Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции в основных растворителях

    Схема установки приведена на рисунке 2.1. Она состоит из следующих основных узлов реактора окисления, системы конденсации и улавливания парогазовых продуктов реакции и растворителя, системы контроля и регулирования температуры. В качестве реактора используется стеклянный цилиндрический сосуд (1) ёмкостью 500 мл, снабжённый пробоотборником (а), газоподводящей трубкой (б), внутренним холодильником (в), холодильником-конденсатором (г) и турбинной мешалкой (д). Мешалка приводится в действие электромотором (2), соединённым с ЛАТРом (13). Для улучшения перемешивания реактор снабжён отражательными перегородками. Обогрев реактора осуществляется с помощью нихромовой спирали (11), напряжение на которой регулируется ЛАТРом (12). Постоянство температуры поддерживают с точностью 0,5 С контактным термометром (14) управляющим электронным реле (15), которое периодически включает и выключает ЛАТР (12). Внутренний холодильник (в) используют для поддержания постоянства температуры при значительном экзотермическом эффекте реакции. [c.29]


    На этом примере можно ясно представить себе, что кислотноосновные свойства вещества не являются его индивидуальным свойством, а определяются свойствами других участников протолитической реакции и растворителя. Теория Бренстеда далеко продвинула наши представления о кислотах и основаниях она показала относительность понятий нейтрализация , кислота , основание и ввела количественные соотношения, в основном правильно отражающие реальное поведение рассмотренных выш е систем. [c.389]

    Вследствие сочетания различного рода взаимодействий между растворителем и участниками реакции положение равновесия зависит от многих факторов. Так, протолитическое равновесие между кислотой и основанием при изменении растворителя зависит не только от кислотности (основности) растворителя, но и от его способности к образованию координационных соединений. Поэтому, например, константы диссоциации карбоновых кислот в воде в 10 —10 раз больше, чем в безводном этаноле. [c.452]

    Реакция протекает на поверхности магния и имеет, вероятно, радикальный характер. R—fAg—Hal как кислота Льюиса координируется с основным растворителем (чаще всего диэтиловым эфиром, тет- [c.77]

    В 1949 г. Кольтгоф писал Несомненно, еще не сказано последнее слово относительно механизма кислотно-основной реакции. Пр крайней мере спорно, является ли первичной реакцией между основаниями и бренстедовскими кислотами прямой перенос протона. Первичная реакция между кислотами и основанием может состоять в образовании водородной связи. В основных растворителях с высокой диэлектрической проницаемостью кислота реагирует с растворителем — основанием с первичным образованием водородной связи. Вслед за этим происходит диссоциация с образованием сольватированного протона и основания, сопряженного с кислотой. Однако в растворителях с низкой диэлектрической проницаемостью кислота и основание могут реагировать с образованием устойчивого продукта присоединения через водородную связь. Даже в водной среде нередко имеют место реакции, связанные с образованием водородной связи. Таково, например, взаимодействие между водой и аммиаком. [c.300]

    Пожалуй, наиболее изученной областью химии неводных растворов являются кислотно-основные реакции, исследование которых началось еще с сольво-систем. Согласно определению сольво-сп-стем, кислота может быть рассмотрена как вещество, которое путем прямой диссоциации или реакции с растворителем дает катион, характерный для растворителя основание — вещество, которое путем прямой диссоциации или реакции с растворителем дает анион, характерный для растворителя. В случае протонного растворителя катионом является сольватированный протон, и при этом условии протонное представление о кислоте эквивалентно понятию о кислоте как о сольво-системе. Например, типичные реакции нейтрализации в аммиаке протекают следующим образом  [c.351]


    Окислительно-восстановительные потенциалы редокс-пар зависят от природы участников окислительно-восстановительной реакции и растворителя, температуры, давления (в основном тогда, когда хотя бы один и реагентов — газ), присутствия посторонних электролитов и других веществ. [c.153]

    Для основных растворителей, например аммиака, характерны реакции присоединения протона  [c.104]

    Для растворения нитросоединений вместо спирта можно применять и другие растворители, особенно если необходимо. повысить температуру реакции. Применение растворителей, не смешивающихся с водой, требует очень энергичного перемешивания. Нейтральные или основные гидразосоединения в этом случае сразу переходят в слой растворителя. Подобным образом можно восстановить азосоединения до гидразосоединений или, применяя избыток цинка, до аминов. [c.498]

    Характеристика в общем-то понятная чем основнее растворитель и, следовательно, чем энергичнее взаимодействует он с кислотой, тем более экзотермичной будет реакция между ними (иными словами — тем больше теплоты выделяется при смешивании растворителя и пятихлористой сурьмы). [c.45]

    Действительно, выход продукта реакции между крезолом и ДМСО в обладающем кислотной природой и, следовательно, сольватирующем ДМСО растворителе нитрометане, составляет уже только 30 %. А в основном растворителе — уксусноэтиловом эфире, сольватирующем крезол, выход продукта реакции падает и вовсе до 14 %. [c.52]

    Реакционная способность диоксида хлора по отношению к фенолу увеличивается в следующем ряду растворителей 2-метилпропан-1-ол < этанол < 1,4-диоксан < ацетон < ацетонитрил < этилацетат < дихлорметан < гептан < тетрахлорметан. Увеличение основности растворителя В приводит к уменьшению константы скорости реакции окисления фенолов диоксидом хлора lgk = -(0.4 0.08) - (7.4 0.5) 10 В. [c.22]

    Влияние среды на положение химического равновесия можно оценивать двумя путями во-первых, сравнивая константы равновесия в газовой фазе и в растворе и, во-вторых, сравнивая константы равновесия в различных растворителях. К сожалению, и в газовой, и в жидкой фазах изучалось крайне ограниченное число равновесных реакций [5, 6], к числу которых относятся главным образом неионные процессы, где взаимодействие между реагентами и растворителем незначительно (например, реакция димеризации циклопентадиена по Дильсу — Альдеру). Поэтому в настоящей главе будут рассматриваться в основном результаты изучения равновесных реакций в растворителях различной полярности (за исключением кислотно-основного равновесия, разд. 4.2.2). [c.125]

    Другими словами, добавление 1,4-диоксана приводит к тому, что реакционная ореда становится богаче свободными, не сольватированными специфически метоксид-анионами, в результате чего возрастает и скорость реакции (5.105) [10, 268]. Такое объяснение подтверждает дальнейшее повышение скорости реакции (5.105) при добавлении более основного растворителя диметилсульфоксида, хотя в этом случае, вероятно, возрастает и диэлектрическая проницаемость реакционной среды [269]. [c.303]

    Одной их характерных и интересных особенностей реакций оксосинтеза является ингибитирование ео основными растворителями. Так, восстановление бензгидрола в дифенилметан не идет, если в качестве растворителя используется пиридин. Основания также подавляют как гидроформилирование, так и гидрогенолиз. Например, гидроформилирование смеси 2,3-диметилбутенов при 135° и давлении синтез-газа 230 ат полностью ингибитируется триэтиламином [31]. 1У1ожпо предполагать, что в этих реакциях дикобальтоктакарбонил (катализатор) реагирует (с пиридином, взятым в качестве образца) следующим образом  [c.299]

    Взаимодействие НХ с катализатором протекает по обратимой реакции с высокой скоростью, при этом образуются комплексы с переносом заряда или ионные пары, что подтверждается методами УФ- и ИК-спектроскопии, изменениял дипольного момента и давления паров (подробнее см. гл. 4) последующее образование (т-комплексов в результате взаимодействия их с аренами является более медленной стадией. Большое влияние на дальнейшее превращение ст-комплексов оказывает основность растворителей. Действительно, если реакцию проводить без растворителей или со слабоосновными растворителями, то образующиеся алкилбензолы, обладающие более основными свойствами, чем исходный бензол, накапливаются в виде комплекса [c.45]

    Увеличение глубины изотопной перегруппировки при понижении температуры указывает на более избирательное действие этого фактора на соотношение скоростей реакции изомеризации и алкилирования. Подобное же увеличение глубины изотопной перегруппировки следовало ожидать при использовании нейтрального растворителя, который одновременно должен снизить скорость реакции алкилирования. Изотопная перегруппировка при алкилировании бензола СНз—СНг в растворителе три-хлорбензоле достигает 20,5% и находится в прямой зависимости от температуры и продолжительности процесса. При алкилировании бензола [2- С] этилфторидом при контакте с ВРз в присутствии растворителей н-гексана, циклогекеана и нитрометана изомеризация достигала 50, 34,1 и 3,5% соответственно [151, 152]. По-видимому, полярность растворителя определяет не только скорость реакции алкилирования, но и структуру промежуточного реакционного комплекса. В сильно основных растворителях побочные реакции подавляются. Кроме того, резко повышается избирательность при атаке отдельных положений ароматического кольца. При реакции без растворителя или в слабо основном растворителе катализатор связывается с алкил- [c.111]


    Активаторы, повышая растворимость одного из реагирующих веществ в основном растворителе, не должны при этом снижать растворимость другого реагирующего вещества. При добавлении избыточного количества активатора может снизиться растворимость второго взаимо-действздащего вещества или образоваться вторая жидкая фаза, отвлекающая карбамид из зоны реакции, что ухудшает условия комплексообразования. [c.75]

    Они соответствуют реакциям катионной кислоты ЗН+ (а), нейтральной кислоты 5Н (б) и анионной кислоты 5Н (в). В случае (а) между компонентами реакции не происходит кулоновского взаимодействия, величина которого зависит от диэлектрической проницаемости (ДП) растворителя. В случае (б) и еще в большей степени в случае (в) эти взаимодействия про- являются сильнее они тем больше, чем меньше значение ДП. Равновесие обеих реакций тем сильнее сдвинуто в прямом направлении, чем больше значение ДП, и наоборот. Из этого следует, что константы кислотности катионных кислот зависят не от значения ДП, а только от основности растворителя. Напротив, кислотность нейтральных и еще в большей степени анионных кислот в растворителях с низким значением ДП меньше, чем в растворителях с высокой ДП, если допустить, 1что кислотность растворителя не изменяется. Если катионная и нейтральная кислоты, находящиеся в смеси, из-за сходства кислотных свойств титруются совместно, то при переходе к. растворителю с другим значением ДП становится возможным их дифференцированное титрование. Это правило применимо также и при титровании кислоты яо двум ступеням диссоциа- ции. Если растворитель характеризуется низким, значением ДП, то кислоту можно нейтрализовать последовательно по жаждой ступени диссоциации, в то время как в растворителе с высокой ДП происходит нейтрализация по двум ступеням одновременно (рис. Д. 146). Растворители с небольшими зна- чениями ДП обладают большой склонностью к образованию ассоциатов различных типов, в связи с чем двухступенчатые процессы могут быть кажущимися. Образование растворенными частицами ассоциатов и взаимодействие их с растворите- [c.344]

    В зависимости от использованного растворителя относительная скорость изменяется следующим образом бензол—1, этилацетат — 11, метилэтилкетон — 59, ацетонитрил — 300, диметилформамид — 1950, дим.етилсульфоксид — 7200. Однако влияние растворителей на эту реакцию зависит не только от их полярности, но и от основности. При близкой полярности реакцию в большей степени ускоряют более основные растворители, способные служить акцепторами протона из а-комплекса. Например, диоксан ускоряет реакцию больше, чем бензол, пиридин больше, чем нитробензол и т. д. [c.163]

    Расчет искомых величин проводят следующим образом по Приложению П.1 находят индекс основной реакционной серии, к которой относится искомая реакция. По установленному индексу реакционной серии находят в Приложении П.4 условия реакции (температура, растворитель), номер корреляционного уравнения и значения постоянных этого уравнения для данной реакционной серии здесь же приводятся значения среднеквадратичых отклонений 5 и коэффициентов корреляции г. [c.392]

    Морфолин - тетрагидро-1,4-оксазин, С4Н8КО - довольно вязкий основной растворитель с низкой диэлектрической постоянной (7,33). Он растворяет разнообразные соли щелочных, щелочноземельных, редкоземельных и переходных металлов и сам неограниченно растворяется в воде. В качестве растворителя морфолин применялся для полярографического восстановления щелочных, щелочноземельных и некоторых переходных элементов [1,2]. В литературе отсутствуют данные об использовании этого растворителя для полярографии органических соединений. Трудно предположить, что морфолин окажется подходящим растворителем для исследования анодных реакций. [c.26]

    Можно отметить некоторые преимущества, которые дает использование этих реагентов. В случае хлористого тионила в качестве побочных продуктов при реакции выделяются газообразные сернистый ангидрид и хлористый водород. Выделение газов также про-мотируется при использовании фосгена, бензолсульфохлорида и хлорокиси фосфора в присутствии основного растворителя типа пиридина. Пирокатехилтрихлорфосфат растворим в органических рас- [c.445]

    Было найдено, что циклоалкил- и диалкилкетоны претерпевают реакцию Шмидта даже в таких основных растворителях, как вода, спирты и эфиры. Однако в случае менее основных типов карбонильных соединений применение этих растворителей в значительной степени или даже полностью тормозит реакцию. Катализаторы, являющиеся достаточно сильными кислотами в случае более основных карбонильных соединений, могу1 -быть неэффективными с менее основными карбонильными соединениями. Так, было найдено, что триклор- [c.455]

    При замене обычного растворителя на дейтерированный, например Н2О на ВгО, наблюдают изотопный эффект по растворителю, который носит комплексный характер. Кинетический изотопный эффект характерен для реакций с переносом протона. Он зависит от следующих факторов типа диссоциирующей связи, изменения энтальпии и характера элементарного акта переноса протона (адиабатического или туннельного). При адиабатическом характере реакции изотопный эффект максимален для термонейтральной реакции. Основной вклад в изотопный эффект вносит разность нулевьк энергий Д о валентных колебаний связей А—Н и А—О. Ниже приведены значения кц//со, эффект обусловлен только АЕо для разных типов А—Н-связей (Г= 298 К)  [c.500]

    Свобода и др. [140] выполнили факторный анализ матриц, данных, содержащих 35 физико-химических констант и эмпирических параметров полярности (см. гл. 7) 85 растворителей. На этой базе был получен ортогональный набор четырех параметров, которые можно связать с полярностью растворителя, выраженной в виде функции Кирквуда (е,-—1)/(2бг+1), поляризуемостью растворителя, выраженной в виде функции показателя преломления пР-— )1 п + ), а также с льюисовой кислотностью и основностью растворителя. Отсюда следует, что для количественного эмпирического описания влияния растворителя на химические реакции и поглощение света в общем случае необходимы четыре параметра два для описания неспецифической сольватации, обусловленной полярностью и дисперсионными взаимодействиями, а два других — для описания специфической сольватации, связанной с электрофильной и нуклеофильной активностью растворителя. Для корреляции эффектов растворителей с помощью только одного эмпирического параметра лучше всего пользоваться параметром т(30), значения которого определяют, изучая поглощение сольвато-хромного красителя в УФ- и видимой областях (см. разд. 6.2.1 и 7.4). [c.120]

    До последнего времени в газовой фазе было изучено лишь очень ограниченное число реакций, обычно протекающих в растворах [32]. По этой причине для изучения зависимости скорости реакции от растворителя применяли практически только Ьторой путь, тогда как первый использовали в основном для исследования неионных реакций, т. е. реакций, протекающих без разделения зарядов и без делокализации заряда на стадии активации, например перициклических реакций, в которых из нейтральных исходных веществ образуются нейтральные продукты. Что же касается реакций, протекающих по ионному механизму и сопровождающихся существенным разделением или делокализацией заряда на стадии активации (например, реакций с переносом протона или ионно-молекулярных реакций ти- [c.182]

    Н = СНз) [87] наблюдалось умеренное повышение скорости реакции при повышении полярности растворителя, что не противоречит механизму, описываемому уравнением (5.31). Наиболее высокие скорости этих реакций были достигнуты в галогенсодержащих растворителях-НДВС (СНгСЬ, СНС1з), а наиболее низкие —в растворителях, способных образовывать межмолекулярные ассоциаты с карбоновыми пероксикислотами (т. е. в простых эфирах). Эффективность межмолекулярного взаимодействия пероксикислоты с растворителем тем больше, чем выше основность растворителя [78, 87]. [c.224]

    В этой свяэи следует отметить, что ингибирование 8ы2-реак ций протонными растворителями может зависеть и от природы растворителя-НДВС [268, 269, 584]. Добавление основного растворителя может сопровождаться ростом скорости реакции, поскольку основание способно конкурировать с нуклеофилом за образование водородных связей с протонным растворителем.. Так, 8ы2-реакция ускоряется, если к реакционной среде—протонному растворителю (например, метанолу) добавляют 1,4-диоксан [268]  [c.302]

    Поскольку в отсутствие донора протонов гидразон-анион устойчив, то ход всей реакции должен зависеть от наличия молекулы спирта вблизи от гидразон-аниона. Такое предположение подтверждается наличием максимума в зависимости константы скорости реакции в смесях ROH— H3SO H3 от концентрации диметилсульфоксида (при низкой концентрации ROH) [330]. Скорость всей реакции, по-видимому, определяет стадия согласованного переноса протона от протонного растворителя к гидразон-аниону и отщепления протона от последнего под влиянием основного растворителя [329]. [c.331]

    НОСТЬ сольватировать реагенты или активированные комплек сы, а также молекулы в основном и возбужденном состояниях [1, 3]. В свою очередь сольватирующая способность растворителя зависит от всех специфических и неспецифических взаимодействий между молекулами растворителя и растворенного вещества, в том числе электростатических взаимодействий между ионами, ориентационных взаимодействий между биполярными молекулами, индукционными и дисперсионными взаимодействиями, образованием водородных связей, переносом заряда, а также сольвофобными взаимодействиями (см. гл. 2). При этом не учитываются только такие взаимодействия, которые приводят к определенным химическим изменениям молекул растворенного вещества, например к протонированию, окислению, восстановлению, комплексообразованию. Очевидно, что определяе мую таким образом полярность растворителя нельзя описать каким-либо одним физическим параметром, например диэлектрической проницаемостью. Действительно, очень часто не удается обнаружить какой-либо корреляции между диэлектрической проницаемостью [или той или иной ее функцией, например 1/бг, (вг—1)/(2ег+1)] и логарифмом скорости или константой равновесия зависящей от природы растворителя химической реакции. Вероятно, вообще не существует такого макроскопического физического параметра, с помощью которого можно было бы учесть все многочисленные взаимодействия между растворителем и растворенным веществом, осуществляющиеся на молекулярном уровне. До настоящего времени сложность взаимодействий между растворителем и растворенным веществом не позволяет найти достаточно общие математические выражения, с помощью которых можно было бы вычислить скорости или константы равновесия реакций в растворителях различной полярности. [c.487]


Смотреть страницы где упоминается термин Реакции в основных растворителях: [c.143]    [c.219]    [c.70]    [c.201]    [c.328]    [c.331]    [c.53]    [c.1475]    [c.337]    [c.86]    [c.221]    [c.170]    [c.209]    [c.10]    [c.15]    [c.220]    [c.269]    [c.302]    [c.111]   
Смотреть главы в:

Аналитическая химия неводных растворов -> Реакции в основных растворителях


Аналитическая химия неводных растворов (1982) -- [ c.75 , c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Растворители основные



© 2024 chem21.info Реклама на сайте