Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен и растворимость

    Подчеркивается, что температура процесса определяет лишь скорость сщивания, но не его эффективность. Оптимальная продолжительность реакции приблизительно в 3 раза больше периода полураспада перекиси при данной температуре. Предельная эффективная концентрация перекиси — 3%. При указанных оптимальных условиях образуется полиэтилен, растворимость которого составляет 16% 25 . Основное преимущество сшитого полиэтилена перед обычным термопластичным полиэтиленом — отсутствие пластической текучести и растрескивания при механических напряжениях, пониженная влагопроницаемость, отличные электрические свойства 25ю. Обычно сшивание полиэтилена проводят в присутствии различных наполнителей сажи, антиоксидантов. Найдено, что сажи являются ингибиторами вулканизации, причем эффект ингибирования уменьшается при повышении температуры. Основные сажи не меняют радикальный характер распада перекисей, кислотные превращают его в ион- [c.288]


    Полиизобутилен обладает высокой химической стойкостью и водостойкостью. Он устойчив к действию почти всех кислот, щелочей и галогенов. Концентрированная азотная кислота разрушает его только при температуре выше 80 °С. Полиизобутилен значительно превосходит полиэтилен и полипропилен по эластичности, морозостойкости, и растворимости. Он растворим в. алифатических, арома- [c.14]

    Как будет изменяться параметр растворимости в ряду полимеров полиэтилен, полипропилен, полиакрилонитрил, поли-гексафторпропилен  [c.119]

    Полиэтилен низкой плотности существенно отличается по своим свойствам от полиэтилена, полученного на катализаторе Циглера он имеет более низкие плотность и температуру плавления. Было высказано предположение, что это связано с разветвленностью цепей продукта, синтезированного при высоком давлении. Объяснить, каким образом в процессе полимеризации могут образовываться разветвленные макромолекулы и какое они могут оказать влияние на плотность, и растворимость полимера  [c.285]

    Полиэтилен. Термопластичный высокополимер состава — СНа — СНа —)п- Молекулярный вес продукта, получаемого при низком давлении 60 ООО—300 ООО может достигать значительно большей величины (3 300 000 уг. ед.). Синтезированный в любых условиях, представляет собой смесь кристаллической и аморфной модификаций. Соотношение этих двух фаз зависит от метода синтеза полимера. Кристаллическая фаза обусловливает плохую растворимость полиэтилена, повышает механическую прочность и твердость. Аморфная фаза придает полимеру большую эластичность и морозостойкость.  [c.242]

    В принципе в качестве носителя возможно использование любых полимеров, не растворимых и не набухающих в соответствующих органических растворителях. Для некоторых экстрагентов выгодно подбирать какой-то определенный носитель, так как различные полимеры удерживают разное количество органического растворителя, например, Ке1-Р удерживает большее количество трибутИл-фосфата, чем фторопласт-4 или полиэтилен. [c.155]

    Свойства полиэтилена, получающегося по изложенному способу, не описаны сколько-нибудь подробно. Указывается только, что он почти не растворим в обычных растворителях, лишь при нагревании до 70° становится заметно растворимым в бензоле, ксилоле и четыреххлористом углероде кислоты и щелочи на полиэтилен не действуют, он чувствителен к ультрафиолетовым лучам, хорошо совмещается с полиизобутиленом. Тангенс угла потерь 0,0005 при 50 гц. [c.776]

    РАСТВОРИМОСТЬ ЭТИЛЕНА В ПОЛИЭТИЛЕНЕ [c.49]

    В работах [29, 31] показано, что растворимость этилена в полиэтилене с молекулярной массой 740-20000 в интервале температур 120-240 °С и давлении до 20 МПа удовлетворительно описывается модифицированным уравнением Кричевского — Ильинской  [c.49]


    Растворимость этилена в полиэтилене [c.199]

Рис. 4. Влияние содержания аморфной фазы иа растворимость газов в полиэтилене Рис. 4. <a href="/info/403306">Влияние содержания</a> <a href="/info/749877">аморфной фазы</a> иа <a href="/info/3435">растворимость газов</a> в полиэтилене
    Чмутов и Финкель исследовали изменение влагопроницаемости облученного на воздухе полиэтилена в зависимости от дозы облучения Со в пределах 46—300-10 рентген. С увеличением дозы облучения О уменьшался, а Р и а — увеличивались. Авторы считают, что коэффициент растворимости а воды в полиэтилене увеличивался в результате общего повышения полярности полиэтилена, О уменьшался за счет образования поперечных сшивок, а увеличение Р являлось следствием быстрого возрастания а. [c.104]

    Характер надмолекулярных структур, их размеры н взаиморасположение, плотность упаковки молекул в первичных элементах структуры и, наконец, морфология сложных кристаллических образований должны оказывать влияние на величину и характер диффузии и растворимости низкомолекулярных веществ в полимерах. В пачке, являющейся основным элементом надмолекулярной структуры аморфного полимера, обеспечивается более или менее полная параллелизация участков цепных молекул, поэтому можно предположить, что в самой пачке более плотная упаковка молекул, чем в промежутках, отделяющих пачки друг от друга. По аналогии с переносом газов и паров через кристаллические полимеры можно считать, что перенос низкомолекулярных веществ в аморфных полимерах будет происходить преимущественно по границам раздела пачек. В результате огибания пачек молекулами диффундирующего низкомолекулярного вещества путь молекул в полимере будет возрастать и, следовательно, значение эффективного коэффициента диффузии уменьшается. Диффузия по межпачечным пространствам должна характеризоваться также и меньшей энергией активации, так как в областях между пачками должно наблюдаться уменьшение межмолекулярных сил и плотности энергии когезии, а также повышение конфигурационного набора цепных молекул. Различие в размерах и формах кристаллических образований сказывается на изменении ряда физических свойств полимеров, в том числе и на процессах переноса низкомолекулярных веществ в полимерах. Так, было показано, что на коэффициенты диффузии низкомолекулярных углеводородов и некоторых постоянных газов в полиэтилене влияют термическая обработка и предыстория образцов полиэтилена, что связано с изменением их кристаллической структуры 2. [c.155]

    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]

    Характерной особенностью гидрофобных полимеров является различие в проницаемости по отношению к летучим и нелетучим электролитам 2 Проницаемость для нелетучих электролитов по крайней мере на три порядка ниже проницаемости для летучих электролитов. Низкая проникающая способность нелетучих электролитов объясняется малой сорбцией их неполярными полимерами. Это явление аналогично малой растворимости электролитов в неполярных жидкостях. Согласно приближенным термодинамическим оценкам, константа распределения азотной кислоты между бесконечно разбавленным водным раствором и полиэтиленом НП более чем на четыре порядка превышает константу распределения для серной кислоты. Добавка полярных растворителей в водные растворы нелетучих электролитов резко повышает проницаемость гидрофобных полимеров, однако количественно это явление не изучено. При использовании весьма чувствительной методики позволявшей определять проницаемость порядка г/(см-ч-мм [c.213]


    Однако, несмотря на эти ценные свойства, поликарбонаты до сих пор не нашли такого массового применения, как, например, полистирол или полиэтилен, что объясняется, прежде всего, их высокой стоимостью. Кроме того, в ряде отраслей промышленности применение поликарбонатов ограничено вследствие их растворимости во многих органических растворителях, способности растрескиваться под действием внутренних напряжений, особенно в присутствии растворителей или их паров, а также некоторой склонности к уменьшению предела выносливости под действием динамических нагрузок. [c.281]

    Смеси полимеров. Зависимость времени вращательной корреляции спин-зонда от локальной вязкости полимера, зависящей от его химического строения и морфологии, может быть использована для изучения совместимости полимеров в смесях. В работе [208] показано, что в несовместимой системе полиэтилен— полиизобутилен (ПЭ — ПИБ) спектр смеси представляет собой суперпозицию спектров компонентов и может быть разделена на составляющие, исходя из знания спектров зондов в чистых ПЭ и ПИБ в тех же условиях. При этом по интенсивности разделенных спектров может быть определена растворимость радикала в каждом из компонентов. Найдено, что растворимость радикалов типа  [c.288]

    Баклей [6] также получил нерегулярно разветвленные углеводороды путем совместного разложения диазометана и диазоэтана. При применении смесей, содержащих небольшие количества диазоэтана, были получены не растворимые в эфире кристаллические полимеры, напоминающие полиэтилен. Если же в смеси содержалось много диазоэтана, то получались крупные стеклообразные продукты, напоминавшие полиэтилиден. [c.170]

    Известные опытные данные 6, 8, 10, 13, 15] по проницаемости метана в сополимере тетрафторэтилена и гексафторпропи-лена, диоксида углерода, бромистого метила, изобутилена и других паров органических веществ в полиэтилене свидетельствуют о росте проницаемости с давлением. Это объясняется косвенным влиянием давления, за счет сильной концентрационной зависимости коэффициента диффузии при высокой растворимости указанных веществ. [c.99]

    Обсудим эти результаты, используя представление А Т,Р) в виде уравнения (3,52). Установлено [15], что коэффициент растворимости исследованных газов в полиэтилене. является сильной функцией температуры, но практически не зайисит от давления (до 1,5 МПа), т, е. можно полагать, что о, (7 , Р) = = 01(7, Р-<-0). Экспериментальные значения коэффициента растворимости приведены в табл, 3.7. [c.100]

    Для аргона, плохо растворимого в полиэтилене, коэффициент диффузии практически постоянен, поэтому слабое уменьшение Л(Т, Р) с ростом Р вызвано небольшой деформацией матрицы под воздействием давления и связанным с этим уменьшением свободного объема в полимере. Более растворимые газы F4, 2H2F2 и SFe отличаются устойчивым ростом скорости диффузии с повышением концентрации в полимере и этот эффект определяет барическую зависимость скорости проницания А(Т,Р). [c.101]

    Гибкие макромолекулы линейных полимеров с высокой прочностью вдоль цепи и слабыми межмолекулярными связями обеспечивают эластичность материала. Шогие такие полимеры растворяются в растворителях, Иа физико-механические и химические свойства линейного полимера влияет плотность упаковки молекул в единице объема. При плотной упаковке возникает более сильное мемыолекулярное притяжение, что приводит к повышении плотности, прочности, температуры размягчения и уменьшению растворимости. Линейные полимеры являются наиболее подходящими для- получения волокон и пленок (например, полиэтилен, полиамлды и др.). [c.21]

    В процессе физической абсорбции извлечение кислых компонентов газа основано на различной растворимости компонентов газа в абсорбенте. В качестве абсорбентов в этих процессах используют смесь диметиловых эфиров полиэтилен-гликоля (процесс Селиксол ), метанол (процесс Ректизол ), [c.13]

    Приведенная схема объясняет постепенное увеличение количества поперечных связей в облучаемом полиэтилене. Образование низкомолекулярных углеводородов связано, по-иидимому, с отщеплением от полимерных цепей коротких боковых ответвлений. Присутствие кислорода в процессе облучения приводит к разрыву макромолекул и образованию перекисных мостиков. Постепенно полимер становится жестким и утрачивает растворимость, одновременно снижается и степень кристалличности полимера. [c.213]

    Полиизобутилеи со средним молекулярным несом 50 ООО--200 ООО значительно превосходит полиэтилен и полипропилен по эластичности, морозостойкости и растворимости. Это объясняется пластифицирующим действием метильных замещающих групп, в присутствии которых увеличиваются расстояния между соседними макромолекулами и, следовательно, уменьшается взаимодействие между ним и. В аморфном полиизобутилене расстояние между макромолекулами при обычной температуре состав- [c.217]

    Полиэтилен обладает сравнительно низкой эластичностью и плохой растворимостью. Эти свойства полиэтилена обусловлены его высокой кристалличностью. Путем совместной полимеризаш и этилена со стиролом, винилацетатом, малеиновым ангидридом получаются сополимеры, неспособные к кристаллизации, т. е. со свойствами, характерными для аморфных иолимеров. Если размеры замещаю-ш,ей группы в молекуле винильного соединения (мономера) лишь, немного превышают размеры атома водорода (к таким заместителям [c.512]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    Каучукоподобный, эластичный белый продукт. Полимер со средней молекулярной массой (200 ООО уг. ед.) значительно превосходит полиэтилен и полипропилен по эластичности, морозостойкости и растворимости. Полиизобутилен более стоек к действию окислителей, чем полипропилен выдерживает действие азотной кислоты, перекиси водорода, озона, кислорода. Концентрированные HNOз и Н2504 разрушают полиизобутилен только при температуре выше 80°. [c.243]

    Для полимеров, имеющих при 30° ограниченную растворимость, необходимо иметь специальную баню для работы при высоких постоянных температурах. Например, полиуглеводороды, такие, как полиэтилен или поли(4-метилпентен-1), удовлетворительно растворимы только при 130° в растворителях типа декалина, содержащего 0,2% антиокислителя, например фенил-р-нафтил-амина. Этот полимер растворяют в декалине, взяв коицен-трацию 0,1 г вместо обычных 0,5 г. Для растворения используют паровую баню, где теплоносителем является мопометиловый эфир этиленгликоля с температурой кипения 125°. Затем раствор фильтруют через предварительно нагретое сито с величиной отверстий 200 мсш, изготовленное из нержавеющей стали, в пробирку, погруженную в баню, температура которой 130 0,1°. Отбирают 10 мл раствора горячей пипеткой (не засасывать ртом ) в соответствующий вискозиметр (Каннин-Фен-ске, серия 75), погруженный в баню. Оставляют на [c.53]

    Как следует из приведенных диаграмм, растворимость этилена в по лиэтилене падает с увеличением молекулярной массы полиэтилена I уменьшением температуры. Максимальное давление расслоения системь этилен - полиэтилен растет с увеличением молекулярной массы полиэти лена и сдвигается в область высоких концентраций этилена. Раствори мость же полизтилена в этилене уменьшается с ростом молекулярное массы полиэтилена и температуры. [c.48]

    В зависимости от содержания бензоло-растворимой части в хлорметилированном продукте и среды реакции из полиэтилен-полиамина получены аниониты с обменной емкостью 8,3-5,7 мг-экв/г из бензидина, и-фенилендиамина — с обменной емкостью 5,5-2,5 мг-экв/г. Из никотиновой, изоникотиновой, хинолиновой кислот получены амфолиты (табл.. 41). [c.68]

    Машина ВАЭМ-4 предназначена для фасования различных сьтучих продуктов (специй, растворимого кофе, чая и т.п.) в пакеты из многослойных упаковочных материалов (бумага-полиэтилен, бумага-алюминий-полиэтилен и др.), запаянные с четырех сторон. Пакетообразователь машины вьшолнен по валковой системе, позволяющей создать многоручьевое фасование — от 6 до 14 ручьев. [c.1252]

    Другое эмпирическое соотношение, найденное Май-келсом и Бикслером устанавливает связь между растворимостью газа а в аморфном полиэтилене и силовой постоянной потенциального поля e/fe, вычисляемой по [c.43]

    На примере определения растворимости паров СНзВг в облученном и необлученном полиэтилене было показано, что облучение мало влияет на растворимость. Следует считать, что изменение газопроницаемости полиэтилена может быть отнесено в основном за счет изменения коэффициента диффузии. [c.103]

    Авторы считают, что влияние радиации на сорбционные свойства полиэтилена объясняется главным образом химическими изменениями в полимере. Влияние этих химических изменений позволяет объяснить изменение растворимости и теплот растворения газов в полиэтилене. Как видно из данных, приведенных в табл. 12, при облучении полиэтилена наблюдается уменьшение коэффициентов диффузии (возрастающее с увеличением размеров диффундирующих молекул) и небольшое увеличение энергий активации диффузии. Предпрлагается, что при облучении полиэтилена происходит пространственно-неравномерное образование поперечных связей, приводящее к возникновению участков полимера с высокой плотностью сшивок. Эти участки вероятно расположены друг от друга на расстояниях, больших, чем протяженность зоны активации В этом случае Ео должна оставаться постоянной, а коэффициенты диффузии [c.105]

    Исследование проницаемости пленок из сополимера этилена с дибутилмалеинатом по отношению к Не, Аг и СН4, растянутых на холоду до 500—600%, показало что одноосная вытяжка приводит вначале к незначительному снижению проницаемости и не изменяет кажущейся энергии активации проницаемости до значений растяжения не более 490%). Однако при дальнейшем растяжении в области образования шейки значения проницаемости снижаются, а энергии активации проницаемости возрастают. Авторы предполагают, что растяжение полимера в области образования шейки приводит к ориентации молекул в аморфных областях, это способствует снижению подвижности сегментов и соответственно уменьшению проницаемости. Значительное уменьшение проницаемости полипропиленовых пленок при их ориентации наблюдалось в работе Близкие к указанным результатам были получены Брандто и Бойером Было показано, что коэффициенты диффузии и растворимости газов изменяются при растяжении таких частично кристаллических полимеров, как полиэтилен, полипропилен и найлон. Величина и направление этих изменений зависят от свойств диффундирующего вещества и температуры эксперимента. Ориентация аморфного поливинилбутираля не влияла на коэффициент диффузии. [c.150]

    Частично омыленный ПВА, содержащий 10—20% (масс.) звеньев ВА, обычно используемый для изготовления растворимой в воде пленки, пластифицируется этиленгликолем (ЭГ), ди-этиленгликолем (ДЭГ), триэтиленгликолем (ТЭГ), полиэтилен-гликолем (ПЭГ), а также глицерином (ГЛ). Совместимость пластификаторов с сополимером ВС и ВА оценивается по температуре растворения его в многоатомных спиртах и температуре помутнения растворой. Она увеличивается с уменьшением молекулярной массы пластификатора в ряду [6, с. 106]  [c.115]

    Изотактический полипропилен обладает такой же растворимостью, как и полиэтилен плавится он, однако, при более высокой температуре (интервал температуры кристиллизации 160—170°С). [c.156]


Смотреть страницы где упоминается термин Полиэтилен и растворимость: [c.100]    [c.101]    [c.65]    [c.62]    [c.785]    [c.163]    [c.496]    [c.236]    [c.258]    [c.77]    [c.33]   
Конструкционные свойства пластмасс (1967) -- [ c.214 , c.218 , c.219 , c.221 , c.222 , c.234 ]

Конструкционные свойства пластмасс (1967) -- [ c.214 , c.218 , c.219 , c.221 , c.222 , c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Полиэтилен кривые растворимости

Полиэтилен растворимости параметр

Полиэтилен растворимость газов



© 2025 chem21.info Реклама на сайте