Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амины в неводных растворах

    В качестве титрантов для определения кислот применяют неорганические и органические основания, ацетаты и алкоголя-ты щелочных металлов, амины и т. д. Наиболее сильными основными титрантами в неводных растворах являются четвертичные аммониевые основания — гидроксиды тетраметил-, тетраэтил- и тетрабутиламмония и их производные. [c.218]


    Большинство методов определения смесей первичных, вторичных и третичных аминов основано на проведении трех титрований 1) сначала определяют суммарное содержание аминов титрованием смеси неводным раствором хлорной или хлористоводородной кислот 2) смесь аминов обрабатывают уксусным ангидридом, при этом происходит аце-тилирование первичных и вторичных аминов  [c.445]

    Определение аминогруппы. Амины относят к основаниям, поэтому их можно титровать в водной среде или в органических растворителях. Алифатические амины представляют собой достаточно сильные основания, поэтому их можно титровать и водной среде кислотам ,. Ароматические амины являются более слабыми основаниями и плохо титруются в неводных растворах (например, в уксусной кислоте, ди-оксане, спиртах, нитрилах, эфирах и др.). Амины хорошо растворимы в этих растворителях, но не взаимодействуют с ними. Основность аминогруппы при этом не понижается. Количественное определение первичной аминогруппы можно также проводить, используя азотистую кислоту, согласно реакции [c.822]

    Когда электролиты, полностью диссоциированные в воде, растворяются в растворителях с низкой диэлектрической постоянной, кулоновское притяжение оказывается достаточным для образования ионных ассоциатов при предельно низких концентрациях ионов. Сила взаимодействия между ионами обратно пропорциональна диэлектрической постоянной среды (разд. 6.1). Таким образом, все электролиты являются слабыми электролитами в растворителях с низкой диэлектрической постоянной. К растворителям, играющим важную роль при изучении неводных растворов электролитов, принадлежат спирты, жидкий аммиак, диоксан, ацетон и другие кетоны, безводная муравьиная кислота и уксусная кислота, пиридин, некоторые амины и нитросоединения. [c.347]

    Титрованием в среде ацетона определяют н-бутиламин в расплаве капролактама [197] в среде уксусной кислоты определяют содержание третичных аминов в керосине [285]. В неводных растворах также анализируют содержание основных компонентов [286] пороков. [c.87]

    Определение смеси первичных, вторичных и третичных аминов в гликолевой среде. Взвешивают три навески анализируемой смеси по 0,5—1 г. Первую навеску растворяют в смеси этиленгликоль — изопропиловый спирт (1 1), титруют неводным раствором хлористоводородной или хлорной кислот и вычисляют суммарное содержание аминов в смеси. Вторую навеску обрабатывают 5—10 мл уксусного ангидрида, через 30 мин смесь растворяют в смеси этиленгликоль— изопропиловый спирт (1 1), титруют неводным рас- [c.91]


    Прямое дифференцированное титрование смесей производных /г-фенилендиамина и п-аминодифениламина невозможно, так как эти диамины в неводных растворах ведут себя как однокислотные основания одинаковой силы. Однако при титровании п-аминодифенилами-на титруется первичная аминогруппа, и поэтому смесь этих диаминов может быть определена как смесь первичных и вторичных аминов [296]. [c.97]

    Методы титрования в неводных растворах могут быть использованы для определения функциональных групп в органических мономерных и полимерных соединениях. В среде неводных растворителей можно определять также содержание карбоксильных, гидроксильных, амино-, динитрофенильных, алкоксильных, ацетокси-и других функциональных групп [314, 547, 548, 563—570]. [c.172]

    Поскольку экстракционные равновесия являются гетерогенными, для получения данных о механизме извлечения необходимо знание состояния соединений рения как в водных, так в неводных и смешанных растворителях. В случае полярных растворителей (вода, спирты, кетоны и ряд аминов) в растворах находятся ионы и соответствующие ассоциаты (ионные пары, тройники и т. д.), причем состав ассоциатов и параметры, характеризующие их (в основном межионное расстояние и константы ассоциации) являются как функциями диэлектрических проницаемостей равновесных фаз, так и свойств и строения соответствующих растворителей [56]. Кроме того, поскольку при извлечении рения, как это было показано ранее, в состав ряда сольватов входит вода [20] и поскольку органические растворители в той или иной степени взаимодействуют с ней, необходимо изучение ряда равновесных систем, а также различных факторов, влияющих на соответствующие равновесия [21—26]. [c.247]

    О таком индивидуальном характере взаимодействия свидетельствуют прежде всего данные Вальдена, систематически исследовавшего электропроводность солей, т. е. сильных электролитов в ряду растворителей (спирты, кетоны, углеводороды, галоидоуглеводороды, эфиры, амины, нафтолы, нитрозамещенные и т. д.). Этими работами было показано, что поведение солей в различных растворителях зависит не только от диэлектрической проницаемости растворителя, как это следует из теории Фуосса и Крауса, но и от химической природы растворителя и соли. Вальден показал, что одинаково диссоциированные в воде соли по-разному ведут себя в неводных растворителях с одинаковой диэлектрической проницаемостью. Некоторые соли остаются сильными электролитами во всех растворителях. Вальден их называет сильными солями, а сила других заметно изменяется в неводных растворах—это средние и слабые соли. Установлено также, что в ряде растворителей, главным образом в спиртах, соли всех трех классов имеют близкую проводимость—это нивелирующие растворители в других растворителях (кетоны, нитрилы, нитросоединения) различные группы солей резко отличаются по своей электропроводности— это дифференцирующие растворители. [c.33]

    Исследования Коновалова по взаимодействию кислот с аминами. Плотников В. А., Исследования по электрохимии неводных растворов, Киев, 1908. [c.291]

    Окись алюминия может быть в различных формах основной, нейтральной и кислой. Основную окись алюминия употребляют для хроматографии соединений основного характера, таких как амины, основные аминокислоты и т. п. Кислую окись алюминия используют для хроматографии веществ кислотного характера, например карбоновых кислот, кислых аминокислот и других. Нейтральную окись алюминия обычно применяют для хроматографии из неводных растворов органических соединений, таких как предельные углеводороды, альдегиды, кетоны, спирты, фенолы, эфиры. [c.25]

    На электропроводность растворов электролитов оказывает известное влияние диэлектрическая проницаемость е растворителя, поэтому с позиций теории Аррениуса естественно ожидать, что в растворителях с меньшей е СНзСООН должна проводить электрический ток хуже, чем в средах с высоким значением е однако растворы СНзСООН в нитробензоле (8=34,75) —растворителе с высоким значением е, вопреки ожиданию проводят электрический ток хуже, чем в бутил-амине (е=5,3) и в воде (е=78,3). Более того, в бутиламине уксусная кислота проявляет более кислые свойства, чем в воде сам бутиламин, не проводящий тока и характеризующийся слабыми основными свойствами в водной среде, ведет себя в растворе уксусной кислоты как более сильное основание. Это не означает, что степень диссоциации уксусной кислоты в среде бутиламина выше, чем в воде. Понятия о силе электролита в водной среде строятся, как известно, на представлении о полной или частичной диссоциации данного вещества на ионы. Применительно к неводным растворам эти понятия приобретают другой смысл, так как сила кислоты обусловливается способностью электролита проявлять в той или. иной степени протонно-донорные свойства по отношению к растворителю и ионизироваться с образованием промежуточных соединений — ионных пар (подробней см. ниже). [c.9]


    Изменение соотношения Кв,и/Къ,1 приводит к улучшению или ухудшению условий титрования оснований в соответствии с тем, уменьшается или увеличивается. то соотношение. Условия титрования улучшаются, когда соотношение /Св, п//Св, I уменьшается. Например, в среде ацетонитрила, метилэтилкетона и других ДАР относительная сила ряда оснований уменьшается в сотни и тысячи раз. Сильное изменение р/Св обеспечивает дифференцированное титрование неводных растворов смесей сильный неорганических и органических оснований алифатических и ароматических аминов , первичных, вторичных и третичных аминов аминов и гетероциклических оснований солей, проявляющих основные свойства кремнийорганических соединений солей и оснований и т. д. [c.197]

    Процесс анодного деалкилирования аминов может протекать при электролизе в водных [123] и в некоторых неводных растворах, главным образом ацетонитрильных [116, 120—122, 124], с добавками воды, например по следующей схеме [121]  [c.287]

    Силикагель — высушенный желатинообразный диоксид кремния, который получают из силиката натрия. Силикагели очень широко используются в хроматографии для разделения смесей нефтепродуктов, высших жирных кислот (ВЖК) и из сложных эфиров, ароматических аминов, иитро- и нитроэопроизводных органических соединений н др. В отличие от активированных углей силикагель — гидрофильный сорбент, и поэтому мало пригоден для сорбции из водных растворов (легко смачивается водой). Силикагели используют для осушки воздуха, обезвоживания неводных растворов — бензина, керосина, масел и т. д. Активность силикагеля зависит от содерн<ания в нем воды — чем меньше воды, тем выше его активность (по Брокману)  [c.150]

    В неводных растворах могут быть определены неорганические основания и многие органические соединения, обладающие основными свойствами, — алифатические, ароматические и гетероциклические амины, диамины и их производные, амиды, имиды, аминооксиды, аминокислоты, фосфины и фосфонооксиды, витамины, антибиотики и другие фармацевтические препараты. [c.219]

    Однако, пользуясь тем, что ПАДФА при титровании в неводных растворах ведет себя как первичный амин (титруется одна первичная группа, в то время как вторичная не реагирует), а при титровании производных ПФДА реагирует лишь вторичная аминогруппа, можно дифференцированно оттитровать смесь указанных аминов. [c.446]

    Комплексные соединения. Галлий, как и другие элементы подгруппы, не является типичным комплексообразователем. В водных растворах он не образует комплексов с аммиаком и аминами. Но в безводном состоянии или в неводных растворах некоторые соединения галлия дают аммиакаты различного состава. Например, при действии аммиака под давлением на эфирный раствор трихлорида галлия выделяется осадок ОаС1з-5ЫНз. При нагревании осадка получают низшие аммиакаты. Эти соединения термически довольно стойки (моноаммиакат хлорида галлия плавится при 124° и кипит при 438° без разложения), но мгновенно гидролизуются при действии воды. [c.243]

    В растворителях, характеризующихся низким значением диэлектрической проницаемости 2) образованием водородной связи между молекулами растворенного вещества и растворителя, что подтверждается исследованием инфракрасных спектров гидрохинона в пиридине 3) структурными особенностями молекул электролитов в неводных растворах. Например, отклонение от нормы л-аминобензойной кислоты, проявляющей более ярко выраженные кислые свойства по сравнению со своими аналогами, объясняется существованием цвиттер-иовов. Отклонение от нормы я-амино- и /г-метилбензойных кислот в нитрорастворителях объясняется специфическим взаимодействием амино- и карбоксильных групп этих кислот с молекулами растворителя. Это взаимодейст- [c.41]

    Химия неводных растворов. Помимо соединений, указанных в п. 3, сюда относятся в основном галогениды, оксогалогениды и их производные. Источниками для их получения обычно служат галогениды Mo le и W le, которые устойчивы в органических растворителях типа ацетонитрила или бензола или в жидком SOg. Эти галогениды восстанавливаются аминами и отщепляют кислород от доноров кислорода, образуя оксо-соединения. Химия соединений Мо и W со фтором в основном относится к неводным растворам. [c.358]

    Файзулаев и др. [337] изучили полярографическое поведение неводных растворов аминов, аминофенолов, альдегидов и кетонов. Разработаны методы биамперометрического титрования с двумя медными индикаторными электродами изопропанольных растворов алифатических и ароматических аминов и некоторых аминокислот, основанные на кислотно-основном взаимодействии этих веществ с изопропанольным раствором НС1. [c.96]

    В подходящей неводной среде можно оттитровать стандартными неводными растворами соответствующих реагентов любые кислоты и основания независимо от значений их рКк и рД в, первичные, вторичные и третичные амины, аминокислоты, аминофено-лы, производные пиримидина и пурина, амиды, имиды, сульфамиды, витамины, алкалоиды, тио- и сульфокислоты, фенолы и их производные, эфиры, нитро- и полинитросоединения, гетероциклические соединения, алкил(арил)силоксаны, органические производные фосфорной кислоты, самые разнообразные соли и т. д. [c.204]

    В последние годы большое значение приобрели неводные растворы, где растворителями являются многие органические вещества, например безводные кислоты (муравьиная, уксусная, хлоруксусная, иронионовая), гликоли и их смеси. К основным растворителям относятся амины — одно-, двух- и многоатомные, гидразин, пиридин и др. Амфотерными растворителями являются спирты (метанол, этанол, пропанол и др.) и их смеси, например с бензолом. [c.5]

    Методы анализа в неводных средах наш.ли широкое применение для определения ряда мономерных и полимерных органических соединений [93—99]. Стрейлп [100] определил основные сополимеры акрилнитрила. Сополимеры растворяют в смеси питрометаяа п муравьиной кислоты и титруют ампиы, соли аминов и четвертичных аммониевых оснований. В случае галогенидов их переводят в ацетаты добавлением ацетата ртути. Для определенпя солей гетероциклических аминов полимеры растворяют в диметпл-формамиде. [c.303]

    Потенциометрический метод применяется в анализе органических соединений для определения содержания веществ в исследуемом растворе при титровании кислот и оснований, при окислительно-восстановительных реакциях и реакциях осаждения. Кроме того, его часто используют для определения кислотности среды, в особенности в тех случаях, когда имеются сильно окрашенные или неводные растворы, в которых определение pH посредством индикаторов затруднено или даже невозможно. ь. Многие анализы, применяющиеся в анилинокрасочной промышленности, основаны на реакции диазотирования (см. стр. 142). Для определения первичных аминов с помощью азотистой кислоты можно пользоваться потенциометрическим методом. Этот метод удобен для титрования сильно окрашенных растворов, при нанесении которых на иодкрахмальную бумагу трудно наблюдать конец реакции. Например, определение содержания аминоазобензо-ла потенциометрическим титрованием (методика приводится ниже) белее точно, чем определение обычным титрованием с иодкрахмальной бумагой. При анализе кубовых красителей, содержащих галоид, часто бывает необходимо определять содержание хлора и брома. При анализе кубовъ х красителей, а также при определении содержания поваренной соли в красителях и промежуточных продуктах, потенциометрический метод имеет преимущества перед химическими методами, так как он проще, надежнее и при этом затрачивается меньше времени. Достоинством этого метода титрования кислот и оснований является также возможность определять концентрацию ионов водорода в любой момент титрования. [c.376]

    Сродство ароматических нитросоединений к свободным аминогруппам объясняется способностью нитросоединений образовывать льюисовы кислоты. В литературе описаны молекулярные соединения между ароматическими нитросоедииениями п основаниями [304, 323, 525, 561, 721]. Для комплекса между нитробензолом и К-алкиланилином [323] определена константа ассоциации. По данным Брокмана и Мейера [305] и Фритца [387], ароматические нитросоединения титруются в неводных растворах аминами как кислоты. Отсюда становится понятным, почему введение электронодонорных заместителей в нитрованное ароматическое ядро снижает сродство к полиамиду [402]. [c.29]

    Комплексные соединения. Галлий, как и другие элементы его подгруппы, нетипичный комплексообразователь. В водных растворах не образует комплексов с аммиаком и аминами. Но в безводном состоянии или в неводных растворах некоторые соединения галлия дают аммиакаты различного состава. Например, при действии аммиака под давлением на эфирный раствор трихлорида галлия выделяется осадок ОаС1з 5ЫНз. Эти аммиакаты мгновенно гидролизуются. [c.87]

    В неводных протонофильных растворителях (ННз, жидкий этилендиамин и др.) сила кислот Бренстеда увеличивается, и в этих условиях удается выделить депротонированные комплексы даже для более низких степеней окисления центрального атома, для которых в водном растворе образование таких форм не характерно. Амидо- и имидореакции координированных аммиака и аминов в этой среде наблюдается в сфере большого числа комплексообразователей. Имеется несколько школ, изучающих кислотные свойства комплексных соединений в неводных растворах. [c.72]

    Мы сравнили каталазную активность растворов ферроцианида калия, нитропруссида и указанного аммиачного комплекса. Гексациановый комплекс и нитропруссид обладают очень малой активностью. Введение аммиака в комплекс резко увеличивает его каталазную активность наблюдается тот же эффект, который с такой ясностью мы констатировали, рассматривая комплексные соединения меди. Комплексные соединения металлов с основаниями Шиффа, в частности полученными из о-амино-фенола и салицилового альдегида (САФ), представляют объект исследований, заслуживающий внимания, так как, несмотря на малую устойчивость к действию перекиси водорода, они проявляют в неводных растворах такие эффекты, которые не удается наблюдать в водных средах. [c.151]


Смотреть страницы где упоминается термин Амины в неводных растворах: [c.102]    [c.383]    [c.163]    [c.259]    [c.85]    [c.277]    [c.19]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Растворы неводные



© 2025 chem21.info Реклама на сайте