Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро селенит, окисление III

    Медь получают пирометаллургическим восстановлением окисленных сульфидных концентратов. Выделяющийся при обжиге сульфидов диоксид серы SO2 идет на производство серной кислоты. Восстановленную черновую медь очищают электрохимическим рафинированием. Из анодного шлама извлекают благородные металлы, селен, теллур и др. В целом в производстве меди намечаются контуры безотходной технологии. Серебро получают при переработке полиметаллических (серебряно-свинцово-цинковых) сульфидных руд. После окислительного обжига концентрата плавку ведут так, что серебром обогащается расплав цинка. [c.310]


    Повышение (до определенных пределов) концентрации хлора в серебре уменьшает подвижность кислорода, что приводит к снижению степени превращения этилена в двуокись углерода при сохранении той же степени его превращения в окись этилена. Увеличение количества добавки сверх оптимального может еще более упрочнить связь серебра с атомарным и молекулярным ионами кислорода, что вызовет уменьшение скорости окисления этилена и отравление катализатора. Введение незначительных количеств металлоида (сера, селен), степень заполнения поверхности которыми равна 0 = 10" —10" снижает энергию адсорбции кислорода, что увеличивает активность катализатора. При большем покрытии поверхности (0 — 0,2) активность катализатора уменьшается вследствие блокирования части его поверхности металлоидом. [c.220]

    Была исследована также каталитическая активность сплавов серебра с алюминием, магнием, медью, цинком, галлием, германием, селеном, индием, кадмием, оловом, теллуром, висмутом [138]. Показано, что степень превращения метанола на серебре и его сплавах с различными добавками, за исключением цинка, германия, галлия, висмута возрастает с увеличением отношения Оа СНзОН. Селективность процесса окисления в формальдегид на серебре и его сплавах с теллуром нечувствительна к повышению этого отношения, тогда как у сплавов серебра с германием, галлием и индием — увеличивается, а у остальных уменьшается. Введение в серебро 10% магния [139], меди и кадмия увеличивает дегидрирующую способность катализатора, повышая тем самым общую конверсию метанола, а присутствие селена и сурьмы увеличивает селективность процесса. Существенно пониженной каталитической активностью обладают сплавы серебра с цинком, галлием и германием. Сплавы серебра с алюминием, теллуром, оловом по сравнению с чистым серебром также проявляют пониженную активность. Однако по другим наблюдениям, добавки алюминия интенсифицируют процесс [140]. Для сплавления с серебром рекомендуется платина (0,45—0,75%>) [113]. Есть указания на целесообразность применения в качестве добавок и оксидов некоторых металлов молибдена (VI) [141], титана (IV), магния и кальция [142]. В последнем случае массовая доля серебра составляет от 5 до 30% от всего катализатора. Предложено использовать в качестве добавок к серебру пероксиды щелочных и щелочноземельных металлов [114], а также соли серебра — карбонаты и оксалаты [143]. Однако сведений о практическом применении сплавов и модифицирующих добавок пока нет. [c.55]


    Российскими исследователями в НИИ Синтез совместно с Институтом катализа СО РАН разработана технология приготовления высокоэффективного катализатора парциального окисления этилена. Как правило, селективность серебра без добавок не превышает 45—50 %, в то же время она зависит в основном от наличия на поверхности электроотрицательных (хлор, сера, селен) и электроположительных (цезий, рубидий, калий) элементов. При использовании аминного метода приготовления серебряных катализаторов удалось добиться равномерного осаждения на поверхность пор носителя мелкодисперсных кристаллов серебра (0,8—1,5 тыс. А), содержащих промотирующие и структурообразующие добавки. Влияние такого рода добавок отражено на рис. 8.11—8.12. [c.326]

    Эта группа методов имеет сходство с методами, основанными на переведении определяемого элемента или вещества в осаждаемую форму. Разница состоит только в том, что в реакционной смеси отсутствует осадитель, в котором нет необходимости, так как вещество в результате фотохимической реакции выделяется в нерастворимом элементном состоянии. По-видимому, таким путем могут быть выделены из растворов немногие элементы. К ним следует отнести серебро, золото, медь, ртуть, мыщьяк, палладий, платину, селен, теллур. В основном для выделения вещества в элементном состоянии используют фотохимическое восстановление. Однако не исключена возможность использования фотохимического окисления (например, выделение иода фотохимическим окислением иодидов или серы фотохимическим окислением растворимых сульфидов). [c.120]

    Прямой плавке обычно (но не обязательно) предшествует окислительный обжиг при 700—800° для окисления остатков меди, свинца, селена и теллура. Обожженный шлам плавят с добавкой флюсов (кремнезема, соды и др.) при 1100—1200°, причем медь, свинец, мышьяк и сурьма шлакуются. Под шлаком находится слой матта, состоящего, главным образом, из селенистых и теллуристых соединений меди и серебра. Наконец, внизу скапливается сплав серебра и золота. После удаления шлака матт разлагают продувкой воздуха, причем селен и теллур окисляются, а серебро из матта переходит в металл. [c.451]

    Методы, основанные на титровании иода тиосульфатом. Иодид как слабый восстановитель реагирует с огромным числом самых разнообразных окислителей [1, 79 с высвобождением эквивалентного количества иода, который можно титровать тиосульфатом. Из таких окислителей можно назвать пероксиды, пероксидные соединения, пероксидисульфат, озон, железо(П1), хроматы, селен (в виде ЗеОз"), оксид серебра (II), триоксид ксенона, иодаты и бро-маты. Бромиды можно определять путем окисления их до свободного брома, который экстрагируют и анализируют иодометрически. Такие металлы, как барий, стронций и свинец, могут быть определены путем осаждения их в виде хроматов и последующего определения хроматов в осадке. Литий осаждается в виде комплексного перйодата после фильтрования и промывания осадка перйодат определяют иодометрически. Торий может быть отделен от редкоземельных элементов осаждением в виде иодата из растворов с относительно высокой концентрацией азотной кислоты. Образующийся иодат определяют иодометрическим методом. [c.400]

    Без контролирования потенциала в среде 0,1 н. серной кислоты осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий, палладий. С трудом выделяется марганец. Рутений, мышьяк и сурьма количественно не осаждаются. Остаются полностью в растворе алюминий, бор, бериллий, тантал, ниобий, вольфрам, редкоземельные элементы, титан, цирконий, уран, ванадий и плутоний. Некоторые элементы переходят при этом из высшей степени окисления в низшую, например титан (IV) восстанавливается до титана (III), уран (VI) до урана (III). [c.240]

    Никель встречается в природе в виде сульфидов, силикатов и арсенидов. Основными источниками получения металла служат сернистые и окисленные руды. Сульфидные руды никеля всегда содержат медь, железо, обычно кобальт, металлы платиновой группы, золото, серебро, селен, теллур. Обычно эти руды содержат до , редко 2—3 и больше % N1. Для более бедных руд может применяться флотационное обогащение. Месторождения руд располага- [c.227]

    Селен и теллур встречаются в таких редких минералах, как СпзЗе, РЬ5е, А 25е, Си2Те, РЬТе, А 2Те и Аи Те, а также в виде примесей в сульфидных рудах меди, железа, никеля и свинца. С промышленной точки зрения важными источниками добычи этих элементов являются медные руды. В процессе их обжига при выплавке металлической меди большая часть селена и теллура остается в меди. При электролитической очистке меди, описанной в разд. 19.6, такие примеси, как селен и теллур, наряду с драгоценными металлами золотом и серебром скапливаются в так называемом анодном иле. При обработке анодного ила концентрированной серной кислотой приблизительно при 400°С происходит окисление селена в диоксид селена, который сублимируется из реакционной смеси  [c.307]

    При электролитическом рафинировании свинца теллур и селен переходят в анодные шламы вместе с драгоценными металлами, сурьмой, висмутом и т. д. Обычно такие шламы перерабатывают пирометаллур-гическим путем. Например, на заводе Ла Оройя (Перу) в результате плавки шлама с другими отходами и последовательного окисления конвертированием получают теллурсодержащий серебряно-свинцовый сплав, который обрабатывают в жидком виде содой и селитрой. Богатый теллуром шлак выщелачивают горячей водой раствором обрабатывают обогащенные селеном пыли. После накопления 30 г/л Se и 60—80 г/л Те раствор нейтрализуют серной кислотой. Теллуристую кислоту отфильтровывают, а из раствора после подкисления соляной кислотой осаждают селен двуокисью серы. Теллуристую кислоту растворяют в щелочи и электролизом выделяют теллур [4]. [c.144]


    При введении донорных или акцепторных добавок в полупроводниковые окислительные катализаторы (СиО, VgOa) или металлические (серебро) изменяется не только их активность, но и селективность процессов. Например, сильное действие оказывает селен, введенный в зону реакции при окислении пропилена в акролеин на закисномедном катализаторе [1]. Изменение стехиометрического состава окисла металла также приводит к изменению каталитической активности. Саймард, Стегер и др. [79], а также Ройтер с сотрудниками [80] считают, что активный ванадиевый катализатор, применяемый для окисления нафталина, представляет динамическую систему из четырех- и пятивалентного ванадия. [c.199]

    Термическая стойкость и стойкость метилсиликоновых жидкостей к окислению изучалась очень подробно [135]. Установлено, что на воздухе до 175° заметных изменений не происходит при 200° начинается окисление, которое проявляется в изменении вязкости и выделении формальдегида и муравьиной кислоты. Повышение вязкости при окислении приписывается конденсации силоксановых молекул, от которых под действием кислорода отш епляются метильные радикалы. При температуре выше 200° стойкость к окислению у метилсиликоновых масел сильно уменьшается, что ограничивает их применение в окислительной а мосфере. Медь, свинец и селен ингибируют окисление при 200°, о чем можно судить по меньшему выделению образующихся при этом формальде-.гида и муравьиной кислоты мед1> и селен препятствуют также изменению вязкости. Теллур, наоборот, ускоряет при этих температурах окислительный процесс. Остальные исследованные металлы и сплавы (дюралюминий, кадмий, серебро, сталь, олово, цинк) заметно не влияют на стойкость к оккслению. Весовые потери в присутствии теллура, меди, свинца и селена при 225° очень высоки среди продуктов реакции были идентифицированы циклические молекулы Dg и D4. Эти металлы, по-видимому, катализируют термическую деполимеризацию высокие потери из-за испарения в присутствии свинца объясняют взаимодействием окиси свинца с силоксанами. При испытании термостойкости метилсиликоновых масел в инертной атмосфере установлено, что заметная температурная деполимеризация наступает уже при 250°. [c.332]

    Селеновая кислота была получена различными способами [6], но вс они являются трудоемкими и лишь нет многие дают концентрированную кислоту высокой чистоты. Описано [1—3, 5, 12, 13, 19] получение разбавленных растворов селеновой кислоты из растворов селенатов тяж пых металлов действием сероводорода. Селенаты металлов обычно получались из соответствующих селенитов окислением хлором. Другие исследователи [3, 4, 14, 16, 17] окисляли суспензию селенита серебра свободными галогенами галоидное серебро осаждалось, и полученный разбавленный раствор селеновой кислоты концентрировался упариванием. Описан также [4, 9, 10] электролиз растворов селенатов, при котором раствор освобождается от ионов металлов, по метод этот не может считаться удовлетворительным. При анодном окислении растворов селенистой кислоты происходит лишь неполное окисление и на катоде образуется элементарный селен [4, 8, 11]. Окислением двуокиси селена 30-процентным раствором перекиси водорода Мейеру и Гейдеру [11] не удалось получить концентрированную кислоту. Тем не менее окисление двуокиси селена 30-процентной перекисью водорода является удобным методом синтеза селеновой кислоты [7]. Единственно возможные примеси продукта окисления — вода и селенистая кислота, но селенистая кислота присутствует лишь в незначительных количествах, а вода легко удаляется упариванием при уменьшенном давлении. [c.130]

    ЮТСЯ кислородом и углекислотой воздуха, водой и другими агентами с образованием окисленных минералов малахита СиСОз Си(ОН)з куприта СидО, тенорита СиО, хризоколлы Си510з-21 20 и др. Пустая порода медных руд состоит из кварца 5102, карбонатов, силикатов, пирита РеЗз и других минералов. Примесями в медных рудах являются золото, серебро, цинк, свинец, никель, молибден, селен, теллур и др. Крупнейшие месторождения медных руд в СССР находятся в Центральном и Восточном Казахстане, на Урале, в Узбекистане и т. д. [c.191]

    Лучшим катализатором окисления этилена в окись этилена является металлическое серебро, но поиски новых более эффективных катализаторов и носителей для них не прекращаются. Так, предложен серебряный катализатор на карбиде кремния, серебряный катализатор, промотированный селеном, серебряный катализатор на окиси алюминия, серебряный катализатор на окиси бериллия, весьма устойчивый к действию высоких температур, серебряный катализатор на окиси алюминия в виде непористых шариков с неоднородной поверхностью, серебряный катализатор с добавками щелочных и щелочноземельных металлов, а также промотированный хлоридом алюминия (0,01—0,5 г-атом хлора на 100 г-атом серебра) , порошковый серебряный катализатор. Катализатор, отличающийся высокой активностью, селективностью и хорошими механическими свойствалш, позволяющими применять большие скорости газов, разработан в ЧССР ". Используется серебряный катализатор на носителе а-оки-си алюминия пористостью 40—50%, который приготовляют в виде таблеток. Таблетки диаметром 450—550 мк илшют поры величиной 100—150 мк, по которым газ свободно проходит сквозь зерна катализатора, обеспечивая хороший теплоотвод. Съем окиси этилена с 1 л такого катализатора достигает 300 [c.157]

    В другой работе указывается, что из большого числа исследованных металлов (сурьма, медь, дюралюминий, свинец, никель, селен, серебро, сталь, теллур, олово, цинк) только свинец, селен и теллур ускоряли окисление полиметилфенилсилоксана [105]. [c.37]

    Смесь 10—20 мл воды и 5—10 мл азотной кислоты (пл. 1,4 г/см ), содержащей 5 % серной кислоты, добавляют к 5 г образца, осторожно выпаривают досуха, затем нагревают до 310—350 °С на горячей плитке. Остаток охлаждают, добавляют еще азотной кислоты (пл. 1,4 г/см ) и повторно нагревают. Операцию повторяют несколько раз до полного разрушения органических веществ. Метод использован для разложения биологических материалов, однако он очень трудоемок. Горшух обнаружил, что кадмий, легко теряемый в виде летучих соединений при сухом озолении проб, после добавления к пробе азотной кислоты (или нитрата магния), не теряется, вероятно, благодаря тому, что температура окисления не превышает 350 С [5.1178]. Галогены, селен, а также частично мышьяк и серебро теряются при окислении этим методом. [c.215]

    Сырьем для производства меди являются медные руды. Медь встречается в природе в виде сульфидных, окисленных, смешанных и самородных руд. Наибольшее значение имеют сульфидные руды (около 80% от общего количества руд). Содержание меди в рудах обычно колеблется от 1 до 5% руды, содержащие меньше 0,5% меди, при современном уровне техники нерентабельны для переработки. В медных рудах часто кроме меди (1—6%) содержатся другие металлы цинк, свинец, никель, молибден, а также селен, мышьяк, теллур, таллий, золото и серебро. Бедные сульфидные медные руды и полиметаллические, как правило, подвергаются обогащению методом флотации, при этом получают медные концентраты, содержащие 10—30% меди. Из полиметаллических руд методом селективной флотации, кроме того, получают свинцовые, цинковые, никелевые и другие концентраты, служащие сырьем для производства соответствующих металлов. Богатые месторождения медных. руд находятся на Урале, в Казахстане и в других районах F . Кроме медных руд в качестве сырья для производства меди применяют промышленные и бытовые отходы меди. Из [c.123]

    И ЭТО заключение действительно подтверждается разительным образом ВО всей совокупности свойств элементов, принадлежащих к четным и нечетным строкам или рядам. Элементы четных рядов образуют наиболее энергические основания, и притом основная способность для них возрастает в данной группе по мере увеличения атомного веса. Известно, что цезий более электроположителен и образует основание более энергическое, чем рубидий и калий, как показал это Бунзен в своих исследованиях этого металла относительно бария, стронция и кальция это известно каждому по давнему знакомству с соединениями этих элементов. То же повторяется и в такой же мере при переходе в четвертой группе от иттрия к церию, цирконию и титану, как видно на таблице, а также при переходе от урана к вольфраму, молибдену и хрому. Эти металлы четных рядов характеризуются еще и тем, что для них неизвестно ни одного металлоорганического соединения, а также ни одного водородистого соединения, тогда как металлоорганические соединения известны почти для всех элементов, расположенных в нечетных рядах. Такое различие элементов четных и нечетных рядов основывается на следующем соображении элементы нечетных рядов, относительно ближайших элементов той же группы, но принадлежащих к четным рядам, оказываются более кислотными, если можно так [246] выразиться, а именно, натрий и магпий образуют основания менее энергические, чем калий и кальций серебро и кадмий дают основания еще менее энергические, чем цезий и барий. В элементах нечетных рядов основные способности различаются гораздо менее при возрастании атомного веса, чем в элементах четных рядов. Окись ртути, правда, вытесняет окись магния из растворов, окись талия, конечно, образует основание более энергичное, чем окись индия и алюминия, но все же это различие в основных свойствах не столь резко, как между барием и кальцием, цезием и калием. Это особенно справедливо для элементов последних групп из нечетных рядов. Кислоты, образованные фосфором, мышьяком и сурьмою, а также серою, селеном и теллуром, весьма сходны между собою при одинаковости состава только прочность высших степеней окисления с возрастанием атомного веса здесь, как и во всех других рядах, уменьшается, а кислотный характер изменяется весьма мало. [c.757]

    Известно, что активность многих катализаторов можно повысить внедрением небольших количеств веществ, которые сами пс себе для данного катализатора — яды. Типичными каталитическими ядами для серебряных контактов, кроме упоминавшегося выше пентакарбонила железа, являются соединения серы, фосфора, мышьяка, галогенов, селена, теллура и др. Некоторые из этих веществ — эффективнейшие модификаторы. Так, в работе [130] модифицирование серебряного контакта проводилось добавками селена и теллура (0,1% к массе серебра). При таком содержании эти добавки подавляют реакцию полного окисления метанола до диоксида углерода, что позволяет повысить мольное отношение Ог СНзОН до 0,41—0,45. При этом, по данным авторов, конверсия метанола возрастает до 95—100 /о, а селективность процесса до 93—95%. Имеются предложения использовать также сплавы серебра с селеном или сурьмой с содержанием последних 0,5— 12,0%. Однако при длительной работе показатели процесса ухудшаются из-за уноса модификаторов с поверхности катализатора. В связи с этим многими авторами рекомендуется способ непрерывной подачи микродобавок в газовую смесь, поступающую на контактирование. Так, введение серы (от 5 до 100 ч. на 1 млн. ч. спирта) приводит к значительному подавлению побочных реакций [131]. Некоторые исследователи предлагают вводить гало-генпроизводные как в виде бромо- и хлороводорода [132], так и в виде других соединений хлорида фосфора (III), иодида аммония и т. д. [133]. Среди галогеноводородов более сильным модифицирующим воздействием обладает бромоводород, меньшим хлороводород, а иодоводород вызывает усиленный распад формальдегида до оксида углерода и водорода. Из других галоген-производных рекомендуют применять именно соединения иода (Р1з, СНз1 и др.). Рекомендуемое содержание галогенпроизводных в газовой смеси — 10 —10 моль на 1 моль метанола. Недостаток этого способа — загрязнение формалина модификаторами, [c.54]


Смотреть страницы где упоминается термин Серебро селенит, окисление III: [c.157]    [c.120]    [c.80]    [c.247]    [c.356]    [c.205]   
Неоргонические синтезы Сборник 3 (1952) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление серебром

Серебро селениты



© 2025 chem21.info Реклама на сайте