Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торий отделение от урана

    В литературе описаны многие анионообменные отделения актинидов от других элементов в солянокислой среде. Торий и уран можно отделить от ряда элементов, прочно удерживаемых анионитами [висмут (III), кадмий (II), олово (II), ртуть (II)]. [c.337]

    Нитраты. За последние годы развитию исследований по экстракции нитратов металлов органическими растворителями способствовало главным образом то важное значение, которое имеет этот метод для отделения уранил-нитрата. Ряд трех- и четырехвалентных нитратов металлов экстрагируется из азотнокислых растворов такими кислородсодержащими растворителям-и, как простые и сложные эфиры, кетоны, спирты. При комнатной температуре в том случае, когда исходные объемы фаз одинаковы, из 8 М азотной кислоты этиловым эфиром экстрагируются следующие количества металлов (в процентах) Сг (VI) > 15 (разложение) Zr 8 Au (III) 97 Hg (II) 4,7 Tl (III) 7,7 Bi 6,8 As (V) 14,4 e (IV) 96,8 Th 34,6 U (VI) 65 Некоторые другие элементы экстрагируются в меньшей степени. Такие высаливающие реагенты, как нитрат аммония, лития, железа (III), алюминия, увеличивают экстрагируемость урана и позволяют осуществлять экстракцию при более низких концентрациях азотной кислоты (см. подробности на стр. 811). Нитрат лития (но не нитрат аммония) способствует экстракции тория. Скандий экстрагируют из сильно концентрированных растворов нитрата лития. Для нитрата тория диэтилкетон и другие кетоны как экстрагенты более эффективны, чем эфиры. Три-н-бутилфосфат — хороший растворитель для нитратов церия, тория и уранилнитрата [c.52]


    Торий, уран и плутоний находят значительное применение в виде ядерного топлива в ядерных реакторах. Плутоний получается в результате ядерных превращений урана. Выделение плутония из реактора, отделение его от урана и других образующихся в реакторе элементов представляет собой сложную совокупность химических реакций, блестяще разработанную трудами многих химиков и радиохимиков. [c.289]

    Фенолформальдегидные поликомплексоны применимы для отделения лантаноидов от железа (поликомплексон 2 4 3), извлечения ионов уранила в присутствии тория (поликомплексон 2 4 1) Поликомплексоны 244 и 24 5 являются перспективными коллекторами при извлечении катионов тяжелых металлов из растворов, содержащих лиганды — аммиак, ацетат-, лактат-, хлорид-ионы Конкуренция поликомплексона и мономерного лиганда в растворе при взаимодействии с катионами создает дополнительные возможности варьирования условий избирательной сорбции катионов Возможно разделение органических лигандов с помощью ионита 2 4 4, содержащего комплексно связанные катионы Си2+, N1 +, Ад+, способные координационно удерживать и селективно обменивать амины и другие лиганды [545] [c.300]

    Согласно имеющимся в литературе указаниям, тиосульфат натрия осаждает гидроокись тория из нейтральных или слабокислых растворов. Обычно методика заключается в медленном добавлении раствора тиосульфата натрия к кипящему исследуемому раствору с последующим растворением осажденной гидроокиси тория в соляной кислоте для отделения ее от серы. Окончательно торий осаждают в виде оксалата. После первого осаждения осадок частично загрязнен р. з. э., особенно если отношение их к торию велико [692, 693. В таких случаях необходимо производить три или даже четыре переосаждения [355, 1461]. Определению тория тиосульфатом натрия мешают А1, S , Ti и Zr [1468], частично — уран [838, 1700]. [c.29]

    Для концентрирования следов тория, а также отделения больших его количеств от малых количеств р. з. э, чрезвычайно эффективна экстракция тория окисью мезитила, которую можно применять в присутствии фосфатов и арсенатов. Значительный интерес, с точки зрения возможности анализа сложных минералов с невысоким содержанием тория, а также определения урана и тория из одной навески, представляет метод распределительной хроматографии на целлюлозе, основанный на различной растворимости нитратов уранила и тория в эфире в зависимости от кислотности последнего. [c.158]


    В третьей колонке реэкстрагируют уран разбавленной НЫОз, после чего раствор пропускают через колонку с силикагелем для отделения следов ЫЬ, 2г и Ра , затем — через ионообменную смолу для удаления следов тория и продуктов коррозии наконец, уран сорбируют на большой колонке с ионообменником и подвергают дальнейшей очистке. [c.233]

    Для повышения избирательности осаждения урана (VI) рекомендуется применение комплексона III [898, 900]. Добавление комплексона III в анализируемый раствор перед осаждением позволяет определять уран (VI) в присутствии тория и редкоземельных элементов, а также ванадия. Подробное описание соответствующих методик приводится в разделе Методы отделения . [c.69]

    Кроме отделения от тория, циркония и редкоземельных элементов осаждение урана (VI) при помощи 8-оксихинолина из уксуснокислых растворов (pH--5,3) в присутствии комплексона III позволяет количественно отделять уран также и от Fe (III), Al, Си, Со, Ni, Zn, d, Pb, Bi, Мп и ряда других элементов. При проведении осаждения в аммиачно-щелочной среде (рН 8,4) уран (VI) может быть количественно отделен от молибдена, вольфрама и ванадия [898]. [c.276]

    Из предварительно восстановленных растворов уран (IV) количественно может быть отделен от умеренных количеств других элементов осаждением щавелевой кислотой. Исключением являются только торий и редкоземельные элементы. Ниобий в зависимости от его содержания также может частично осаждаться вместе с ураном (IV). Полноте осаждения урана (IV) мешают сульфаты, фосфаты, фториды и некоторые органические комплексообразующие вещества (молочная кислота и т. п.). После отделения осадка содержание урана в нем определяют весовым или другим удобным методом. Методика осаждения подробно описана в разделе Весовые методы определения . [c.277]

    Экстракционное отделение урана в виде хлорида уранила [802] обладает меньшей избирательностью, чем экстракция нитрата уранила. Однако оно пригодно для некоторых разделений, в том числе для отделения урана от тория и особенно от протактиния [802]. [c.298]

    Е. С. Пржевальский, Е. Р. Николаева и Н. С. Климова [193] предложили следующий метод экстракционного отделения урана от 100-кратных количеств тория и алюминия 5 мл анализируемого раствора, содержащего 0,05—0,5 мл урана, нейтрализуют аммиаком, не содержащим карбоната. Для подавления гидролиза ряда ионов добавляют 1,2 г винной кислоты, далее 5 мл 25%-ного раствора ацетата аммония, 10 мл этилацетата и 5 мл свежеприготовленного раствора диэтилдитиокарбамата натрия. После встряхивания в течение 1 мин. отделяют водный слой и повторяют экстракцию еще 3 раза. Из объединенных экстрактов уран реэкстрагируют последовательно двумя порциями по 10 мл азотной кислоты (1 20). [c.308]

    Уран и торий маскируют фторидом, а ниобий — перекисью водорода. Определению мешают только золото(1П), цианид- и тиосульфат-ионы. Этим методом определяют серебро в черновой меди [293] после отделения серебра от основы тетрафенилборатом. Тройной комплекс можно экстрагировать нитробензолом и измерять оптическую плотность экстракта [767]. [c.103]

    Эта операция оказалась эффективной и для отделения лантанидов. Торий и уран осаждаются в этих условиях вместе с плутонием. В работе Хилла и Хернимана [443] имеется указание о возможности иопользования пероксидного осаждения плутония из кислых сред для отделения от америция. [c.291]

    Торий широко распространен в природе, так как имеются богатые залежи его основного минерала — монацита, представляющего собой сложный фосфат, содержащий уран, церий и другие лантаниды. Извлечение тория из монацита очень сложная процедура основные трудности связаны с разрушением прочного люнацитового песка и отделением тория от церия и фосфата. Один из методов заключается в кипячении песка с едким натром нерастворимые гидроокиси затем отделяют и растворяют в соляной кислоте. Если pH раствора довести до 5,8, то весь торий и уран вместе с 3% лантанидов осаждаются в виде гидроокисей. Торий экстрагируют трибутилфосфатом из >6 Л раствора соляной кислоты или экстрагируют метилизобутилкетоном или другим кетоном из растворов азотной кислоты в присутствии избытка солей типа нитрата алюминия в качестве высаливающего агента. [c.540]

    В предложенном варианте рекомендуется разлагать в две стадии в обогреваемой шаровой мельнице при 130° С. Процессы измельчения и разложения совмещаются, и тонкое измельчение концентрата становится излишним. На первой стадии разложения расходуется 75% NaOH по отношению к массе концентрата. Гидроокиси, образующиеся в процессе разложения монацита, обрабатываются соляной кислотой. Неразложившиеся после кислотной обработки остатки от 10 партий вторично обрабатываются щелочью [38]. Для более быстрого отделения тория и урана рекомендуется вместо солянокислого выщелачивания обрабатывать гидроокиси растворами карбоната и бикарбоната аммония в автоклавах [39]. Торий и уран, образующие растворимые комплексы состава (НН4)2[ТЬ(СОз)д]-бНгО и ЫН4)4[и02(С0з)д], переходят в раствор. [c.291]


    Синтезирован новый экстрагент — 8-оксихинальдоксим, позволяющий избирательно экстрагировать торий и уран (VI), а в определенных условиях — цирконий (с отделением от гафния). [c.39]

    Таким образом, в настоящей методике отделение тория и урана от мешающих их открытию ионов производится путем обработки испытуелшго раствора избытком карбоната натрия и суспензией сульфида кадмия. В фильтрате вместе с торием и ураном остаются только щелочные металлы, элементы иттрие-вой группы редкоземельных элементов, ванадий-5 и частично алюминий. Ни один из них не мешает открытию тория реакцией с тороном и урана- с ферроцианидом калия. [c.73]

    Танпип.под названием настойка чернильных орешков применявшийся более ста лет тому назад как реактив для качественною анализа, постепенно вышел из употребления и в начале XX века применялся в металлургическом анализе только в качестве индикатора в молибдат-ном методе определения свинца, по Александеру. Предложенный нами метод отделения тантала от ниобия, опубликованный в 1925 г. [7], положил начало серии исследований, которые показали, что таннин является важнейшим реагентом для количествслного разделения и определения ряда редких и обычных элементов, в особенности элементов группы аммиака, не осаждающихся аммиаком и сернистым аммонием из вич-но кислого раствора. Водный раствор таннина, будучи коллоидальной суспензией отрицательно заряженных частиц, осаждает положительно заряженные частицы гидроокисей металлов полученные адсорбционные комплексы очень хорошо коагулируют и совершенно нерастворимы. Несмотря на большой объем, они легко фильтруются и промываются (особенно при смешивании с бумажной массой) при прокаливании переходят в окислы, удобные для взвешивания. Танниновые комплексы некоторых элементов бесцветны, другие имеют яркие и характерные окраски, что является фактором огромного значения для качественного и количественного анализов. Самым замечательным свойством этих реакций является то, что осаждению не препятствует присутствие органических гидроксикислот винной, лимонной и т, д. В то время как теория взаимодействия таннина с растворами тартратных (и других) комплексов металлов до сих пор неясна, его практическое применение имеет большую ценность в аналитической химии таких редких элементов, как германий, тантал, ниобий, титан, цирконий, торий, ванадий, уран и др. [c.13]

    Наиболее удовлетворительное отделение циркония от титана, ниобия и тантала дo тигaeт я сплавлением смеси окислов этих металлов с пнросульфатом калия, растворением плава в насыщенном растворе оксалата аммония и осаждением таннином из слабокислого кипящего раствора, полунасыщенного хлоридом аммония. Полученный осадок промывают раствором, содержащим 5% хлорида аммония и 1% оксалата аммония, высушивают и прокаливают в кварцевом тигле. В этих условиях тантал, ниобий и титан осаждаются, тогда как бериллий, алюминий, железо, торий и уран остаются в фильтрате совместно с цирконием. Если присутствуют лишь небольшие количества циркония, целесообразно предварительно отделить большую часть ниобия и тантала, для чего смесь окислов сплавляют с карбонатом калия, плав выщелачивают водой, содержащей небольшое количество едкого кали, нерастворимый остаток отфильтровывают и промывают 2%-ным раствором карбоната калия. Остаток вместе с фильтром обрабатывают затем при нагревании разбавленной соляной кислотой, осаждают аммиаком и фильтруют. Успешность разделения зависит от тщательности выполнения всех указаний. Протактиний, если он присутствует один, не переходит в водный раствор после сплавления с карбонатом калия . Его поведение в присутствии других элементов неизвестно. [c.584]

    Так например, отделение урана от тория достигается многократным перемешиванием водного и эфирного слобв, содержащих нитраты тория и уранила. При этом уранилни-трат переходит в эфирный слой значительно сильнее, чем нитрат тория, и после многократного повторения разделения водного и эфирного слоев удаётся добиться практически полного разделения названных элементов. [c.71]

    Можно отделить скандий от Y, РЗЭ, Th, U и на анионитах [34]. Скандий хорошо сорбируется анионитами из растворов, содержащих 1 моль/л HF и переменное количество НС1, что дает возможность использовать фторидные растворы для отделения скандия от Th, Al и РЗЭ. При десорбции 4—8 М растворами НС1 дополнительно удается отделить скандий от Fe +, Sn, Nb, Та, U [34]. Для отделения от V, As, Ti проводят адсорбцию на анионитах из 0,5—2,5 М растворов noHF. Десорбируют скандий 15-молярной плавиковой кислотой выход 90— 100%. Для очистки от Си +, Со +, Zn " " и d + рекомендуется адсорбировать скандий на анионитах из сильнокислой среды [35]. От тория и урана можно отделить скандий на анионитах в связи с тем, что коэффициент распределения его меньше, чем у них. Адсорбируют из 2—3 М раствора нитрата магния на сильноосновном анионите. Десорбируют скандий раствором нитрата магния, а урана и тория — 2,4 М соляной кислотой. Уран и железо отделяются от скандия также и при адсорбции из солянокислых растворов на сильноосновном анионите, обработанном предварительно 7 М НС1 [2, стр. 109]. [c.27]

    Описанный метод применяют для определения марганца в сталях, чугунах, рудах [22, 39, 50, 186, 407, 408, 633, 669, 1018, 1085, 1101, 1179, 1506], в горных породах [754], различных сплавах [137, 1057, 1487], мартеновских шлаках [136, 207, 686, 1101], соединениях тория [245], никеле [145, 364], алюлшнии [614], биологических материалах [ИЗО], воде [542, 1018], почвах [1204] и др. При определении марганца в едких щелочах предварительно экстрагируют диэтилдитиокарбаминатный комплекс Мп(П), а затем разрушают его и окисляют Мп(П) до Mn(VII) персульфатом аммония. Чувствительность метода 1-10 % [379]. Простой метод определения марганца в серебре высокой чистоты состоит в осаждении серебра в виде Ag l и определении Мп в фильтрате с чувствительностью 10 —10 % и относительной ошибкой 2—7% [1079]. Определение марганца в уране основано на отделении последнего экстракцией смесью ТБФ и G I4 и измерении оптической плотности водного раствора при Ъ2Ъ нм после окисления Мп(П)до Mn(VII). Метод позволяет определять до 2 мкг Мп/з при навеске урана 2 г [1077]. Определение больших количеств марганца производят дифференциальным фотометрическим методом [50]. [c.55]

    Осаждение Ри(1У) в виде иодата применяется для отделения от многих элементов, чо главным образом от редкоземельных элементов и и (VI) [368]. Этот метод широко попользуется в аналитической практике благодаря быстроте фильтрования осадка и легкости растворения его. При значительных (> 50 мг) количествах плутония для более полного отделения от примесей осаждение лучше вести из бМ HNOз, при меньших содержаниях плутония для количественного выделения кислотность лучше понижать до 0,5— М HNOз. Отделение от тория, циркония и титана не достигается. Четырехвалентные церий и уран также осаждаются иодатом, но если раствор предварительно обработать перекисью водорода, то оба эти элемента остаются в растворе, поскольку первый из них восстанавливается, а второй ркиоляется. Обработка перекисью также благоприятна и для плутония, так как переводит его в четырехвалентное состояние. Трехвалентные редкоземельные элементы вообще легко отделяются при иодатном осаждении, но если они присутствуют в значительных количествах, требуется повторное осаждение. [c.292]

    Оксалатное осаждение ь кислом растворе позволяет отделить торий от Са, Sr, Ва, Mg, Со, Ni. Си, Zn, Ag, d. Sn, Pb и Bi, однако, если они присутствуют в больших количествах, то загрязняют оксалат тория, и тогда требуется либо предварительное отделение их каким-либо другим методом, либо переосаждение [1366]. У циркония имеется тенденция сооса-ждаться с торием, однако он может быть удержан в растворе избытком щавелевой кислоты. Б присутствии ионов уранила или железа в растворе должен быть избыток щавелевой киС лоты, так как значительное ее количество расходуется на комплексообразование с указанными ионами. Четырехвалентный уран осаждается вместе с торием. Оксалатным осаждением может быть достигнуто отделение от галлия [489.  [c.34]

    Дальнейшее восстановление иодата до иода происходит медленно при концентрации HNO3 ниже 4,5jV. Это обстоятельство позволяет осуществлять осаждение тория в сравнительно сильно азотнокислой среде, в которой иодаты трехвалентных р.з.э. растворимы. Однако указывают [1834], что при этом лантан соосаждается на 0,49, а иттрий — на 0,075%. При использовании двухкратного осаждения метод обеспечивает количественное отделение тория от больших количеств р.з.э. и фосфатов. Мешают Zr, Ti, и Fe . Уран, по-видимому, не мешает. Метод чрезвычайно эффективен для определения тория в монацитовом песке. [c.38]

    Метод чрезврлчайно чувствителен, однако реакция с нафтазарином не избирательна для тория. Ионы р. з. з., как и цирконил-, титанил- и уранил-ионы, дают окрашенные системы с аналогичными абсорбционными характеристиками. Поэтом) определение тория в образцах, содержащих указанные ионы, возможно лишь после его предварительного отделения. Тем не менее, простота отделения тория от р. з. э. экстракцией окисью мезитила дает возможность использовать метод для определения тория в монаците, а также и в других объектах, в которых торий находится вместе с р. з. э. [c.78]

    Осаждение тория 2,4-Д при pH 2,6—3,4 приводит к количественному отделению его от урана, если их соотношение не превышает 1 1 [635], в противном случае необходимо переосаждение. Метод пригоден для соотношения ТЬ и<1 26. Уран выделяют из фильтрата натриевой солью 2,4-Д при pH 5—5,5 в присутствии МН4С1, улучшающего коагуляцию осадка. Присутствие в растворе других электрол тов — ХН43СХ и СНзСООН — мешает полному осаждению урана реагенто.м. [c.134]

    Для отделения урана от больших количеств тория Марков [175] применил крупнопористый силикагель, который сначала помещают в исследуемый азотнокислый раствор, насыщенный нитратом аммония, а затем переносят в колонку силикагеля, содержащего насыщенный раствор NH4NO3 в 0,5 М HNO3. Уран вымывают диэтиловым эфиром, приведенным в равновесие с указанным раствором. [c.139]

    При осаждении гидроокиси тория носителями служат гидроокиси лантана, циркония или железа. Сообщают [945] об отделении UXi(Th" ) от урана выщелачиванием последнего карбонатом аммония из осадка, полученного при совместном осаждении гидроокиси железа и уранага аммония. Для выделения малых количеств тория из сильнокислых растворов, содержащих уран, а также для отделения от циркония , который используют в качестве носителя в концентрации 0,1 —1,0 мг/мА при осаждении иодата тория, рекомендуют осаждать фторид тория на фториде лантана. При выделении иодата тория из сильнокислых сред и промывании его раствором, содержащим иодат, достигается отделение от урана. р. 3. э. (Се предварительно восстанавливают до Се перекисью водорода) и актиния [5]. Иодат циркония растворяют в HNO3 в присутствии сернистого ангидрида и переосаждают затем в виде гидроокиси после удаления иода кипячением раствора. [c.228]

    Шезн и Реньо [209] вместо 8 N НС1 используют 0,1 М раС твор (NH4)2SiFe в 8 H I, что обеспечивает селективную десорбцию Ра. Уран вымывают восьмикратным по отношению к объему смолы объемом 0,5 А/ H I. После такой обработки содержание протактиния в и тории составляет примерно 2- 10 . Дополнительная очистка осуществляющаяся про пусканием урановой фракции, 0,1 А/ по H I и 0,01—0,2 М по F , через катионит Пермутит-С 50 в водородной форме с последующим промыванием колонки 0,01 М раствором NaOH в 0,1 НС1, позволяет снизить содержание Ра в до 2-10- . После отделения протактиния уран десорбируют  [c.229]

    Основное значение соосаждения—выделение невесомых количеств веш.ества. Однако соосаждение получило значительное применение также и для улучшения полноты выделения осаждаемого элемента. При отделении урана от других элементов соосаждение применяется довольно часто. Так, например, в первой половине этого раздела изложен трилонофосфатный метод отделения урана, в котором для полноты осаждения урана вводится в раствор сернокислый титан, с фосфатом которого очень полно соосаждается фосфат уранила [157]. Л. С. Василевская и Т. В. Дейкина [157] при выделении урана из пород, содержаш.их значительные количества фосфата кальция, рекомендуют осаждать уран при помош,и фосфатов совместно с алюминием и железом. П. А. Волков [184] для обеспечения большей полноты выделения урана (IV) в виде фосфата осаждает его совместно с фосфатом тория или циркония. Ю. А. Чернихов и [c.284]

    Дирссен [480] показал, что внутрикомплексная соль урана (IV) с -фенилгидроксамовой кислотой экстрагируется хлороформом. В этом случае уран (IV) может быть отделен от лантана. Торий, а также, по-видимому, другие четырехвалентные элементы, в том числе цирконий, гафний и плутоний, экстрагируются вместе с ураном (IV). [c.311]

    Мур [757] предложил экстрагировать уран (VI) ксилольным раствором три-(изооктил)-амина из водных растворов, 7 по соляной кислоте. Образующийся в этих условиях хлоридный комплекс, представляющий собой кислоту, извлекается в органическую фазу в виде соли с три-(изооктил)-амином. Реэкстракцию проводят равным объемом 0,1 N соляной кислоты. Метод оказался пригодным для отделения урана (VI) от тория и продуктов деления. Все элементы, образующие экстрагирующиеся хлоридные комплексы, в том числе Ре, Оа, А1, 1п, Т1 и 5Ь, экстрагируются вместе с ураном. [c.312]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]

    Для разделения элементов четвертой группы представляют интерес растворы, содержащие аскорбиновую кислоту. В отсутствие пероксида водорода аскорбатные комплексы титана сорбируются на анионообменниках. В разбавленных растворах аскорбиновой кислоты в присутствии HjOj титан не сорбируется [28, 29]. Цирконий также образует комплексы с аскорбиновой кислотой, пригодные для его отделения. Из растворов, содержащих аскорбиновую кислоту (pH 4 — 4,5), торий сорбируется сильноосновными анионообменниками. Вместе с торием на ионообменнике удерживаются уран, титан, цирконий, ванадий, вольфрам и молибден, в то время как другие элементы не сорбируются на нем. [c.230]


Смотреть страницы где упоминается термин Торий отделение от урана: [c.639]    [c.315]    [c.341]    [c.490]    [c.717]    [c.188]    [c.270]    [c.188]   
Химико-технические методы исследования (0) -- [ c.477 ]




ПОИСК





Смотрите так же термины и статьи:

Хроматографическое отделение изотопа тория (UXj) от урана



© 2025 chem21.info Реклама на сайте