Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Шлаки, определение силиката

    Определение кобальта в рудах, шлаках и силикатах. [c.174]

    ОПРЕДЕЛЕНИЕ КОБАЛЬТА В РУДАХ, ШЛАКАХ И СИЛИКАТАХ [c.175]

    При изучении форм никеля, остающихся в шлаках никелевого завода, была исследована возможность использования различных реагентов для перевода в раствор тех или иных соединений никеля [10]. При этом были опробованы некоторые реагенты на чистых синтезированных препаратах сульфида никеля. Так, для определения металлического никеля применяли сулему и медно-сульфатный раствор. Сулема, в отличие от сульфатов меди, за короткое время полностью окисляет и переводит в раствор металлический никель. Для определения силикатов никеля применяли смесь фторида и тартрата аммония, смесь серной и фтористоводородной кислот с добавкой соли меди. Все реактивы оказались равноценными. В качестве растворителей для сульфидного никеля использовали уксуснокислый раствор перекиси водорода и нитрат серебра. Лучшим оказался раствор перекиси водорода. [c.140]


    Определение кремневой кислоты в виде фтористого кремния. При анализе различных силикатов, руд, шлаков и металлов часто выделяют в нерастворимом состоянии кремневую кислоту и взвешивают. Известно, что силикагель является хорошим адсорбентом. Поэтому естественно, что осадок кремневой кислоты содержит обычно примеси ряда металлов, что часто необходимо учитывать. Так, например, при анализе каолинов, бокситов, сплавов, содержащих кремний, и т. п. осадок кремневой кислоты обычно захватывает значительную часть титана , содержащегося в породе, а также ионы железа, щелочных металлов и других элементов. Поэтому при точных анализах поступают следующим образом. [c.112]

    ДЦТА использована для определения алюминия в высоколегированных жаропрочных сплавах [600], в медных сплавах [1082], силикатах [704, 1087], хромовых рудах и огнеупорах [507], марганцевых рудах [509], в основных шлаках [509]. [c.81]

    Методы термогравиметрического определения кальция используются при исследовании смесей солей щелочноземельных металлов [890, 976], оксалатов кальцпя, магния [1547] и других металлов [1054], а также прп анализе мартеновских и основных шлаков, силикатов и доломитов [868, 1433[. Предложен газоволюметрический метод определения кальция в присутствии стронция и бария [37]. [c.156]

    В металлургической промышленности он применяется для определения кальция и магния в промышленных водах, в пробах доломита и известняка, для быстрого анализа силикатов, доменных шлаков и пиритных руд. Применение метода термометрического титрования для определения цианидов в гальванических ваннах уже обсуждалось при рассмотрении химических аспектов метода. Определение дегтярных кислот и чистоты органических веществ также уже рассматривалось в соответствующих разделах. Эти примеры не исчерпывают всех случаев применения термометрического метода анализа и не дают полного представления о возможностях этого метода. [c.119]

    Меркурометрическое титрование железа (III) применяют для определения железа в рудах [6], горных породах [27], силикатах [26], золе углей [7], шлаках [7, 28], фармацевтических препаратах [29] и кормовых смесях [30]. [c.206]

    В книге изложены теоретические основы комплексометрического, фотоколориметрического, полярографического, амперометрического и люминесцентного анализов. Описаны методики анализа различных нерудных материалов (искусственных силикатов, кремнеземистых добавок, шлаков, карбонатных пород и др.), воды, бетонов, находившихся в агрессивных средах, а также методики ряда специальных определений, необходимых при исследовании свойств строительных материалов и процесса гидратации. [c.2]


    Фотоколориметрический метод характеризуется высокой точностью, чувствительностью и простотой. Используя его, можно значительно ускорить химический анализ силикатов и других материалов. Наиболее целесообразно применять этот метод для определения примесей (например, для определения Т1, Р, Мп, Сг в цементах и шлаках 8102 в жидкой фазе цементных паст и суспензий, при изучении взаимодействия заполнителя со щелочами и т. д.). [c.12]

    Силикатные минералы являются самой распространенной частью пород, образующих земную кору. Поэтому анализ силикатов составляет основную часть анализов, производимых в связи с геологическими и геохимическими изысканиями, при поиске и изучении рудных месторождений, при решении ряда агрохимических проблем и пр. Силикаты часто являются объектом исследования в связи с производством различных строительных материалов, керамики, стекла, цемента, при контроле металлургического производства, где большие количества силикатов идут в отход в виде шлака и др. Одновременно анализ подобных материалов может служить хорошей иллюстрацией анализа сложных неорганических объектов, в которых определяется большое число элементов с использованием различных методов разделения и определения. [c.462]

    Как мало понимались раньше основные положения анализа таких сложных веществ и необходимость точного выделения и определения их составных частей, даже когда эти части сравнительно немногочисленны, видно из следующих фактов. Из специалистов химиков-аналитиков были созданы комиссии для исследования методов, применяемых в различных областях технической химии, в том числе методов анализа цинковых руд, шлаков, получаемых при выплавке медных руд, глинистых известняков и цементов. Оказалось, что получить сходящиеся результаты их анализов было невозможно, и это даже тогда, когда анализы проводились наиболее опытными в каждой области химиками. В результате последующих исследований, предпринятых этими комиссиями, и выработанных ими инструкций было достигнуто некоторое улучшение в промышленном анализе силикатов в будущем можно ожидать дальнейшего улучшения. Значительно большего 5 далось добиться в отношении анализов, проводимых в научных учреждениях с целью научного исследования, однако до настоящего времени постановка обучения аналитической химии в наших учебных заведениях далеко не удовлетворительна и требуется более внимательное к ней отношение. [c.877]

    Нередко делается полный анализ доменных шлаков, который ведут по правилам анализа силикатов. Специального определения требует сера, которая встречается в этих шлаках в виде сернистого бария, кальция и марганца определение производится по сероводородному способу (S с h U 11 е), описанному при чугуне на стр. 181 и сл. [c.59]

    Термодинамические измерения, особенно измерения коэффициентов активности для силиката в равновесии с металлом, производились неоднократно это связано с практической важностью такой информации для вычисления равновесий шлак-металл. Делались попытки определения структуры частиц в расплавленном окисле на основании термодинамических работ. При этом выдвигались гипотезы о существовании определенных молекулярных частиц, и критерием их правильности считалось постоянство вычисленных значений константы равновесия и близость измеряемых величин к этому численному значению. Однако такой подход не учитывает общего вывода Гиббса о невозможности получения структурных данных из чисто термодинамических (не статистических) рассуждений. Приблизительное постоянство теоретически вычисленной константы равновесия при изменении состава не является строгим доказательством в пользу существования в расплавленном окисле предполагаемых частиц, поскольку отношение произведений концентраций ряда различных частиц может оказаться приблизительно постоянным [150] (в противоположность численному совпадению с экспериментом теоретического расчета, включающего кинетический параметр, который зависит от абсолютного значения, а не от отношения значений. В данном случае численное совпадение с экспериментом более убедительно, чем для равновесной константы, зависящей от отношения концентраций). На практике такой метод исследования приводил к выводам относительно структуры, не согласующимся с результатами определений по другим методам. Измерения активности и соответственно определения обратимых э. д. с. ячеек, содержащих [c.239]

    А Сплавление с тетраборатом особенно эффективно для разложения кислородных соединений алюминия (корунд, рубин, сапфир), циркония (бадделеит), кремния (турмалин), олова (касситерит), ниобия, тантала Д, циркониевых руд, минералов РЗЭ и шлаков. Сплавление с тетраборатом можно применять при определении железа (П) в силикатах, однако следует иметь в виду, что некоторое количество железа (И) окисляется, даже если сплавление проводят в атмосфере инертного газа [4.364]. Смесь расплавов боросиликатного стекла и вольфрамата натрия была использована для определения воды в силикатах [4.365]. Условия разложения некоторых материалов тетраборатом натрия приведены в табл. 4.19. [c.98]


    Д Так, Д.1Я определения фторнда кальция в флюсах пробу разлагают пирогидролизом в присутствии ускорителя Оз + В1.20з + + МпО.2, который позволяет снизить температуру пирогидролиза до 1000—1100 °С и сократить продолжительность разложения пробы. Д Пирогидролиз может быть использован для выделения небольших количеств фторидов из стеклянных и керамических материалов, а также материалов, используемых для их изготовления силикатов, фосфатов, шлаков и руд. [c.109]

    Часто бывает необходимо определять кремний при анализе горных пород, руд, минералов, шлаков, стекол и других объектов, в состав которых входят прочные, весьма труднорастворимые соединения этого элемента — силикаты. Поэтому основная трудность при определении кремния методом ААА, как, впрочем, и другими методами аналитической химии, состоит в переводе кремния в растворимую форму. Для этого обычно сплавляют анализируемые пробы со специальными плавнями (часто, например, рекомендуют сплавление с метаборатом лития) и только потом растворяют пробу в кислотах. [c.191]

    Формула Стокса применяется при определении зависимости скорости всплывания частиц примесей, переходящих в шлак (сульфидов, окислов, силикатов, фосфидов, нитридов, карбидов и др.), от различных факторов  [c.35]

    В настоящее время термоанализатор Директермом используется при определении высоких содержаний компонентов в различных материалах в металлургических шлаках, рудах, силикатах, удобрениях, в растворах гальванических ванн и др. Так, в металлургических шлаках определяют основные компоненты окиси кальция, магния и алюминия, двуокись кремния, закиси железа и марганца, пятиокись фосфора и др. При этом используют реакции  [c.140]

    Цирконализариновый комплекс применяется для определения фторида в стекле [98], природных фосфатах [99], окислах и шлаках [100], силикатах и фосфатных породах, смолах и каменных метеоритах [101, 102], хлорированной воде [103], морской соли [104], напитках [105], лекарствах [106], водных растворах [107] и в других материалах [108, 109]. [c.302]

    Качественно для полноты извлечения фосфора из стали необходимо, во-первых, чтобы шлак был достаточно окислительным и, во-вторых, чтобы он имел высокую основность для нейтрализации образующейся кислоты — Р2О5 (аниона Р0 ). Согласно уравнению (IX.28), устойчивость РО возрастает при увеличении активности ионов кислорода. Следует, однако, учитывать упоминавщееся вьше различие в свойствах двух оксидов СаО и FeO. Как и в случае силикатов, ионы a + в расплаве, вероятно, образуют как бы молекулы Саз(Р04)2, более устойчивые, чем р0з(РО4)2. Это обусловлено и тем, что при одинаковых зарядах ион Са + имеет больший радиус (0,106 нм), чем ион Ре + (0,083 нм). Таким образом, электростатическое поле вокруг Ре + является более сильным и этот ион сильнее связывает ионы 0 , чем Са2+, тем самым препятствуя стабилизации в шлаке аниона Р0 . Следовательно, для дефосфорации необходимо определенное сочетание между концентрациями СаО и РеО. [c.261]

    Метод дает воздюжность быстро и непосредственно анализировать твердые и жидкие вещества без их разрушения со сравнительно высокой точностью (порядка 1—5 отн. %). Один из недостатков метода — относительно пизкаячувствительность. При-люняют его главным образом для экспрессного контроля иро-дуки,ии различных производств. Чаще всего в анализах используют спектро.метр с кристаллом LiF. Метод был применен для определения марганца и других элементов в горных породах и морских осадках [1062, 1289, 1459, 1.534[, шлаках и угольной золе [423, 1455], терефталевой кислоте [813[, цеолитах [1032], рудах [2611, окисных включениях в сталях [9531, сплавах [711, 8371, бериллии [8811, сталях [1228], чугуне [7121, бензине [1095], сплавах марганца с РЗЭ [11271, силикатах [11361, молибдене и его соединениях [1442]. [c.115]

    Чувствительность спектрального метода определения кальция без обогащения составляет 10 [79, 185, 202, 465] — 10 % [93, 202, 234, 246, 248, 250, 299, 372]. В некоторых случаях чувствительность может быть повышена до 10 % [30, 186, 245, 247, 249, 543, 618]. При спектрографировании в дуге чувствительность бывает порядка 10 %, в искре —10 % [282]. Применяя различные приемы обогаш епия, можно повысить чувствительность спектрального метода до 10 —10 % [62, 84, 215, 427, 513, 556]. Увеличению чувствительности способствует применение приборов большой дисперсии [390], замена воздуха в дуговом промежутке на инертный газ [391], последовательное прокаливание электродов в атмосфере воздуха, углекислого газа п обработка азотной кислотой [45] и др. Некоторые авторы оценивают чувствительность спектрального метода в 10 абс.% [182, 385, 589]. Открываемый минимум —0,005 [208], 0,02—0,03 мкг [210]. Точность спектрального определения в магнезите [20] и силикатах [99, 100] составляет + 3% и понижается до + 10% при содержании п-10 % Са [283]. Точность определения кальция в шлаках мартеновских [333, 404], основных [30, 409] колеблется от +2 до +5%. Кальций в стали определяется с точностью +10% [411], [c.112]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Рентгелофлуоресцентный метод определения кальция применяется для анализа цементов [43, 64, 659], горных пород [81, 448 , силикатов [884, 1103], руд [17, 547,1257 , глин [567,1562], шлаков [526[, доменного кокса [95], шламов [453[, кеков [526], керамики [1187[, металлического натрия [1449], медно-никелевых сплавов [1572[, биологических образцов [779, 1215[, продуктов [996[, почв [81], растений [1498], углеводородов [750[, смазочных масел [1189] п др. [c.156]

    Кадариу нашел, что при определении кремния в силикатах и алюминиевых сплавах лучше употреблять хлорную кислоту,, чем серную. Хлорную кислоту рекомендовали также для растворения оксалата кальция перед титрованием перманганатом. Када-риу1 предложил применять хлорною кислоту для разложения шлаков, высушенного цементного теста, портландцемента, боксита или глины. Турек разлагал глину фтористоводородной и хлорной кислотами. После перевода образовавшихся перхлоратов в сульфаты анализ заканчивали обычными методами. [c.123]

    Из объемных методов определения галлия в минеральном сырье используют комплеисонометрический метод с индикаторами ксиленоловым оранжевым (в силикатах и шлаках) [961], морином (в силикатах и бокситах) (1202] и 7-(4-сульфо-2-нафтил-азо)-8-оксихинолин-5-сульфокислотой (образцы, содержащие алюминий) [98]. Последний индикатор позволяет определять галлий в присутствии достаточно больших количеств щелочноземельных металлов, Zn, d, Mn, Al (в виде фторидного комплекса) и Р01.  [c.178]

    Ярким примером неудовлетворительного выбора избирательных растворителей может служить методика определения форм свинца в шлаках свинцовой шахтной плавки, предложенная в 1929 г. Олдрайтом и Миллером [30]. По этой методике рекомендуется последовательная обработка навески шлака растворами а) ацетата аммония при температуре кипения для извлечения окиси и сульфата свинца б) нитрата серебра при комнатной температуре для растворения металлического свинца в) хлорида натрия, содержащего хлорид трехвалентного железа, при комнатной температуре для извлечения сульфидного свинца. В конечном остатке, по мнению авторов методики, сохраняются лишь силикаты свинца. [c.35]

    Трехкальциевый силикат ЗСаО ЗЮг образуется вследствие реакции в твердом состоянии, а именно, в смесях двукальциевого силиката и свободной извести при температуре несколько ниже 1900°С. Он распадается при температуре выше 1900°С. Карлсон наблюдал, что трехкальциевый силикат имеет также нижнюю границу устойчивости Ари 1250°С, определенную по экспериментам Эйтеля с фтористым кальцием в качестве минерализатора. Оптимальная температура распада на известь и Р-двукальциевый силикат составляет около 1150 1200°С . Природа трехкальциевого силиката имеет основное значение (см. D. III, 42 и ниже) для теории строения клинкера портланд-цемента. Дикер-гоф отметил, что а- и р-двукальциевые силикаты поглощают значительные количества свободной извести и что в кристаллических растворах, которые при этом образуются, возможные превращения задерживаются блокируются ) присутствием аморфного стекла. Следовательно, эти растворы могут сильно переохлаждаться и приобретать в этом неустойчивом дастюя нии1 характерную для клинкеров высокую химическую активность. Солаколу описал процесс образования мета-алита , предполагаемого неустойчивого кристаллического раствора извести в р-двукальциевом силикате, образующегося при распаде трехкальциевого силиката в качестве промежуточной фазы до выделения свободной извести. Гутман и Гилле описали хорошо развитые гексагональные кристаллы трехкальциевого силиката из мартеновских шлаков и исследовали их рентгенографическим методом Эйтель получил такие же кристаллы из расплава фтористого кальция, содержавшего основные силикаты кальция. [c.429]

Фиг. 930. Бинарное сечение двукальциевый силикат — трехкальциевый фосфат в тройной системе кремнезем — окись кальция — пятиокись фосфора (Tromel) существуют поля R, К к S, которые соответствуют кристаллической фазе, подобной ренаниту, твердому раствору со структурой типа сульфата калия и другим фазам типа двукальциевого силиката. Только фаза S имеет характерные особенности силикокарнотита, который, однако, присутствует не как определенное соединение, а в виде твердого раствора. Значительное влияние различных скоростей охлаждения расплавленных основных шлаков, особенно содержащих кристаллы типа К к R, служит указанием того, что растворимость (правильнее назвать ее скоростью ргстворимости ) в лимонной кислоте существенно зависит от дисперсности разрушаемой структуры ниже температуры 1300°С. Фиг. 930. Бинарное сечение <a href="/info/500353">двукальциевый силикат</a> — трехкальциевый фосфат в <a href="/info/3273">тройной системе</a> кремнезем — <a href="/info/7965">окись кальция</a> — <a href="/info/55511">пятиокись фосфора</a> (Tromel) существуют поля R, К к S, которые соответствуют <a href="/info/334664">кристаллической фазе</a>, подобной ренаниту, <a href="/info/2260">твердому раствору</a> со <a href="/info/176964">структурой типа</a> <a href="/info/1723">сульфата калия</a> и <a href="/info/1454676">другим фазам</a> типа <a href="/info/500353">двукальциевого силиката</a>. Только фаза S имеет <a href="/info/582142">характерные особенности</a> силикокарнотита, который, однако, присутствует не как <a href="/info/17798">определенное соединение</a>, а в <a href="/info/1544216">виде твердого раствора</a>. Значительное <a href="/info/1562524">влияние различных скоростей</a> охлаждения расплавленных <a href="/info/503765">основных шлаков</a>, особенно содержащих <a href="/info/676594">кристаллы типа</a> К к R, служит указанием того, что растворимость (правильнее назвать ее скоростью ргстворимости ) в <a href="/info/1104">лимонной кислоте</a> существенно зависит от дисперсности разрушаемой структуры ниже температуры 1300°С.
    Как подчеркнул Сосман , физические условия распределения температур в мартеновских печах зависят от свойства шлака и его теплог1роводности. Передача теплоты по слою шлака на глубину 1—10 дюймов должна зависеть от его абсорбционной Энергии поверхности и конвекции к находящемуся ниже слою металла. Обычно температура шлака выше температуры металла, и Сосман допускает температурную разницу между обеими фазами, равную приблизительно 50°С, которую он определил по темным пузырькам , поднимающимся из стали через расплав шлака. На поверхности шлака, которая непосредственно подвержена теплоизлучению от пламени топок, работающих на современных видах жидкого топлива, температура моует подниматься даже до 1900°С при таких высоких температурах нельзя пренебрегать упругостью пара над металлом и окисью железа. Отложения окислов в регенераторах печей с нефтяными топками обильнее, чем в газовых печах. Оптимальное действие шлака в мартеновском процессе связано с определенной степенью непроницаемости длинноволнового излучения. Тонкодисперсная суспензия двукальциевого силиката, периклаза, магнезио-феррита и т. д. в шлаке действует как хороший проводник тепла к расплаву металла. Такие суспензии могут быть даже крупнозернистыми, типа мокрого песка или гравия, если в шлаке распределены большие куски нерастворившейся извести или магнезии из откосов печи. [c.935]

    Как всегда делается при анализе силикатов, определение щелочей производят в веществе, ке содержащем кремнекислоты, после разложения плавиковой кислотой. Все осаждения производятся солями аммония, так что в конце концов, после удаления последних, остаются одни щелочные металлы, которые взвешивают в виде сернокислых солей. Разделение щелочных металлов производят платинохлороводородной кислотой. Определение щелочей вообще производится редко — лишь иногда в золе горючего (особенно древесного угля) или в шлаках древесноугольных доменных печей. [c.44]

    Методы определения кальция и магния практически совпадают с приведенными в предыдущих параграфах. Отдельные варианты различаются главным образом способами разложения анализируемых проб в зависимости от их химического состава. Различные отклонения в методах, имеющиеся при отделении мешающих элементов, часто бывают вызваны личными вкусами того или иного исследователя. Так, например, при анализе силикатов Бэнкс [27] рекомендует выделять железо, алюминий и марганец добавлением аммиака и бромной воды, после чего в аликвотных порциях фильтрата определять кальний и магний по разности в результатах двух титрований в присутствии мурексида и эриохрома черного Т. Беккер [28] точно также осаждает полуторные окислы аммиаком при анализе цементов. Аналогично поступает и Хабёк [29]. При анализе шлаков и руд Граус и Цёллер [30] рекомендуют после растворения пробы и выделения кремнекислоты осаждать тяжелые металлы в мерной колбе сульфидом аммония. После доведения объема раствора до метки достаточно профильтровать только его часть и определить в нем суммарное содержание кальция и магния или содержание одного только кальция. При проведении таких анализов не следует ограничиваться только комплексометрическим определением кальция и магния. Другие присутствующие в растворе катионы в зависимости от их концентрации можно определять комплексометрически (А1, Ре), колориметрически (Т1, Ре), полярографически или воспользоваться методом фотометрии пламени (щелочные металлы). Такой количественный полумикрометод полного анализа силикатов описывают Кори и Джексон [31]. Пробу силиката разрушают плавиковой кислотой или сплавлением с карбонатом натрия. В зависимости от способа разложения пробы в соединении с известными операциями разделения (осаждение аммиаком, щелочью и т. п.) они методом фотометрии пламени определяют натрий и калий, колориметрически — кремнекислоту молибдатом аммония, железо и титан раздельно с помощью тирона, алюминий — алюминоном и, наконец, кальций и магний комплексометрическим титрованием. За подробностями отсылаем читателя к оригинальной работе авторов метода. О некоторых полных анализах сили- [c.453]

    Микроскопический, термографический и рентгенографический контроль указывает на присутствие шлака в составе выделяемых новообразований. Многократные перечистки удовлетворительного результата не дали. По различным оценкам ошибка определения процентного содержания новообразований может достигать 5—25%. Были выделены новообразования из шлако-силикатпых вяжущрхх, изготовленных на основе ш,елочи и силикатов натрия и твердевших при различных условиях. Химический состав новообразований, выделенных из шлакосиликатов различных составов, представлен в табл. 4—7. [c.70]

    Если железо определяется в силикатах, известняках, доломитах, цементе или доменном шлаке, то приготовление испытуемого раствора производят совершенно так же, как это делаюг при определении алюминия (стр. 242). [c.245]

    Шлакопортланд-цемент, получивший в нашей стране значительное распространение, представляет продукт совместного помола портланд-цементного клинкера и основного доменного гранулированного шлака. Портланд-цементная часть шлакопорт-ланд-цемента при действии на нее воды претерпевает определенные изменения (стр. 20—26). Известь, отщепляющаяся от трехкальциевого силиката, возбуждает доменный шлак. [c.34]

    Детально отработан метод определения железа (П) в силикатах, шлаках и различных оксидах. Пробу растворяют в НР, смесях НР с НС или с H2SO4 в отсутствие воздуха, если необходимо, под давлением и при повышенной температуре, а железо (И) определяют спектрофотометрически, прямым или обратным титрованием, добавляя известное количество окислителя [4.43, 4.69]. [c.65]

    Определение кремния в различных объектах отличается лишь характером предварительной обработки анализируемого вещества. Метод применен к анализу черных сплавов, силикатов, руд, шлаков, огнеупорных материалов и т.д. /59-77/. Совершенно не мешает определению присутствие болыж количеств соляной, азотной, фосфорной кислот, хлористого калия, хлористого аммония, до I г хлоридов лития, бария, железа, кальция, бериллия, стронция, никеля, кобальта, марганца, цинка, хрома, олова, ртути, молибдата аммония. В присутствии Ю о-ного раствора хлористого кальция не мешают хлориды алюминия, титана и ванадила, цирко-нилсульфат, если их не более 0,5 г. Указанным методом был определен кремний в сотнях образцов пегматитов, в стекле, граните, гнейсах, амфиболитах, кварцево-слюдя<1ых сланцах, сплаве "альси- ер". Среднее квадратичное отклонений полученных результатов от данных весового анализа составляет + 0,24 относительных /77/. [c.11]


Смотреть страницы где упоминается термин Шлаки, определение силиката: [c.160]    [c.212]    [c.16]    [c.380]    [c.810]    [c.939]    [c.326]    [c.83]   
Определение анионов (1982) -- [ c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Определение кал ция силикатах

Силикаты

Шлаки



© 2025 chem21.info Реклама на сайте