Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплекс концентрационная

    М раствором этилендиамина, о чем уже сказано было выше. Чтобы получить законное основание для расчета в системах этилендиаминовых комплексов, концентрационные константы диссоциации этилендиамина определяли при тех же условиях, при которых осуществлялось титрование систем комплексов металлов. Единственным отличием была замена комплексообразующего иона металла на некомплексообразующий ион аналогичного металла. В качестве такового использовали ион бария, и только в одном случае — в качестве пробы — ион магния. В табл. 51 и 52 представлены результаты титрования 0,2 и 0,5 п. растворов соляной кислоты (0,1 М относительно хлорида бария и 1 и. относительно хлорида калия). В этих и последующих титрованиях стандартным раствором служил раствор 0,005 н. соляной кислоты в 1 н. растворе хлорида калия (pH 2,301). В таблицах Е — потенциалы, измеренные по сравнению с каломельным электродом, причем учитывается знак потенциала, и [c.211]


    Приведенные константы являются концентрационными. Если концентрации заменить активностями (в первую очередь это относится к [X ]), будем иметь дело с термодинамическими константами. В случае растворов с небольшой ионной силой и прочных комплексов концентрационные константы отличаются от термодинамических не очень сильно. При последовательном комплексообразовании чаще всего (но не всегда) ступенчатые константы устойчивости уменьшаются с увеличением числа ионов галогена в координационной сфере комплекса. [c.20]

    Этот вопрос на самом деле не так прост. Лучше всего было бы использовать олигонуклеотиды определенной длины. Тогда концентрационная зависимость условий образования спирали позволила бы определить число цепей в комплексе. Есть и другая возможность исследовать кинетику релаксации. Измерения зависимости образования комплекса от длины могут помочь отличить параллельные структуры от антипараллельных. В то время как взаимодействие параллельных цепей обязательно должно быть межмолекулярным (исключая протяженные структуры, которые могут образовывать циклы), антипараллельные взаимодействия возможны в одной цепи при ее сворачивании с образованием шпилечной структуры. Для таких внутримолекулярных комплексов концентрационная зависимость при исследованиях кривых плавления и кинетики релаксации будет отсутствовать. [c.497]

    Отсюда следует, что мономолекулярные реакции разложения отличаются по своей концентрационной зависимости от реакций изомеризации (см. разд. XI.3). В последнем случае комплекс, соответствующий продуктам реакции, будет влиять на скорость реакции [см. уравнение (XI.3.1)]. В первом случае, рассмотренном выше, было показано, что комплекс, соответствующий продуктам [АВ], будет влиять на скорость только тогда, когда энергия активации обратной реакции (А + В Ь) равна нулю [см. уравнение (X.5.12)1. В противном случае (когда Е > 0) [АВ] на скорость не влияет. Причина этого заключается в следующем после того как образуется [АВ], вероятность распада ее па части (к ) настолько превышает вероятность конкурирующих процессов, что последние не оказывают влияния на скорость реакции. Исключение появляется в случае, когда Е = 0. При этом [АВ] имеет равную вероятность распасться или вновь образовать В, и это снижает скорость реакции в 2 раза [даже при высоком давлении, уравнение (XI.5.15)]. [c.218]

    Верхний концентрационный предел Я достигается, когда Мко > > К Е), т. е. когда вероятность дезактивации комплекса, соединившегося [c.239]


    Воспламеняемость топлив обычно характеризуется концентрационными и температурными пределами воспламенения, температурами вспышки, воспламенения и самовоспламенения, а также в отдельных случаях взры-ваемостью. В комплексе квалификационных методов испытаний реактивных топлив предусмотрено оценивать воспламеняемость температурой вспышки. [c.124]

    Анализ зависимости диэлектрической проницаемости асфальтенов и ассоциированных с ними порфиринов нефти скв. 2546 Арланского месторождения показывает, что диэлектрическая проницаемость бензольных растворов порфиринов значительно выше, чем растворов асфальтенов (рис. 15). Определение концентрационных зависимостей диэлектрической проницаемости бензольных растворов нефтей, отобранных из различных скважин Арланского месторождения, показало (см. рис. 15), что полярность порфиринов высока во всех исследованных случаях и, судя по литературным данным, является самой высокой. Полярность порфиринов, извлеченных из разных нефтей, различна. Это вновь является подтверждением высказанного ранее положения, что находящиеся в нефтях металлопорфириновые комплексы следует рассматривать как сумму фракций разной степени полярности. [c.34]

    Существенное влияние давления на константу скорости в жидкой фазе обусловлено относительно малой сжимаемостью жидкости, что делает концентрационные эффекты менее значительными. Расчету объемных эффектов активации в гомолитических реакциях посвящен ряд работ [35—38]. В частности, образование активированного комплекса в реакциях гомолитического разрыва связей сопровождается некоторым увеличением До+ (До+ > О, но, как правило, не превышает нескольких см -моль ), поэтому при повышении температуры константа скорости будет падать в соответствии с формулой (2.20). [c.25]

    Для случая образования в растворе единственного одноядерного комплекса рассчитать его концентрационную константу нестойкости К и координационное число п потенциометрическим методом. Для расчета величин равновесных потенциалов бр воспользоваться значениями э. д. с. элементов, составленных из электрода сравнения и электродов I рода с известными исходными концентрациями комплексообразователя и лиганда в электролитах. [c.90]

    Определить координационное число п и концентрационную константу нестойкости /( аммиакатного комплекса серебра А (МНз) потенциометрическим методом. Стандартный потенциал электрода Ag А вц = 0,799 В. [c.92]

    Возможность существования комплексных соединений в заданных температурных и концентрационных условиях при наличии динамического равновесия всецело определяется термодинамическими соображениями. Для указания области термодинамической устойчивости комплекса необходимы сведения о характеристиках реакции его образования. Представим эту реакцию в общем виде  [c.346]

    Концентрационные константы устойчивости позволяют получить значение энергии Гиббса образования комплексного соединения, когда в качестве стандартного состояния выбрано состояние раствора ионной силы /. Константа устойчивости, энергия Гиббса, энтальпия и энтропия образования комплекса составляют термодинамическую характеристику комплексообразования, которая позволяет оЦенить факторы, определяющие устойчивость комплексов. [c.616]

    В методе Я. Бьеррума используются вторичные концентрационные переменные п и а. Функция образования п равна среднему числу лигандов, входящих в комплекс  [c.618]

    Другая вторичная концентрационная переменная а — степень образования индивидуальных комплексных соединений — определяется, например, для комплекса МА, как  [c.618]

    Если в методе Бьеррума константы устойчивости комплексов и их состав определяют путем нахождения концентрации свободного лиганда, то в методе Ледена это достигается нахождением концентрации свободного металла. Вторичной концентрационной переменной является функция  [c.619]

    Изучение реакций образования комплексов, предусматриваю щее установление их состава и определение констант устойчивости комплексов, можно осуществить, не прибегая ко вторичным концентрационным переменным. Большими возможностями в этом отношении обладает метод частных зависимостей. Он основан на следующих представлениях. [c.620]

    Потенциометрическое титрование применяют также для решения общей задачи, заключающейся в определении составов образующихся комплексов и нахождении их констант устойчивости, причем ступенчатые реакции комплексообразования могут накладываться друг на друга. Наряду с электродами, обратимыми к ионам металла, применяют также электроды, измеряющие концентрацию лиганда и pH. Обработка экспериментальных данных производится по методам Бьеррума и Ледена с использованием вторичных концентрационных переменных. [c.638]

    В качестве примера, поясняющего вышесказанное, приведем логарифмы полных концентрационных констант устойчивости некоторых комплексов в водных растворах при температуре 20—30 °С  [c.193]


    Пусть в растворе существует равновесие (7.1) с концентрационной константой устойчивости (7.4). Тогда за условную концентрационную константу устойчивости комплекса принимается величина р,  [c.194]

    Воспламеняемость реактивтнлх топлив обычно характеризуется концентрационными и температурными пределами воспламенения, самовоспламенения и температурой вспышки в закрытом тигле и др. По ГОСТу нормируется только температура вспышки (для ТС-1 и РТ 28, для Т-1>30 и Т-6>60 °С), а определение остальных перечисленных выше показателей предусматривается в комплексе квалификационных методов испытаний реактиви[а1х топлив. [c.122]

    Процессы, уменьшающие анодную поляризацию, называются деполяризационными процессами (например, перемешивание, снижающее концентрационную поляризацию), а вещества, их осуществляющие, — анодными деполяризаторами (например, ком-плексообразователи NHg. N и др., сильно понижающие активность простых ионов металлов в растворе вследствие их связывания втруднодиссоциирующие комплексы, или ионыСГ, затрудняющие наступление анодной пассивности металлов). [c.197]

    Кроме кислотно-основных равновесий мы применили описанный метод к исследованию равновесий комплексообразования. Исследование системы фумаровая кислота—кадмий—едкий натр на фоне перхлората натрия в области, в которой осадок фумарата натрия еще не образуется, показало, что все кажущиеся нарушения материального баланса по ионам водорода можно скомпенсировать подбором его эффективного коэффициента активности , причем комплексообразования не обнаружено. Для системы, в которой вместо фумаровой использована ма-леиновая кислота, обнаружен комплекс состава 1 1, причем без варьирования коэффициента активности иона водорода интерпретация данных была затруднительной. В этих расчетах использованы концентрационные константы кислот, вычисленные по тому же методу для систем без кадмия. [c.129]

    Следует отметить работу Фролова с сотрудниками [32], в которой, хотя и не учтена растворимость сульфоксидов, но исследована гидратация экстрагируемых комплексов. Так установлено, что HNOзЭк тparиpyeт я в негидратированном виде, аНС1 иНг804— в виде моногидрата, но при этом не указаны концентрационные пределы, в которых рассмотренный механизм обнаружен. [c.46]

    Наряду с детальным химическим анализом смолисто-асфальтеновых компонентов с целью количественной характеристики концентрационного распределения в них ванадия и никеля, был проведен также спектральный анализ всего комплекса металлов в тех же фракциях смолисто-асфальтеновых веществ всех трех нефтей (табл. 19). Кроме того, спектральным методом был исследован характер распределения металлов между высокомолекулярной углеводородной частью и смолисто-асфальтеновыми компонентами ромашкинской и бавлинской нефтей (табл. 20). [c.62]

    Процессы, снижающие анодную поляризацию, называются деполя-ризаиионнъши. Например, перемешивание электролита снижает концентрационную поляризацию использование комплексообразова-телей (NHз N и др.) уменьшает активность простых ионов металлов вследствие их связывания в труднодиссоциирующие комплексы. Вещества, снижающие анодную поляризацию, называются анодными деполяризаторами. [c.39]

    Исследование стабильности масел в присутствии ПФЦИ и ПФЦК проводили на кинетической установке по определению окисляемости масел при температуре 110°С с использованием технического кислорода. В качестве объектов исследования были выбраны гептадекан, как модельный углеводород, и индустриальное масло И-40. Полифта-лоцианиновые комплексы помещали в окисленную среду в виде тонких дисперсий с максимальной концентрацией 5 г/л, что согласуется с условия) Ш применения и концентрационными интервалами подобных присадок. [c.108]

    Как уже отмечалось, введение нейтральных электролитов в раствор слабой кислоты вызывает солевой эффект, проявляющийся в увеличении концентрационной констацты диссоциации слабой кислоты. У одноосновных кислот в области средних значений ионной силы этот эффект невелик и им часто можно пренебречь. У многоосновных кислот продуктами диссоциации являются двухзарядные или еще более высокого заряда ионы, поэтому эффект ионной силы в соответствии с уравнением (2.11) увеличивается. Это всегда следует иметь в виду, хотя при проведении приближенных расчетов коэффициенты активности часто не учитываются. Учет эффекта ионной силы бывает совершенно необходим при сравнении, например, силы кислот, устойчивости комплексов и т. д. Обязательным условием сравнения является рассмотрение свойств при одинаковой ионной силе, созданной одним и тем же электролитом. [c.61]

    Ванны, содержащие комплексные соли металлов. Рассмотрим картину концентрационных изменений в католите в предположении, что преобладающей формой комплекса при сравнительно иебольщом избытке комплексообразо-вателя (К.Л ) будет соединение типа KMeAQ. [c.48]

    Можно, следовательно, заключить, что состав ионов, доминирующих в приэлектродном слое и нешосредственно участвующих в электродной реакции, весьма часто отличается от состава комплексов или сольватированных ионов, преобладающих в объеме испытуемого раствора (или в равновесных условиях). Это связано с весьма заметными концентрационными изменениями, происходящими в приэлектродных слоях при электролизе.. Опыт показывает, что в катодной реакции с изменением плотности тока могут непосредственно участвовать различные комплексные формы одного и того же металла, в том числе и сложные анионы, содержащие атомы металла. [c.339]

    Методы Бьеррума и Ледена основаны на представлении о ступенчатости комплексообразования и на применении взаимосвязанных вторичных концентрационных переменных п, и Ф. С их помощью определяют составы и константы устойчивости моноядерных комплексов при условии, что удается найти концентрации лигандов, аквакомплекса или комплексов металла Образование полиядерных и смешанных полиядерных комплек сов существенно усложняет задачу. Количественное изучение та ких процессов встречается с большими трудностями в интерпре тации экспериментальных данных и сложностью их обработки [c.620]

    Полученное уравнение — основное для окислительного потенциала систем, в которых наряду с переносом электронов протекают другие процессы, приводящие к образованию комплексных соединений. Оно выражает зависимость окислительного потенциала от состава раствора. В общем случае число переменных складывается из Шо концентраций комплексов окисленной формы, Шг концентраций восстановленной формы, включая концентрации аквакомплексов обеих форм, концентрации (активности) лиганда А , иона Н+, активности воды и исходных концентраций окисленной и восстановленной форм, равных их общей концентрации Со и Сг. Число этих переменных равно Шо + Шг + 5. Число независимых переменных меньше общего числа концентрационных переменных на число уравнений связи [(то + тг)-уравнений образования комплексов)] и равно 5. Поэтому окислительный потенциал является функцией 5 переменных, а именно Со, Сг, Н, [А] и анао- Активность воды в разбавленных растворах близка к 1 и, следовательно, число переменных уменьшается до 4. При изучении комплексообразования в смешанных растворителях и концентрированных водных растворах активность воды может заметно меняться. Тогда ее следует ввести в уравнение (Х.84). [c.623]

    Концентрационная константа равновесия этой реакции— ступенчатая константа устойчивости комплекса АдЗгО — равна  [c.637]

    Цель работы — определение составов комплексных соединений общей формулы M Ax(OH)y, образующихся в водных растворах кислоты НА, и нахождение их констант устойчивости. Составы комплексных соединений, отвечающие набору чисел q, х, у, находят по угловым коэффициентам экспериментальных кривых частных зависимостей Д<р — потенциала ИСЭ, обратимого к катионам М "+, или электродного (окислительного) потенциала электродов 1-го рода или амальгамных электродов — от показателей независимых концентрационных переменных pH, рСо и рСд. Константы устойчивости комплексов определяют графически или методом последовательных приближений, используя для этой цели уравнение потенциала Дф и кривые частной зависимости Дф = Дф(рН). Ионная сила поддерживается постоянной (поуказанию преподавателя). [c.665]

    Определить концентрационную константу равновесия Кс и оценить погрешность ее измерения. В расчетах принять, что вкладом иных форм существования металла в растворе, помимо незакомплексованного иона Ме + и комплекса МеАг, можно пренебречь. [c.841]

    Истинные термодинамические константы устойчивости и нестойкости комтшексов (константы, выраженные через равновесные активности) зависят только от природы реагентов, растворителя и температуры и не зависят от концентраций. Концентрационные константы устойчивости и нестойкости комплексов (т. е. константы, выраженные через равновесные концентрации) зависят дополнительно также и от концентраций реагентов, ионной силы раствора. Поэтому обычно, приводя числовое значение концентрационной константы устойчивости или нестойкости комплекс , кроме записи химического уравнения соответствующего равновесия (в прямой или скрытой форме) необходимо указывать не только температу ру, но и ионную силу раствора 1 . [c.193]

    Лиганды в растворе могут находиться в различггых формах и участвовать в побочных равновесиях (т. е. помимо участия в равновесии комплексообразования). Если, например, свободньп лиганд обладает выраженными основными свойствами (типичный случай), то он может взаимодействовать с кислотами и присоединять протоны. Таких побочных равновесий может быть несколько. Чтобы учесть все формы нахождения лиганда в растворах, вводят понятие условной концентрационной константы устойчивости комплекса или условной концентрационной константы нестойкости комплекса, которые по форме написания аналогичны формулам для концентрационных констант устойчивости и нестойкости комплекса. [c.194]


Смотреть страницы где упоминается термин Комплекс концентрационная: [c.90]    [c.345]    [c.351]    [c.186]    [c.40]    [c.67]    [c.109]    [c.262]    [c.114]    [c.270]    [c.161]    [c.374]    [c.117]    [c.114]    [c.269]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.435 ]




ПОИСК







© 2025 chem21.info Реклама на сайте