Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель металлический определение

    Кроме того, исследованиями механизма хемосорбционной очистки бензола на никелевом катализаторе показано, что восстановленный металлический никель в процессе работы, соединяясь с серой, образует сульфиды никеля, чем и объясняется снижение активности катализатора. В то же время известно, что сульфиды никеля в определенных условиях используются как компоненты гидрогенизационных катализаторов. На основании этого нами была предпринята попытка использовать отработанный в процессе хемосорбционной очистки бензола катализатор никель на кизельгуре для предварительной гидроочистки бензола. [c.90]


    Для концентрирования мы использовали мокрую цементацию никеля металлическим цинком, применение которой для этого обусловлено следующим во-первых, ионы двухвалентного марганца и ионы железа не могут быть восстановлены цинком до металла во-вторых, ранее было показано[1, 2], что содержащиеся в электролите в соизмеримых с никелем количествах примеси меди и кадмия легко и количественно цементируются цинком, что создает условия для их одновременного осцилло-полярографического определения. [c.208]

    Петров А. И. Ускоренный метод определения меди в закиси никеля, металлическом никеле и никелевых растворах. Зав. лаб.. [c.198]

    Анализ металлического никеля. XI. Определение чистоты. 1. Основные опыты. [c.200]

    При изучении форм никеля, остающихся в шлаках никелевого завода, была исследована возможность использования различных реагентов для перевода в раствор тех или иных соединений никеля [10]. При этом были опробованы некоторые реагенты на чистых синтезированных препаратах сульфида никеля. Так, для определения металлического никеля применяли сулему и медно-сульфатный раствор. Сулема, в отличие от сульфатов меди, за короткое время полностью окисляет и переводит в раствор металлический никель. Для определения силикатов никеля применяли смесь фторида и тартрата аммония, смесь серной и фтористоводородной кислот с добавкой соли меди. Все реактивы оказались равноценными. В качестве растворителей для сульфидного никеля использовали уксуснокислый раствор перекиси водорода и нитрат серебра. Лучшим оказался раствор перекиси водорода. [c.140]

    Характер зависимости от температуры степени удаления железа на стадии образования карбонилов примерно такой же, как и при удалении никеля (рис. 101). Прохождение степени удаления железа через максимум можно объяснить тем, что после достижения определенной температуры скорость обратной реакции начинает преобладать над скоростью прямой реакции. Визуальные наблюдения за скоростью образования металлического зеркала показали, что основное количество железа удаляется из катализатора в течение первого часа. [c.249]

    Результаты определения концентрации металлов в щариках тех же размеров, выбранных из общей массы циркулирующего равновесного катализатора, показали, что при работе катализатора возрастает концентрация имеющихся металлических примесей и дополнительно откладываются никель, ванадий и цинк. Из кривой / рис. 1 видно, что концентрация металлов в частицах равновесного катализатора в пределах точности определений также остается постоянной, но во всех случаях выше, чем в свежем [c.112]


    Определение примеси меди в металлическом никеле методом внутреннего электролиза [c.210]

    Схема метода. Примесь меди в никеле может составлять от нескольких сотых долей процента до 0,5%. Для определения меди навеску никеля растворяют в азотной кислоте и выделяют медь из кислого раствора на платиновом катоде, применяя в качестве анода (внутреннего электрода) металлический алюминий. [c.210]

    Поэтому при анодном растворении чернового никеля только платиноиды не растворяются — они переходят в шлам. Остальные же примеси при анодном растворении окисляются и переходят н раствор в виде ионов (Си +, Fe +, Со +), а при катодном осаждении совместно с ионами никеля восстанавливаются до металлического состояния. Включение их в катодный осадок будет зависеть от соотношения скоростей разряда ионов основного металла и примесей. Для предотвращения включения этих примесей в катодный осадок при электролизе никеля каждый катод помещают в диафрагменную ячейку, представляющую собой каркас с натянутой на него фильтрующей тканью. В ячейку непрерывно с определенной скоростью поступает очищенный от примесей электролит, который через поры диафрагмы перетекает в анодное пространство. [c.127]

    В. Определение никеля в металлическом бериллии [c.185]

    Для определения никеля в металлическом бериллии берут две навески по 0,25 г, растворяют каждую при слабом подогревании в 20 мл [c.185]

    Для определения никеля в галлии берут две навески по 2,5 г металлического галлия, помещают в тефлоновую или кварцевую чашку емкостью 100 мл и растворяют осторожно в смеси 5 мл соляной и 15 мл азотной кислот, прикрывая чашку часовым стеклом. После растворения полученный раствор упаривают почти досуха на водяной бане. Остаток растворяют в 20—40 мл 25%-ного раствора винной кислоты и переносят в мерную колбу емкостью 50 мл, смывая чашку двумя порциями воды по 4 мл и доводят объем раствора водой до метки. Переносят в две делительные воронки по 20 мл этого раствора. К раствору, в каждую делительную воронку добавляют 10 мл буферной смеси, 5 мл раствора а-фурилдиоксима. После этого проводят все операции, указанные при определении никеля в алюминии (стр. 189). Содержание никеля находят по градуировочному графику. Результаты параллельных определений (не менее четырех) обрабатывают с применением метода математической статистики. [c.190]

    Металлические порошки и порошковые материалы. Металлические порошки получают низкотемпературным восстановлением металлов (водород) или разложением их газообразных соединений (карбонилы никеля, железа и других металлов). Порошки металлов смешиваются в определенных соотношениях, спекаются в вакууме или в атмосфере водорода или инертных газов в штабики , а затем прокаткой переводятся в монолитное состояние или в изделие. [c.288]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    МГц,не выявили зависимости электрического сопротивления от частоты измерения для всех фракЦий, что объясняется отсутствием скин-эффекта у порошковых систем. Вольтамперные характеристики системы, снятые на частоте 1600 Гц,подчинялись закону Ома без каких-либо отклонений. На температурных зависимостях изменения электросопротивления для всех фракций при температуре выше 350"С отмечается увеличение удельного электросопротивления с ростом температуры, что, по-видимому, связано с наличием металлического типа проводимости. При более низких температурах был обнаружен обратный тип зависимости. При этом для ряда фракций (113, 74, 45 мкм) наблюдается плато в области температур 280-320"С. Перечисленные факты позволяют предположить, что система в определенном интервале температур обладает полупроводниковой проводимостью, присущей ряду соединений никеля. [c.85]


    Процесс проводят в двух группах электролизеров. После того как на катоде выделилось определенное количество никеля, электролизер или группа электролизеров выключается для растворения металлического никеля в соляной кислоте [74] по реакции  [c.300]

    В металлическом натрии определяли никель фотометрически в форме цианидного комплекса, устраняя влияние ионов Fe(III) и Сг(1П) методом гомогенного осаждения мочевиной, а влияние меди — восстановлением гидроксил амином [738]. Метод применим для определения никеля в различных солях натрия. Можно определять никель также диметилглиоксимом в щелочной среде в присутствии окислителя — бромной воды [23]. [c.199]

    Свойства. Красно-коричневый порошок с металлическим блеском. Применяют для определения прямым титрованием тория (IV), меди, железа (III), галлия (III), индия (III), никеля, кобальта, марганца, цинка, магния, кадмия. Методом обратного титрования солью висмута определяют железо (III), висмут, индий (III), галлий (III) и торий (IV). Обратным титрованием солью меди определяют железо (III), алюминий, титан (IV) и индий (III). Каждый элемент определяют в своих особых условиях. [c.277]

    Кроме металлического цинка и твердых цинковых амальгам часто применяют также жидкие цинковые амальгамы [772]. Основное преимущество жидких цинковых амальгам заключается в том, что помехи от никеля, меди и других металлов, осаждающихся цинком в редукторе, устраняются применением свежей порции амальгамы для каждого нового определения. [c.80]

    Авторы применили разработанный ими фотокинети-ческий метод для определения железа в металлическом никеле. Металлический никель (0,1 г) растворяют в 10 мл 30%-ной хлорной кислоты. После охлаждения раствор разбавляют в мерной колбе емкостью 100 мл. Полученный раствор (2—5 мл) вносят в мерную колбу емкостью 100 мл, прибавляют 10 мл раствора метилового оранжевого (0,066 г/л), устанавливают pH = 2,1 и разбавляют водой до метки. Этот раствор переливают в кварцевый стакан емкостью 300 мл и освещают 10 мин ртутно-кварцевой лампой ПРК-4 с рефлектором при непрерывном перемешивании магнитной мешалкой. Расстояние от лампы до поверхности облучаемого раствора 30 см. Затем измеряют оптическую плотность облученного раствора при 510 нм в кювете с толщиной слоя 10 мм. В тех же условиях проводят холостой опыт с соответствующим количеством чистой соли никеля (в зависимости от концентрации анализируемого раствора). [c.99]

    Анализ металлического никеля. XII. Определение чистоты. 2. Объяснение сверхосаждения. [c.200]

    Анализ металлического никеля. XIII. Определение чистоты. 3. Удаление загрязнений и метод определения чистоты. [c.200]

    Получающийся при регенерации оксид активного компонента катализатора в определенных условиях может взаимодействовать с носителем с образованием соединений, не обладающих каталитической активностью. Так, основной причиной дезактивации катализатора никель на оксиде алюминия процесса гидродеалкилирования толуола в бензол является образование шпинели N1AI2O4 [110]. Шпинель получается во время окислительной регенерации при 500 °С. При выжиге кокса металлический никель легко окисляется до оксида никеля(П), который при повышении температуры и взаимодействует с оксидом алюминия, образуя шпинели. Причиной повышения температуры может быть тепло, вьщеляющееся не только при горении кокса, но и при окислении металла. [c.51]

    Растворением молекул Н2 в металлах объясняют способность водорода Нз диффундировать через металлические стенки. Так, если в атмосферу водорода Нд внести запаянную с обоих концов нагретую палладиевую трубку, из которой выкачан воздух, то через некоторое время давление внутри трубки и снаружи уравновешивается, как будто стенок трубки и нет. Этим пользуются для определения парциального давления водорода в газовой смеси. По наблюдениям Зиворта и Бэкмана, диффузия водорода через металлические стенки начинается для палладия при 240°, для железа — при 300°, для никеля — при 450°, для платины — при 500° и для меди — при 640° С. [c.616]

    По этому методу органическое вещество подвергают скоростному сожжению в кварцевой трубке без наполнения. Продукты сожжения попадают в раскаленную зону, богатую кислородом, и окисляются до двуокиси углерода и воды. Этот способ, получивший широкое применение в СССР, положен в основу целого ряда методов одновременного определения нескольких элементов из одной навески вещества. Азот в органических соединениях определяют микрометодом Кирсте-на. По этому методу навеску сжигают в кварцевой трубке при 1050° С. Вместо окиси меди и металлической меди используют окись никеля и никель. Метод отличается повышенной точностью и высокой полнотой сгорания органических соединений. В современных аналитических лабораториях стали внедряться и автоматические приборы Циммермана для определения элементного состава, отличающиеся простотой конструкции и большой скоростью анализа. [c.42]

    Длительное время карбонилы не находили промышленного использования, но eiina их широко применяют в так называемой газофазной металлургии не только для получения тонких порошков чистых металлов железа, никеля, хрома и кобальта, но и для нанесения покрытий на металлы, а также получения готовых изделий, используя разложение карбонилов на нагретых до определенной температуры металлических поверхностях. [c.373]

    Плоская молекула циклогексана, представляющая собой ше-стичленный цикл, может адсорбироваться на активном центре катализатора только в том случае, если адсорбционные центры (атомы металла) образуют правильный треугольник, размеры которого соответствуют размеру молекулы циклогексана (атомы металла 1, 2, 3 на рнс. 38). Для того, чтобы деформировать молекулу и оторвать шесть атомов водорода, необходимо еще три адсорбционных центра (4, 5, 6). Таким образом, чтобы на металлическом катализаторе могла протекать реакция дегидрирования циклогексана, активный центр катализатора долл<ен включать шесть атомов металла, расстояния между которыми и валентные углы соответствуют этим же параметрам молекулы циклогексана (принцип геометрического соответствия). Такое располон<ение атомов активного центра возможно только у металлов с определенным строением кристаллической решетки. Для рассматриваемой реакции катализаторами могут быть платина и никель, у которых расстояния между атомами в кристаллической решетке невелики — 0,277 и 0,248 нм соответственно. Металлы с аналогично построенной кристаллической решеткой, но с большими расстояниями между атомами, например, А (0,288 нм) или РЬ. (0,350 нм), каталитически неактивны. [c.110]

    Через исследуемый раствор пропускают электрический ток определенного напряжения. Находящиеся в растворе ионы металлов восстанавливаются электрическим током до металлического состояния. Выделившийся металл взвешивают и по найденной массе вычисляют содержание данного элемента в пробе. Электрогравиметрпческий метод анализа применяют для определения меди, кадмия, цинка, кобальта, никеля, свинца, серебра, золота и некоторых других металлов. [c.26]

    Путем сульфидирования ценные компоненты и нежелательная часть руд и концентратов переводятся во взаимонерастворимые фазы. В результате различного удельного веса фаза, обогащенная ценными компонентами и называемая штейном, отслаивается от нежелательных компонентов (шлака). Используя такой прием, можно сконцентрировать целевой компонент в виде сульфида и увеличить его содержание в штейне в десятки раз по сравнению с исходным сырьем. Однако полностью перевести желательный компонент в штейн не удается, и определенная часть его теряется с шлаком. Количество потерь зависит от многих факторов (от условий сульфидирования, качества восстановителя, концентрации нежелательных примесей в исходном сырье и т. д.). С другой стороны, целевой компонент или компоненты также не получаются в чистом виде. В дальнейшем применением различных приемов рафинирования из штейна получают целевой металл (например, конвертированием никелевого штейна получают файнштейн, в котором содержится до 207о металлического никеля). [c.39]

    При 0 = 0 имеет место абсолютная смачиваемость поверхности жидкостью, при 0 = =я — абсолютная несмачиваемость. Принято считать поверхность гидрофильной (смачиваемой), если данная жидкость образует на ней угол 0<п/2 при 0>я/2 поверхность считается гидрофобной. Жидкие щелочные металлы (при температурах, близких к температуре кипения при атмосферном давлении) и криогенные жидкости смачивают металлические поверхности почти абсолютно (краевой угол близок к нулю). Гидрофобными по отношению к воде и ряду других жидкостей являются парафин, фторопласт (тефлон). В табл. 1.18 приведены значения 0 для некоторых сочетаний жидкость — твердое вещество. Следует иметь в виду, что краевой угол смачивания весьма чувствителен к таким трудно контролируемым факторам, как шероховатость твердой поверхности, присутствие на ней или в жидкости посторонних примесей, особенно поверхностно-активных веществ. Увеличение шероховатости твердой новерхности увеличивает ее смачиваемость, т. е. снижает значение О [28]. Для отдельных сочетаний твердое тело — жидкость в определенном интервале температур наблюдается зависимость 6 от температуры. Так, согласно [18] для жидкого натрия на поверхности никеля (в атмосфере аргона) при /=200н-500°С краевой угол [c.86]

    Осаждение на катоде. Выделяющийся при электролизе на катоде металлический таллий представляет собою губчатую массу, плохо держащуюся на электроде и легко окисляющуюся воздухом, что приводит к неточным результатам определения [309]. Поскольку таллий хорошо растворяется в ртути [93, 164, 535, 856], рекомендуется производить электролиз из кислых растворов на ртугном катоде (образование амальгамы) [314, 373, 676] или на катоде из легкоплавких металлов [722, 723]. Однако и при этом способе определения десятых и сотых долей грамма таллия в пробе ошибка достигает 6% вследствие окисления таллия и потерь при промывании [93, 676]. Взвешивание в атмосфере углекислоты с целью уменьшения возможности окисления усложняет технику выполнения определения. Выделение таллия вместе с предварительно добавленным известным количеством какого-либо катиона (ртуть, никель) дает хорошо держащиеся на катоде осадки, но и они довольно легко окисляются воздухом [696]. Делались попытки в конце электролитического выделения таллия вводить в раствор соль ртути, никеля или меди, чтобы на поверхности таллия получить защитную пленку другого металла, но такие осадки плохо держатся на поверхности таллия [696]. [c.83]

    В никеле и его сплавах Sb > 2-10- % определяют спектральным методом без предварительного отделепия [108]. В другом методе [486] предусмотрено два варианта определения Sb. По одному варианту анализируют металлические образцы (дуга переменного тока 7 —12 а, спектрограф ИСП-28 или ДФС-13) предел обнаружения Sb 1 -10- % (Sr = 0,1 -ь 0,2). По другому варианту пробу переводят в окислы спектры возбуждают дугой переменного тока 6а. При спектральном определении Sb 2,5-10 % в никелевых электролитах применено групповое концентриро- [c.141]

    Основное применение карбонилы находят при приготовлении чистых металлов. Процесс Монда для рафинирования никеля и приготовления чистого железа для специальных целей, например магнитных сердечников, основан на образовании летучего карбонила, очищении паров от примесей, содержащихся в исходных металлах, и последующем разложении для получения чистого металла. Карбонилы хрома, молибдена и вольфрама были применены в масспектроскопии для определения устойчивых изотопов соответствующих металлов [9]. Карбонил никеля был использован для приготовления металлических зеркал и для покрытия различных предметов тонкими металлическими пленками. Карбонил железа находит применение в качестве антидетонатора в горючем для двигателей внутреннего сгорания. [c.226]


Смотреть страницы где упоминается термин Никель металлический определение: [c.11]    [c.375]    [c.84]    [c.243]    [c.266]    [c.407]    [c.95]    [c.146]    [c.497]   
Аналитическая химия молибдена (1962) -- [ c.161 ]

Аналитическая химия молибдена (1962) -- [ c.161 ]




ПОИСК





Смотрите так же термины и статьи:

Никель определение



© 2025 chem21.info Реклама на сайте