Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

диенов кинетика

    Кинетика сополимеризации. Несмотря на большое число работ, посвященных исследованию механизма и кинетики процесса сополимеризации этилена, пропилена и диеновых углеводородов [15], по этому вопросу нет единого мнения. Опубликованные [c.297]

    КИНЕТИКА И МЕХАНИЗМ ПИРОЛИЗА ДИЕНОВЫХ УГЛЕВОДОРОДОВ (на примере термических превращений пиперилена) [c.231]


    Кинетика трехмерной полимеризации изучена очень мало, поэтому можно отметить лишь самые общие ее особенности. Полимеризация олигоэфиров, по-видимому, очень близка к трехмерной полимеризации диеновых углеводородов (образование м-полимера см. на с. 98). Для полимеризации олигомеров характерно увеличение скорости полимеризации во времени, что объясняется возрастанием вязкости среды и соответствующим уменьшением скорости реакции обрыва цепи, а также, по-видимому, образованием новых свободных радикалов в результате разрыва связей в напряженных участках полимерной сетки. [c.204]

    Исследование температурной зависимости конверсии пиперилена на Na-формах цеолитов показало различие их активностей (рис. 1.26). Как видно из рисунка, на цеолитах NaA и NaM гидрирование пиперилена начинается При температуре 60 °С и реакция практически полностью завершается при 160-180 °С. В то же время цеолиты X, Y, эрионит менее активны в гидрировании пиперилена реакция начинается при температурах 120-140 °С и При 200-200 °С достигается 60%-ная конверсия исходного углеводорода. Таким образом, наиболее активными катализаторами гидрирования этого диенового углеводорода являются Na-формы цеолитов А и морденит. Менее активны цеолиты X, У и эрионит. Такой ряд активности не совпадает с последовательностью изменения каталитической активности Na-форм цеолитов в гидрировании олефиновых углеводородов (2-метилбутен-2, циклогексен), когда максимальной активностью обладал NaY. а NaA и NaM были менее активны (см. разд. 1.1), Причина этого, возможно, связана с различным влиянием диффузии молекул реагентов во внутрикристаллических каналах цеолитов на кинетику процессов. [c.42]

Рис. 81. Кинетика сшивания молекулярных цепей цыс-1,4-бута диенового (а) и бутадиен-стирольного (б) каучуков Рис. 81. Кинетика <a href="/info/356095">сшивания молекулярных</a> цепей цыс-1,4-<a href="/info/369479">бута диенового</a> (а) и <a href="/info/185488">бутадиен-стирольного</a> (б) каучуков
    Детальные исследования кинетики процесса гидрирования олефиновых, диеновых и ацетиленовых углеводородов, проведенные в растворах кластеров палладия Ь Р(1п (где Ь — фосфор- и азотсодержащие лиганды) [45], также убеждают в том, что селективность палладиевых катализаторов не связана с гидридным механизмом. Они не взаимодействуют с молекулярным водородом (20—100 °С, 0,1—0,2 МПа), но легко реагируют с различными соединениями, в том числе и с непредельными углеводородами (ип) олефиновыми, диеновыми и ацети-леновыми [46]. [c.44]


    Если гидробромирование диенового углеводорода проводят при низкой температуре, обратная реакция дегидробромирования не протекает. В этих условиях реакция контролируется кинетикой и основным продуктом реакции оказывается продукт 1,2-присоединения. Речь идет, таким образом, о кинетически контролируемой реакции. Энергетическая диаграмма присоединения бромоводорода к 1,3-бутадиену показана на рис. 7.3. [c.348]

    Классические работы С. В. Лебедева послужили началом физико-химического изучения полимеризационного процесса. Лебедев [1] исследовал кинетику полимеризации многих диеновых и алленовых соединений в сравнимых условиях и получил экспериментальные данные, позволившие ему впервые установить определенные закономерности, связывающие склонность к полимеризации мономеров с их строением. [c.10]

    Основные научные исследования посвящены полимеризации, изомеризации и гидрогенизации непредельных соединений. Впервые исследовал (1908—1913) кинетику и механиз.м термической полимеризации диеновых углеводородов ряда дивинила и аллена, установил условия раздельного получения циклических димеров ряда циклогексана, с одной стороны, и полимеров, с другой определил зависимость полимеризации от структуры исходных углеводородов. [c.286]

    В работе [22] импульсным хроматографическим методом была изучена кинетика реакции диенового синтеза с малеиновым ангидридом для изопрена и бутадиена. [c.36]

    Импульсный хроматографический метод был также применен для изучения кинетики реакции этерификации уксусным ангидридом спиртов различного строения [29]. Изучали кинетику реакции высококипящих спиртов летучий реагент (уксусный ангидрид) поступал в колонку-реактор в форме импульса, а нелетучий (спирт) —находился в колонке-реакторе как неподвижная жидкая фаза. В отличие от импульсного метода, использованного для изучения реакций диенового синтеза, при этерификации спирта уксусным ангидридом один из продуктов реакции (уксусная кислота) элюируется из колонки-реактора после исходного компонента (уксусного ангидрида). Константы скорости реакции изменяются в направлении первичные>вторичные>третичные. Полученные результаты могут быть использованы для идентификации спиртов. [c.66]

    В книге с единых позиций рассмотрены различные аспекты реакций циклизации Дильса — Альдера. Изложению термодинамики, кинетики и механизма диенового синтеза предпослан краткий, но весьма содержательный обзор органических основ и стереохимии этой реакции. [c.5]

    МЕХАНИЗМ И КИНЕТИКА ТЕРМИЧЕСКИХ РЕАКЦИЙ АЦЕТИЛЕНОВЫХ И ДИЕНОВЫХ УГЛЕВОДОРОДОВ [c.207]

    Полимеризация диеновых мономеров. Другим примером процесса радикальной полимеризации, в ходе которого возможно образование геля, может служить полимеризация диеновых мономеров. Характерной особенностью кинетики этого процесса является протекание реакции сшивания полимерных цепей в ре- [c.219]

    Нами совместно с Филиновским показана возможность определения константы скорости каталитической реакции первого порядка, проводимой в импульсном хроматографическом режиме, по выходной кривой продукта. Березкин, Кругликова и Беликова показали возможность осуществления бимолекулярной реакции в импульсном хроматографическом режиме. Авторы изучали кинетику реакции диенового синтеза с малеи-новым ангидридом Один из реагентов, (малеиновый ангидрид) в виде насыщенного раствора в трикрезилфосфате наносили на кирпич, другой (бутадиен) импульсно вводили в реактор. При этом было показано, что в условиях постоянства концентрации малеинового ангидрида реакция диенового синтеза подчиняется кинетическому уравнению первого порядка . В ряде последних публикаций приводятся результаты исследования кинетики реакций крекинга , топохимических реакций в хроматографическом режиме. [c.33]

    О кинетике диенового синтеза см. [383, 384]. [c.402]

    Особый интерес представляет кинетика крекинга антрацена, который крекируется (ири 450° С) в 370 раз быстрее изомерного углеводорода фенантрена. На первый взгляд подобное различие в термической устойчивости двух изомерных углеводородов кажется совершенно неожиданным. Одиако, это различие легко объясняется особенностью строения антрацена. Как известно, одно из колец (А) антрацена (I) имеет только две двойные связи и представляет собой дигидробензоль-ную или диеновую группировку (183), которая, естественно, является значительно менее устойчивой, чем бензольная грушшровка с тремя [c.186]

    Наличие таутомерных форм А ж Б для циклооктатетраенов однозначно подтвердил Хьюсген. Изучая кинетику диенового синтеза циклооктатетраена с диенофилами, этот исследователь показал, что форма Л не вступает в реакцию, что скорость реакции при избытке диенофила пе зависит от концентрации последнего и контролируется скоростью превращения А ъ Б. Хьюсген смог определить концентрацию таутомера Б в диоксановом растворе при 100° С и установил, что она очень мала — всего 0,01%. Из наблюдений над скоростью диенового синтеза при разных температурах (в среде этилацетата) он нашел параметры энергии активации процесса таутомеризации [А// = 25,0 ккал моль и tS.S Ъ кал град-моль)], величины которых, как оказалось, не выходят за рамки типичных термодинамических констант для обычных реакций. [c.576]


    Факторы, обусловливающие гетерогенный характер серной вулканизации каучуков общего назначения, в полной мере проявляют себя и при вулканизации их другими (несерными) вулканизующими системами. Действительно, больщинство вулканизующих агентов для диеновых и олефиновых каучуков является полярными веществами (например, галогенсодержащие соединения, аминные комплексы хлорборанов, азодикарбонамид и т. д.) и плохо растворяются в каучуке. Многие вулканизационные процессы активируются оксидами металлов (вулканизация галогенсодержащими соединениями, дисульфидами и т. д.), неорганическими солями (вулканизация смолами) и другими нерастворимыми в каучуке веществами кинетика процесса и характер возникающих вулканизационных структур зависят от природы оксидов, поверхности наполнителя и т. д. [c.268]

    Явление сополимеризации, при котором в одну и ту же полимерную цепь входят несколько различных видов молекул мономеров, эмпирически было известно почти 50 лет тому назад интересно, что наиболее ранние работы были посвящены получению диеновых сополимерных каучуков — важнейшему промышленному применению сополимеризации и в настоящее время. Первые попытки точной кинетической обработки данных по сополимеризации, как и гомополимеризации отдельных мономеров, были предприняты в 1930 г., но они были направлены только на выражение состава сополимера через состав применяемой мономерной смеси связь теории с экспериментальными данными была установлена главным образом в работах Майо и Уоллинга, проводившихся в 1944 г. и в последующие годы. В отличие от относительных скоростей реакций двух мономеров (определяющих состав сополимера) проблема абсолютных скоростей сополимеризации впервые количественно рассмотрена в 1944 г. Сложная вначале форма этого количественного рассмотрения впоследствии была упрощена [3]. Подробное экспериментальное исследование скоростей сополимеризации впервые было опубликовано в 1949 г. Уоллингом и Мелвилом с сотрудниками последними,, в частности, был дан тщательный анализ кинетики сополимеризации. [c.175]

    Исходя из соображений кинетики и термодинамики и промышленной практики термической деструкции углеводородов, можно полагать, что наиболее благоприятными условиями для образования углеводородов С4 и С5 являются температуры, лежащие между температурой крекинга на бензин и пиролиза на этилен и пропилен, под давлением с применением водяного пара. Наличие цикланов в исходном сырье может положительно сказаться на выходах диеновых углеводородов (дивинила, изопрена) наряду с олефинами. Сырьем для такого процесса наряду с вышеуказанными продуктами могли бы служить и более высоко-кипящне фракции нефти — керосины парафинистых нефтей, парафин, петролатум и др. Такой процесс, несомненно, имеет существенные преимущества перед каталитическими процессами дегидрирования бутанов и изопентана. Здесь имеются практически неограниченные возможности по сырью, по организации мощных некаталитических установок, по получению фракций более богатых непредельными углеводородами, чем аналогичные фракции, получаемые в процессах дегидрирования. [c.56]

    Действительно, система дифференциальпых уравнений кинетики не изменится от того, будем мы какое-либо промежуточное лабильное соединение называть, скажем, радикалом, ионом, или ионом-радикалолг. Уточнение механизма реакции в части установления характера и природы активных частиц производится обычно различными физико-химическими методами (см. обзор [142], а также предисловие к книге [144].). Эта задача в некоторых случаях меняет быть решена также и кинетическими методами в сочетании с расчетными. Наиример, для решения вопроса о характере промежуточного соединения в реакции диенового синтеза сопоставлялось экспериментальное значение предэкспоненциального множителя в уравнении Аррениуса для константы скорости реакции и рассчитанное на основе теории абсолютных скоростей реакций [142]. Совпадение с опытом оказалось более близким для случая, когда промежуточным соединением является циклический комплекс, а не бирадикал. Иногда для подобных целей необходимо проводить квантово-химические расчеты [144]. [c.114]

    Конденсация по типу реакции диенового синтеза с одновременным отщеплением низкомолекулярных продуктов. А. А. Берлин с сотрудниками для описания стадии карбонизации полифенилацетилена предложил [17, 22] схему, приведенную на стр. 30 (эта схема представляет собой сочетание реакций диенового синтеза и отщепления заместителей в образующемся циклогексено-вом кольце, приводящего к превращению его в ароматическое). Известно, что линеарно конденсированные ароматические углеводороды вступают в реакцию диенового синтеза [27]. Однако — это реакция второго порядка, она имеет низкий стерический коэффициент и невысокую энергию активации — 25—30 ккал/моль [66, 67 . Такой механизм не объясняет наблюдаемую кинетику коксообразования, высокое значение энергии активации для асфальтенов из битума деасфальтизации и найденные порядки реакции, [c.59]

    Получение каучуков. Изопрен полимеризуют в р-рах — в пентане, гептане, гексане и в др. неполярных предельных углеводородах. Мономер и растворитель не должны содержать примесей полярных соединений, способных реагировать с катализатором. Наиболее сильный каталитич. яд — циклопентадиен, присутствие к-рого в количестве 14-10- кмоль/м (моль/л) увеличивает продолжительность процесса примерно в 14 раз. Предельно допустимая концентрация циклопентадиена 0,5-10- кмоль/м (моль/л). К числу сильных каталитич. ядов, существенно снижающих скорость полимеризации, относятся также диметилформамид, бутилмеркаптан, ацетиленовые и алленовые углеводороды. В присутствии нек-рых из этих веществ (напр., диметилформамида) снижается содержание в И. к. звеньев 1,4-г ис присутствие метилэтилацетилена и ацетилена приводит к снижению мол. массы каучука. На кинетику полимеризации влияют также примеси воды, сернистых соединений, формальдегида, спиртов, аммиака, нек-рых олэфинов и диеновых углеводородов. [c.409]

    Значительное воздействие на скорость и нацравление присоединения водорода при каталитическом гидрировании непредельных углеводородов оказывает строение молекул гидрируемых соединений, природа катализаторов и растворителей [1—3]. В связи с тем, что каталитическая гидрогенизационная очистка изопрена от вредных примесей алкинов ведется в углеводородной среде [4], ранее, при изучении кинетики насыщения модельных смесей ал-кин, — алкадиен на многокомпонентных скелетных никелевых катализаторах, в качестве растворителя использовался гексан и этанол [5, 6]. Вместе с тем при постзшлении диенового продукта в реактор, после стадии отмывки от карбонильных соединений, возможно попадание и накопление остаточной влаги в реакционном слое катализатора. [c.5]

    Влияние полисульфидных связей на кинетику окисления вулка-низатов выявляется при сопоставлении вулкаиизатов патрийбута-диенового каучука с полисульфидными и поперечными сшивками С—С, содержащих одинаковое число поперечных связей (рис. 7.16). Свободные ингредиенты перед окислением из указанных вулкани-затов тщательно удалялись. Видно, что поперечные связи С—С не влияют на скорость окисления каучука, тогда как полисульфидные связи замедляют его на начальной стадии реакщ1и в 10 раз. Сильное ингибирующее действие полисульфидной серы может быть обусловлено реакцией с перекисями, как это было показано выше. [c.271]

    Кинетика реакции (первый порядок по диену и первый порядок по диеноф илу) [57] не дает возможности сделать выбор между этими двумя механизмами. Тот факт, что реакция диенового синтеза не ускоряется перекисями, еще ничего не говорит против гомолитического механизма, поскольку перекиси эффективны лишь для образования монорадикалов монорадикалы же значительно. легче вступают в различные побочные реакции, чем превращаются в бирадикалы. [c.264]

    Многие вопросы, такие, например, как специфика каталитической сополимеризации этилена и а-олефинов с р-олефинами, диенами, ацетиленами, циклоолефинами, стиролом, гетероатомсодержащими виниловыми мономерами, методы синтеза блоксополимеров и этилен-пропилен-диеновых сополимеров, кинетика каталитической сополимеризации, методы определения констант сополимеризации, распределение звеньев в цепи, а также синтез сополимеров альтернантного строения на комплексных металлоорганических катализаторах в настоящее время не обобщены. [c.5]

    В органической химии часты случаи, когда из одних и тех же реагентов параллельно образуются несколько продуктов. Так, при нитровании алкилбензолов образуется смесь орто-, мета- и пара-замещенных производных, в реакциях присоединения к сопряженным диеновым углеводородам образуются продукты 1,2- и 1,4-присоединения и т. д. Нередко при изучении кинетики процесса, особенно в случае быстрых реакций, абсолютные скорости образования каждого из производных не определяют, а о соотношении скоростей судят по относительным количествам образовавшихся продуктов, считая, что соотношение продуктов определяется отношением скоростей и, следовательно, разностью значений гибб-совых энергий активации для образования различных продуктов. [c.223]

    Изучение кинетики реакции диенового синтеза с гексахлорциклопентадиеном в присутствии различных веществ, в том числе генераторов свободных радикалов, показывает, что данная реакция не может быть причислена к процессам, протекающим по радикальному механизму [176]. По-видимому, в случае полигалоидциклопентадиенов, как и в диеновых синтезах с другими диенами, присоединение происходит через стадию образования ионного комплекса, который далее перегруппировывается в нормальный аддукт [273—275]. Это положение подтверждается также тем, что скорость реакции диенового синтеза в ряду циклопентадиенов возрастает в следующем порядке циклопентадиен<гексахлор-циклопентадиен<1,2,3,4,5-пентахлорциклопентадиен< 1,2,3,4-тет-рахлорциклопентадиен < 1,2,3,4-тетрахлор-5,5-дифторциклопента-диен. [c.34]

    Рассматриваемые реакции диенового синтеза необычны тем, что кинетику и равновесие можно изучить как в газовой фазе, так и в полярном или неполярном растворителе. Эта область исследований еще не полностью разработана, так что предстоящее обсуждение нескольких обычно не очень точно выполненных измерений равновесия следовало бы рассматривать лищь как введение в эту проблему. Необходимо систематическое исследование влияния химических условий на изменения энтальпии и энтропии и их связи с энергией активации и предэкспоненциальным фактором уравнения Аррениуса. Было бы также интересно измерить теплоемкости веществ, участвующие в газообразной реакции Дильса — Альдера, для того, чтобы лучше понять причины изменений энтропии и оценить вклады колебательных сумм состояний. [c.54]

    Реакции, приведенные в табл. 14, и другие реакции Дильса — Альдера, изучавшиеся в растворе, имеют второй порядок вплоть до высоких степеней превращения. В растворах измерения проводили при более низких температурах, чем в газовой фазе, и поэтому кинетика реакции существенно не осложнялась. При присоединении диалкилазодикарбоксилатов к цикло-пентадиену [190] в метаноле, этаноле, хлороформе и уксусной кислоте второй порядок реакции не наблюдался, возможно, вследствие протекания необратимой реакции между растворителями и этим диенофилом. Реакции между малеиновым или хлормалеиновым ангидридами и антраценом или диметилантраценом идут с меньшими осложнениями [185]. По-видимому, в этом случае устанавливается предварительное равновесие диен-1-диенофил окрашенный комплекс, однако возможно [152, 185] также, что окрашенный продукт образуется в ходе побочной реакции и не имеет отношения к механизму диенового синтеза ). [c.66]

    Наряду с азодикарбоновым эфиром нами впервые были введены в диеновый синтез и азодиароилы [59, 66]. Была изучена область иримене-н ия и кинетика этой реакции [66, 67]. [c.181]

    Пионерами химии и хилшческой кинетики высокомолекулярных соединений li namoii стране следует считать С. В. Лебедева и П. П. Шо-рыгина, которыми были начаты работы в таких ведущих областях, как получение синтетического каучука и искусственных волокон. С. В. Лебедев исследовал кинетику полимеризации многих диеновых и аллено-вых соединений в сравнимых условиях и получил данные, позволившие установить определенные закономерности, связывающие склонность мономеров к полимеризации с их строением. [c.43]

    Было показано, что в инициированной нерекисными соединениями жидкофазной полимеризации хлороирена свободные радикалы накапливаются в больших количествах. Представлепие о радикальной природе перекисного инициирования и развития полимерных цеией было подтверждено при исследовании кинетики и механизма виниловой, диеновой и большого числа совместных полимеризаций. Экспериментально показано и количественно рассмотрено значение реакции передачи цепи как одного из факторов, определяющих средний молекулярный вес полимеров [131]. [c.43]


Смотреть страницы где упоминается термин диенов кинетика: [c.249]    [c.490]    [c.54]    [c.249]    [c.490]    [c.183]    [c.896]   
Основы химии полимеров (1974) -- [ c.525 , c.530 ]




ПОИСК





Смотрите так же термины и статьи:

диенов



© 2025 chem21.info Реклама на сайте