вольтамперометрия, Кулонометрия. [c.699]

    Казалось бы, даже один акт деления в массе урана, сопровождающийся выделением нейтронов, должен привести к цепной реакции. Однако на самом деле на протекание цепной реакции оказывает влияние еще ряд факторов. Природный уран состоит в основном из смеси двух изотопов — и235 238 Содержание первого в природной смеси составляет 0,712%, второго —99,28%. Уран-235 делится под воздействием нейтронов с малой энергией (тепловых нейтронов), в то время как претерпевает деление при облучении быстрыми нейтронами. Кроме того, 13 захватывает выделяющиеся прй делении и нейтроны, превращаясь в и (о дальнейших превращениях и см. ниже — в разделе о трансурановых элементах). При этом происходит реакция и (п, 7) и . Эти обстоятельства приводят к тому, что в природном уране возникшая цепная реакция быстро затухает. Незатухающую цепную реакцию можно осуществить двумя путями. Первый из них заключается в разделении изотопов урана. В массе и , свободного от примеси тяжелого изотопа, цепная реакция проходит, не прерываясь. В чистом и убыль нейтронов происходит лишь за счет вылета нейтронов за пределы данного куска металла. Однако, если масса этого куска становится больше определенного значения, или, как говорят, превышает критическую массу, то цепная реакция быстро распространяется по всей массе урана. Поскольку в каждый момент довольно значительное число ядер и претерпевает спонтанный распад, сопровождающийся вылетом нейтронов, то, очевидно, что достаточно массе урана-235 превысить критическое значение, как неизбежно возникает взрыв. [c.88]

    Изотоп Вк образуется в ядерных реакторах при длительном интенсивном облучении нейтронами плутониевых или кюриевых мишеней в результате многократного захвата нейтронов. Этим путем в США получают ок. 20 мг Вк в год. Изотоп Вк образуется при бомбардировке кюриевых мишеней а-частицами, ускоренными на циклотроне. Выделение Б. из материалов облученных мишеней включает отделение Ат осаждение Ст, Вк, РЗЭ, Ри и остаточного кол-ва Аш в виде фторидов превращение фторидов в гидроксиды растворение и перевод гидроксидов в хлораты хроматографич. разделение хлоратов на катионите с использованием в кач-ве элюентов р-ров цитрата аммония, молочной или а-гидроксиизомасляной к-т. Применяют метод, включающий растворение гидроксидов в [c.283]

    Способность г. а. стабилизироваться в соед., отличных от исходных, была обнаружена в 1934 при выделении I из С2Н51, облученного нейтронами (эффект Силарда-Чалмерса). Этот эффект используют при синтезе меченых соед., разделении и обогащении изотопов и др. [c.602]

    ИЗОТ0ПОВ РАЗДЕЛЁНИЕ, выделение одного или неск. изотопов данного элемента из их смеси или обогащение смеси отдельными изотопами. Основано на различиях в св-вах в-в, молекулы к-рых содержат разл. изотопы одного хим. элемента (см. Изотопные эффекты). Существуют две группы методов И. р. К первой группе относят т. наз. абс. методы-электромагнитный и фотохимический, позволяющие выделить в чистом виде к.-л. изотоп из смеси путем однократной операции, ко второй - методы, в к-рых операцию разделения многократно повторяют. [c.199]

    Повышенная радиационная устойчивость ионитов делает возможным их применение в качестве ионитов для выделения и разделения изотопов. После поглощения радиоактивных изотопов отработанные иониты становятся высокоактивными твердыми отходами, которые при отсутствии возможности регенерации хоронят в специальных могильниках. По сравнению с существующими синтезированные порошковые иониты имеют преимущество в том, что их можно спрессовать. Под давлением 2-4 МПа они уменьшают свой объем в 2-2,3 раза. Это позволяет использовать в 2 раза меньший объем могильников по сравнению с тем случаем, когда используются грану.иированные иониты. После выдержки спрессованных брусков для снижения активности до уровня слабоактивных их можно сжечь в специальных печах, оборудованных установками для очистки отходящих газов. Поглощение последних может быть осуществлено углеродными адсорбентами из нефтяньгх остатков. Совместное применение ионитов и адсорбентов позволяет комплексно решить важную экологическую проблему, обеспечить безопасную эксплуатацию ядерных реакторов. [c.156]

    Это обеспечивает практически полное выделение даже субмик-рограммовых количеств радиоактивных изотопов ЗЬ. Однако полное выделение их не обязательно, если определить их выход. Для его определения находят количество выделенной аналитической формы (взвешиванием, титрованием или другим подходящим методом) и оценивают его по отношению к тому количеству, которое могло быть получено в случае полного выделения введенного носителя. В ряде работ [1092, 1312, 1660] описаны методы разделения элементов, рекод1епдуеыые для прид1енения в активационном анализе. [c.75]

    Радиоактивационные методы основаны на облучении исследуемого образца и эталонов в ядерном реакторе, последующем химическом разделении, радиохимической очистке определяемых примесей и измерении активности выделенных препаратов. Активность серы проводят чаще всего по изотопу после выделения в виде BaS04. [c.156]


Смотреть страницы где упоминается термин Изотопы выделения разделения : [c.414]    [c.419]    [c.36]    [c.18]    [c.606]    [c.22]    [c.10]    [c.50]   
Радиохимия и химия ядерных процессов (1960) -- [ c.564 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение изотопов



© 2025 chem21.info Реклама на сайте