Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

парафина, S и Na при низких температурах

    Применяется примерно в тех же случаях, что и парафины. Низкая температура плавления и низкая летучесть (примерно 1 мм рт. ст. при 210°). Представляет интерес 0 качестве эталонной жидкости, так как может быть получена в весьма чистом виде. Максимальная температура примерно 140° [c.300]

    Благодаря использованию высокоактивных катализаторов без железа, работавших пр,и более низких температурах, исследователям удалось провести синтез при атмосферном давлении и направить его так, чтобы продуктами реакции являлись почти исключительно углеводороды, кипящие главным образом в интервале выкипания бензина и среднего масла (керосина), вместе с небольшим количеством высококипящих парафинов и почти без кислородных соединений. [c.74]


    Хлористый метилен (т. кип. при 760 мм рт. ст. 39,8°) является превосходным растворителем для жиров, масел и смол. Он может применяться также для депарафинизации смазочных масел, например совместно с бутиловым спиртом, так как при низких температурах плохо растворяет твердый парафин, но полностью растворяет масло. Совместно с бензолом он особенно пригоден для экстрагирования жиров и масел из семян, лецитина из соевых бо бов и масла какао из бобов какао. Хлористый метилен с успехом применяется также в лакокрасочной промышленности и малярной технике. [c.209]

    Парафиновые (алкановые) углеводороды, входящие в состав топлив, имеют хорошую химическую стабильность при хранении, низкие температуры плавления и кипения, наибольшую весовую теплоту сгорания и наименьшую плотность. Объемная теплота сгорания в связи с этим у парафинов меньше, чем у других групп углеводородов.  [c.11]

    Для получения из парафинистых нефтей масел с низкой температурой застывания после очистки масло подвергают депарафинизации — удалению из него высокоплавких парафиновых углеводородов. Масло растворяют в лигроине, жидком пропане или в каком-либо другом низкозамерзающем растворителе. Раствор охлаждают до температуры минус 25—40° С (в зависимости от требуемой температуры застывания масла) и подают на высокооборотные центрифуги, где застывшие углеводороды под действием центробежных сил отделяются от масла. Смесь твердых парафинов с некоторым количеством жидкого масла и примесей, называемую петролатумом, используют для получения твердого белого парафина и церезина. [c.139]

    В результате жидкость при дендритной кристаллизации содержащегося в ней парафина будет терять подвижность, т. е. застывать, только при повышенной концентрации образовавшейся в ней твердой фазы, что будет наступать при более низкой температуре, чем это было бы при свободной монокристаллической форме процесса кристаллизации. Следовательно, присутствие в растворах парафина таких поверхностно-активных веществ будет вызывать снижение (депрессию) температуры застывания. Поэтому такие поверхностно-активные вещества получили наименование депрессаторов температуры застывания или просто депрессаторов. [c.72]

    Хорошо поддаются депарафинизации этим методом дистилляты дизельных топлив. Вследствие низкой вязкости этих продуктов и крупной кристаллической структуры содержащегося в них парафина их можно перерабатывать при значительно более низких температурах, чем парафиновые дистилляты. Нами была показана возможность высокоэффективной депарафинизации дизельных топлив фильтрпрессованием, а также вакуумной фильтрацией без растворителей при температурах до —15° и —25° с получением депарафинированных продуктов с такими же температурами застывания и с одновременным выделением концентрата (гача) легкоплавкого парафина. [c.95]


    Для разжижения смеси гача с комками парафина было предложено [42—44] добавлять к охлаждаемому гачу теплую воду. Введенная вода, эмульгируя оттек, увеличивает относительный объем жидкости в смеси и разжижает ее, что дает возможность охлаждать смесь до более низких температур и увеличивать выход концентрата парафина за один проход. Такой способ частичного обезмасливания гача при эмульгировании его водой был назван процессом эмульсионного обезмасливания и применялся на некоторых зарубежных заводах в полупромышленном масштабе. [c.229]

    Скорость крекинга сильно зависит от температуры. С понижением температуры глубина разложения углеводородов уменьшается. Без катализаторов углеводороды практически не расщепляются при температурах ниже 360°, в присутствии же катализаторов они крекируются и при более низких температурах. Например, по данным А. Ф. Добрянского и Г. Я. Воробьевой твердый парафин в присутствии природной глины гумбрина крекируется при 300° с образованием легких жидких продуктов и газа. [c.15]

    Метод (ГОСТ 11851—66) основан на малой растворимости парафина при низких температурах в определенной группе органических растворителей. [c.192]

    В последнее время получили товарное значение легкоплавкие парафины с очень низкой температурой плавления. Они имеют следующие физические свойства. [c.40]

    Известно, что товарные парафины из большинства нефтей состоят главным образом из нормальных парафиновых углеводородов, содержащих от 22 до 30 атомов углерода и соответственно очень мало отличающихся по физическим и химическим свойствам. При таком составе очищенного парафина и температуре плавления от 48,9 до 60° очень вероятно присутствие изомеров с разветвленными цепями, обладающими настолько низкой температурой плавления, что они могут кристаллизоваться вместе с сырым мягким парафином и в значительной степени удаляться при выпотевании. На это указывают результаты обширного исследования узких фракций парафина, полученных перегонкой при давлении 1 мм рт. ст. из нефти месторождения Мид-Континент [8]. Как можно было ожидать. [c.42]

    Денарафинизация смазочных масел осуществляется в настоящее время большей частью при помощи растворителей [151- Принцип этого метода заключается в том, что фракция смазочного масла растворяется в подходящем растворителе и из этого раствора посредством охлаждения выкристаллизовываются парафины, которые отделяются. После фильтрации раствор освобождается от растворителя, последний возвращается в процесс. Остаток перерабатывается на смазочные масла. Оставшийся на фильтре осадок — парафин — подвергается дальнейшей очистке, заключающейся в обезмасли-вании парафина при помощи растворителей. В большинстве случаев вспомогательный растворитель, применяемый при депарафинизации, является смесью метилэтилкетопа и технического бензола. Применяется такн е смесь ацетон-бензол. Превосходным растворителем для денарафинизации является жидкий пропан, применение которого позволяет решить одновременно две задачи [16]. С одной стороны, он служит растворителем, а с другой вследствие низкой температуры кипения является охлаждающим агентом. Так как при этом имеет место внутреннее охлаждение кристаллизующейся массы, то потери тепла за счет теплопередачи полностью отсутствуют. Содержащее парафин смазочное масло и пропан совместно нагреваются под давлением до температуры, необходимой для полного растворения масла в пропане. Для нагревания берут 1—3 объема жидкого пропана на 1 объем масла. Затем вследствие испарения пропана смесь постепенно охлаждается до температуры около —35°, причем, как правило, температура охлаждения и фильтрации должна лежать примерно на 20°пил е желаемой температуры застывания масла. Выделившийся парафин фильтруют под давлением и остаток на фильтре промывают пропаном. [c.25]

    Нитрование высокомолекулярных парафинов проводят в настоящее время двумя способами. Способ, разработанный Грундманом [27], состоит в том, что нагретый до 170—180° парафиновый углеводород взаимодействует с перегретыми нарамп азотной кислоты. В этих условиях нитрование идет исключительно быстро. Метод применим при условии, чтобы температура начала кипения углеводородной смеси составляла 160—170°. Для углеводородов с 7—12 атомами С газофазное нитрование Хасса не может быть применено из-за возможности пиролиза, способ Грундмана не пригоден вследствие низкой температуры кипения этих углеводородов. Для таких углеводородов Гейзелер разработал изящный способ нитрования в присутствии четырехокиси азота под давлением при 160—170° [28]. [c.126]

    Так как при окислении парафина кислород распределяется по всем метиленовым группам примерно равномерно, нри окислении получаются кислоты разного молекулярного веса, из которых нерегопкой отделяют кислоты, пригодные для мыловарения. Окисление проводят при возможно низких температурах порядка 105—120° [69]. Образующиеся жирные кислоты, особенно высокомолекулярные, окисляются далее, при этом образуются оксикислоты, кетокислоты и двухосновные жирные кислоты, не растворимые в бензине. Чтобы свести к минимуму образование этих нежелательных побочных продуктов, окисление ограничивают 30—50%-ным превращением всей окисляемой углеводородной смеси. В качестве катализатора применяют в большинстве случаев перманганат калия в количестве 0,3% вес. от всего парафина. Перманганат калия вводят нри перемешивании в нагретый до 150° парафин в виде концентрированного водного раствора, вода испаряется, а перманганат восстанавливается органическим веществом до двуокиси марганца, которая распределяется в реакционной смеси в исключительно тонко распыленном состоянии. Окисление ведут без применения давления. Важно, чтобы применяемый для окисления воздух поступал в парафин в возможно тонко распыленном состоянии. [c.162]


    При процессе, разработанном фирмой Юниоп Ойл [35], растворитель добавляют лишь во время кристаллизации парафина количество растворителя по мере выделения парафина прогрессивно увеличивают для того, чтобы сохранит), прокачиваемост . массы. При достижении наиболее низкой температуры процесса добавляют еще одну порцию растворителя, после чего смесь фильтруют и промывают. [c.46]

    Приведенные выше данные являются средними за весь период работы катализатора. Фактически состав продуктов постепенно меняется. Вначале при более низкой температуре реакторов (180—185°) получают несколько больше высококипящих компонентов и больше парафина. По мере снижения активности катализатора я увеличения температуры (до 200°) усиливается мета Но- и бензинообразование. Средняя длина цепи жидких продуктов уменьшается. Так, в первый день работы катализатора при температуре 180° выход газоля составляет 10 г/н з синтез-газа, а выход бензина 38% от суммы продуктов [c.103]

    На практике парафин окисляют при возможно более низкой температуре (около 105—120°). Образующиеся жирные кислоты также подвергаются окислению. С повышением степени превращения парафина (с углублением степени окисления) в продуктах реакции увеличиваются количество веществ, не растворимых в бензине (оксикислоты, дикарбоновые кислоты и т. д.), а также количество низкомолекулярных жирных кислот. В общем окисление доводят до содержания жирных кислот около 30—50%, чтобы по возможности избежать перевеса указанных побочных реакций. Аналогично поступают и при оцисанных ранее процессах замещения, когда требуется устранить слишком сильное образование продуктов дн- и полизамещения. [c.448]

    Застывание масла может быть связано с двумя различными процессами постепенным повышением вязкости вплоть до превращения масла в аморфную стекловидную массу или образованием кристаллического каркаса из высокоплавких парафиновых углеводородов. При производстве масел для обеспечения низкой температуры застывания из них стараются удалить высокоплавкие парафины. Крометого, понизить температуру застывания можно специальными присадками — депрессаторами. Действие депрессаторов объясняют способностью их ослаблять силы молекулярного взаимодействия между кристаллами парафина, вследствие чего уменьшается возможность образования пространственной кристаллической решетки. [c.158]

    Температура застывания масел зависит от содержания в них ту онлавких углеводородов и, прежде всего, парафинов и церезинов. Выделяющиеся при низких температурах кристаллы твердых угле — во, еродов образуют пространственную структуру, что приводит к застыванию и потере подвижности масел. Поэтому из масел следует удалять, помимо низкоиндексных, и комгюненты, ухудшающие их низкотемпературные свойства. [c.131]

    Поскольку масляное сырье представляет собой многокомпонентную смесь кристаллизующихся углеводородов, растворенных в кизкозастывающихся компонентах, при депарафинизации в основном будет иметь место совместная, то есть многокомпонентная, кристаллизация с образованием различных более сложных смешанных форм кристаллической структуры. При совместной кристаллизации из углеводородных сред в первую очередь выделяются кристаллы наиболее высокоплавких углеводородов, на кристалли — меской решетке которых последовательно кристаллизуются углеводороды с более низкими температурами плавления. При этом (рорма кристаллов остается ромбической, а их размер зависит от молекулярной массы и химической природы кристаллизующихся углеводородов. Так, с повышением молекулярной массы и температуры кипения н-алканов кристаллическая структура их становится все более мелкой. Обусловливается это тем, что с повышением молекулярной массы уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает образование новых дополнительных кристал — Аических зародышей малых размеров. [c.254]

    Реакции изомеризации парафинов являются обратимыми, протекают без изменения объема, с небольшим экзотермическим эффектом (6 — 8 кДж/моль). Поэтому термодинамическое равновесие зависит только от температуры низкие температуры благоприятствуют образованию более разветвленных изомеров и получению, суедовательно, изомеризата с более высокими октановыми числами ( абл. 10.11). При этом равновесное содержание изомеров при данной температуре повышается с увеличением числа атомов угле — рода в молекуле н —парафина. [c.198]

    Температура. Оптимальный интервал температур для процессов гидрокрекинга составляет 360-440 °С с постепенным их П01 ышением от нижней границы к верхней по мере падения активности катализатора. При более низкой температуре реакции крекинга протекают с малой скоростью, но при этом более благоп — ри.чтен химический состав продуктов большее содержание нафте — нон и соотношение изопарафин н-парафин. Чрезмерное повыше — ни з температуры ограничивается термодинамическими факторами (реакций гидрирования полициклической ароматики) и усилением ро/1И реакций газо- и коксообразования. [c.229]

    Приказом по заводу работы предполагалось проводить узловым методом, что ранее практиковалось в цехе и на родственных предприятиях. Сварочные работы по прокладке трубопровода проводились при непрекращаю-щейся работе емкостей отделения. В емкостях циркуляционного конденсата постоянно находилась смесь парафина, эфиров, спиртов, кетонов, воды и ннз-комолекулярных жирных кислот, часть которых вследствие высокой рабочей температуры среды (70—90°С) и низких температур кипения продуктов окисления (спиртов, эфиров, кетонов) находилась в паровой фазе. [c.36]

    Феррис с сотрудниками [18] исследовали твердые углеводороды, входящие в состав парафина-сырца и полуфабрикатов парафинового производства. Путем многократной перекристаллизации из дихлорэтана они выделили твердые компоненты (парафин). Обезмасленный и перекристаллизованный парафин разогнали под вакуумом на узкие фракции. Фракции от разгонки далее разделили путем перекристаллизации на компоненты с различными температурами плавления. Оказалось, что только около 60% полученных твердых углеводородов отвечало по температуре плавления к-алканам. Остальные компоненты имели более низкие температуры плавления, что авторы объясняли их изостроением и присутствием в них нафтеновых колец. [c.46]

    При глубокой же депарафинизации (например, при депарафинизации избирательными растворителями при низких температурах) в гач перейдет также и значительное количество твердых компонентов с температурами плавления пониженными для данного интервала температур кипения или для данного молекулярного веса. Эти компоненты будут состоять в значительной своей доле из циклических углеводородов и изоалканов. Полученные из таких гачей технические парафины будут также содержать повышенное количество циклических углеводородов и углеводородов изостроения, если при обезмасливании таких гачей не будут приняты специальные меры для предотвращения перехода этих компонентов в целевой парафин. [c.58]

    Характерной чертой модификации парафина, устойчивой при повышенной температуре, является пластичность и способность отдельных частичек парафина полностью сливаться или спаиваться при сжатии. По некоторым свойствам физическое состояние данной модификации несколько приближается к состоянию так называемых жидких кристаллов. Вторая же модификация парафина, устойчивая при низких температурах, является типичным твердым кристаллическим телом и отличается твердостью, хрупкостью, неспособностью отдельных частиц спаиваться при сжатии. Переход [арафина из одной модификации в другую сопровождается тепловым эффектом в виде поглощения или выделения при температуре перехода скрытого тепла. Сама же величина температуры перехода имеет для данного парафина характер физической константы, аналогичной температуре плавления или кипения. При переходе парафина из одной модификации в другую наблюдается скачок в изменении его физических свойств, зависимых [c.59]

    Весьма большую роль в кристаллообразовании парафинов играют мелкокристаллические высококипящие парафины, влияющие на структуру парафинов с более низкими температурам кипения. При добавке к раствору крупнокристаллического парафина даже самых незначительных количеств высококипящих мелкокристаллических парафинов сразу же резко снижаются размеры образуюнщхся кристаллов. Это обусловливается тем, что высококипящие парафины, будучи менее растворимыми в различных растворителях, в том числе и в нефтяных маслах, начинают выкристаллизовываться первыми и образуют большое число центрой. кристаллизации. Последующее выделение менее высококипяпщх и по природе крупнокристаллических парафинов происходит на уже образовавшихся многочисленных центрах кристаллизации, вследствие чего вся выкристаллизовавшаяся масса парафина рассеивается по этим многочисленным центрам кристаллизации, приобретая в результате этого мелкую структуру, отвечающую наиболее высококипящей высокомолекулярной ее части. [c.67]

    Различие в физических свойствах технического парафина и церезина обусловливается разницей размеров образующих их кристалликов и различным составом по температурам плавления. Относительно узкий состав технического парафина по температурам плавления, низкое содержание в нем масел, крупная кристаллическая структура составляюпщх его твердых углеводородов придают ему твердость и хрупкость (имеется в виду ниже температуры перехода). Пластичность же церезина обусловливается его / широким составом по температурам плавления и содержанием / существенных количеств высоковязких некристаллизующихся компонентов. [c.79]

    При применении разбавителей значение вязкости исходного сырья отходит на второй план, что позволяет расншрить ассортимент перерабатываемого сырья и проводить депарафинизацию даже таких высоковязких продуктов, какими являются тяжелые остаточные масла. Разбавление сырья растворителями позволяет также понизить температуру депарафинизации, поскольку связанное с понижением температуры возрастание вязкости жидкой фазы может быть устранено повышением разбавления. Возможность понижения температуры депарафинизации позволяет полнее извлекать парафин и получать депарафинированное масло со значительно более низкими температурами застывания, чем при депарафинизации без растворителей. [c.96]

    Получаемый при карбамидной депарафинизации застывающий компонент обычно содержит значительное количество углеводородов с невысокими и очень низкими температурами застывания. Это обусловливается, с одной стороны, способностью карбамида давать комплексы с рядом углеводородов разветвленных и циклических структур, не обязательно обладающих высокими температурами кристаллизации, и, с другой стороны, трудностями освобождения комплекса от увлекаемых им значительных количеств депарафинированного продукта. Для получения из застывающего компонента технических парафинов должной чистоты и тем более для выделения из них относительно чистых к-алканов требуется значительная дополнительная обработка этих продуктов — обезмасливание, деароматизация, очистка, а иногда даже и повторное комплексообразование, проводимое, в частности, при несколько повышенных температурах и при пониженной кратности обработки карбамидом. [c.152]

    Эти иоказатели наблюдаются нри процессах, в которых в качестве кетона в составе растворителя берут ацетон, как это делают на ряде действующих заводов. Если же в качестве кетона применяют МЭК, то приведенные показатели изменяются следующим образом. Содержание кетона в составе растворителя повысится с 25—40% до 40—60%, а при обезмасливании — даже до 65— 70%. Повысится до —1 --6° температурный эффект депарафинизации, что позволит вести обработку прп более высоких температурах или получать масло с более низкими температурами застывания. Повысится на 2—5% отбор масла вследствие улучшения четкости разделения застывающих и низкозастывающих компонентов. Содержание же масла в получаемом гаче при этом соответственно уменьшится. При обезмасливании несколько возрастет выход целевого парафина-сырца при снижении содержания в нем масла. При применении МЭК-бензол-толуоловых растворителей можно уменьшить на 28—32% разбавление сырья растворителем, что соответствующим образом повысит производительность фильтров. На 10—15% возрастут скорости фильтрации. [c.199]

    Одной из особенностей процесса депарафинизации в растворах дихлорэтан-бензоловой смеси является возможность перерабатывать малоочищенное и даже совсем неочищенное сырье дистиллятного и остаточного происхождения. Эта особенность обусловливается, с одной стороны, использованием в качестве растворителя хлорпроизводных, относительно хорошо растворяюпщх асфальто-смолистые вещества, и, с другой стороны, применением центрифугирования, которому не препятствует выделение из раствора вместе с парафином некоторого количества смолистых веществ. При депарафинизации же фильтрацией выделение из раствора такого же количества асфальто-смолистых веществ сделало бы раствор совершенно не фильтрующимся. При дихлорэтан-бензоловой депарафинизации присутствие асфальто-смолистых веществ в ряде случаев даже улучшает центрифугирование в той мере, в какой оно способствует образованию плотных дендритных кристаллов выделяющегося парафина. Поэтому на некоторых зарубежных заводах процесс дихлорэтан-бензоловой депарафинизации предшествует очистке. Такую же схему предполагалось осуществить но первоначальному проекту и на грозненском заводе. Указанная выше последовательность процессов дихлорэтан-бензоловой депарафинизации и очистки при переработке тяжелого цилиндрового дистиллята вязкостью 30—45 сст нри 100° описана И, И. Нюренбергом [299] в работе по обобщению опыта применения дихлорэтан-бензоловой депарафинизации на некоторых зарубежных заводах, а также и в других источниках [24] для остаточного сырья. При выборе последовательности депарафинизации и очистки нужно иметь, в частности, в виду, что очистка в большинстве случаев повышает температуру застывания очищаемого продукта вследствие увеличения концентрации в нем парафина. Поэтому температуру депарафинизации, если этот процесс проводят перед очисткой, устанавливают более низкую, чем при обычной последовательности данных процессов. [c.205]

    Сырьем являются рафинаты селективной очистки. Целевой продукт — депарафинированное масло с низкой температурой застывания, парафин или церезин, а побочным продуктом являются отходы обезмасливания. Выход депарафинированного масла составляет 65—85 % (масс.), парафина или церезина 12—15 % (масс.) и отходов от обезмасливания, или слоп-вокса, 6—18 % (масс.). [c.81]

    Содержание неразветвленных парафиновых углеводородов в получаемой фракции жидких н-парафинов (парафин-сырец) достигает 99 % (масс.) от сырья, а отбор их от потенциала высок. Для денор-мализата характерны низкие температуры помутнения и застывания. Ниже в качестве примера приведены показатели качества сырья и продуктов  [c.96]

    Парафиновые углеводороды газойлей из смазочных масел обладают структурой преимущественно с прямой цепью или слегка разветвленной (см. главу III). Присутствие в твзрдом парафине слегка разветвленных изопарафинов со сравнительно низкой температурой плавления установлено достаточно надежно. [c.28]

    Распределение и структура парафиновых боковых цепей в тяжелых нефтяных фракциях изучены совершенно недостаточно. Присутствие длинных парафиновых боковых цепей нормальной (линейной) структуры (выше С а) по крайней мере в товарных смазочных маслах с низкой температурой застывания, по-пидимому, невозможно. Известные алкиларомати-ческие и циклопарафиновые углеводороды с длинной нормальной боковой цепью обладают высокими температурами плавления и могут быть отделены от твердого парафина при помощи дспарафинизации. Алкилциклические углеводороды с длинными разветвленными парафиновыми боковыми цепями должны иметь низкую температуру застывания и могут встречаться в смазочных маслах. Однако более вероятно, что атомы углерода в боковых цепях распределяются между несколькими боковыми цепями. В настоящее время исследование спектров поглощения в инфракрасной и в ближней инфракрасной области служит единственным методом, который может дать известное представление о распределении парафиновых боковых цепей, по определению среднего числа СНд-, СН - и СН-групп, приходящихся на одну молекулу. [c.37]

    Твердый парафин добывается также и из других источников. Так, парафин, подобный нефтяному, получается из битуминозных сланцев или перегонкой бурого угля при низкой температуре. Небольшие количества его, не имеющие промышленного значения, содержатся также в некоторых растительных восках, эфирных маслах и других растительных продуктах. В хорошо известном процессе Фишера-Тропша, применяемом в Германии для производства синтетического бензина, также получается твердый хрупкий парафин с температурой плавления, изменяющейся в широких пределах, но болео высоксплавкий и более высокомолекулярный, чем парафин из нефти. [c.40]

    Так как изомерные парафины с разветвленными цепями имеют более низкие температуры плавления дпя определенной области температур кипения и молекулярных весов и большую растворимость в растворителях, соотношение парафиновых углеводородов с разветвленными цепями и нормальных углеводородов, первоначально присутствующих в парафиновых фракциях, может быть значительно больше, чем в очищенном товарном парафине или в перекристаллизованных узких фракциях. Количественное определение процентного содержания нормальных парафиновых углеводородов и изомеров с разветвленными цснямп в последнее время проводилось при помощи масс-спектрометра [26]. В товарном парафине этим методом было найдено 90,6% нормальных парафиновых углеводородов, 8,2% парафиновых углеводородов с разветвленными цепями и 1,2% цикло- [c.43]


Смотреть страницы где упоминается термин парафина, S и Na при низких температурах: [c.47]    [c.54]    [c.120]    [c.455]    [c.220]    [c.248]    [c.242]    [c.14]    [c.26]    [c.72]    [c.29]    [c.43]   
Основы химии Том 2 (1906) -- [ c.486 ]




ПОИСК







© 2025 chem21.info Реклама на сайте