Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ниобий определение водорода

    В реакциях с водородом должны были бы получаться гидриды общей формулы МеН, однако образование твердых растворов гидридов с металлами приводит к непрерывному поглощению водорода металлами без каких-либо определенных стехиометрических отношений. Процесс растворения водорода ванадием, ниобием и танталом идет с выделением тепла, что свидетельствует о возникновении химических соединений. С повыщением температуры растворимость водорода в этих металлах понижается, оставаясь весьма значительной по сравнению с растворимостью в металлах, которые не образуют гидридов. В табл. 14 приведены данные о растворимости водорода в металлах УВ-группы в зависимости от температуры при постоянном давлении водорода (760 мм рт. ст.). [c.92]


    Уран и торий маскируют фторидом, а ниобий — перекисью водорода. Определению мешают только золото(1П), цианид- и тиосульфат-ионы. Этим методом определяют серебро в черновой меди [293] после отделения серебра от основы тетрафенилборатом. Тройной комплекс можно экстрагировать нитробензолом и измерять оптическую плотность экстракта [767]. [c.103]

    Водород определяют вакуумным методом, описанным на стр, 47. Для точного определения водорода при содержании его меньше 1 10"- %, например в ниобии реакторного сорта, берут навеску пробы 0,5 г и анализируют выделенный газ, как описано на стр. 49. [c.192]

    Изотопический обмен и возбуждение спектров уравновешенного газа разделены. Последнее дает возможность более гибко подбирать оптимальные условия анализа, обеспечивать высокую чувствительность определений. Разработаны методики определения водорода в алюминии, титане, ванадии, хроме, железе, кобальте, никеле, меди, цинке, иттрии, цирконии, ниобии, молибдене, палладии, кадмии, лантане, празеодиме, неодиме, тантале и вольфраме. Преимущество данного варианта заключается в возможной вариации температуры и времени обмена (для разных металлов и газов от 400—500° С до 2000—2100° С и от 5— 0 мин до 2—Зч), применении ваин (железных, никелевых, кобальтовых), графитовых тиглей различной формы и других необходимых в процессе анализа изменений. [c.23]

Рис. 72. Калибровочный график для определения ниобия перекисью водорода (кварцевые кюветы I 1 см К 356 нм). Рис. 72. <a href="/info/379553">Калибровочный график</a> для <a href="/info/82859">определения ниобия</a> перекисью водорода (кварцевые кюветы I 1 см К 356 нм).
    Пероксидные комплексы. Пероксид водорода образует комплексы с титаном, ванадием, церием, ниобием, танталом и др. Чаще всего пероксидные комплексы применяют для фотометрического определения титана, ванадия, ниобия и тантала. [c.268]

    Оптимальной кислотностью образования комплексного соединения является 1—2 М по серной кис-ло те. Окрашенные ионы Ре (П1) при их высоких содержаниях мешают определению титана. Для устранения влияния железа применяют фосфорную кислоту, которая связывает железо в бесцветный комплекс [Ре(Р04)2 Фосфорная кислота ослабляет окраску также и комплексного соединения титана в связи с образованием бесцветного комплексного аниона, поэтому кислоту вводят в стандартные растворы. К другим элементам, мешающим определению титана окраской собственных ионов или образующим с пероксидом водорода окрашенные соединения, относятся никель (П), хром (III), ванадий (V), молибден (VI), ниобий (V). [c.121]


    Для определения ниобия советский ученый Бабко А. К-с сотрудниками предложили метод, основанный на образовании пероксидного комплекса ниобия и окислении избытка пероксида водорода в 0,25—1,5 М серной кислоте перманганатом калия. [c.155]

    При определении содержания рения в сплавах с редкими металлами — вольфрамом, ниобием анализ возможен без отделения от указанных элементов, так как они не образуют окрашенных соединений с диметилглиоксимом. Для удержания указанных редких элементов в растворе вводят различные комплексанты — фторид-ионы, пероксид водорода, винную кислоту. [c.185]

    Если скорость движения частицы с зарядом 2 в среде больше, чем где Уо — скорость электрона на первой орбите атома водорода, равная 2,19 10 см/с, то частица движется в веществе, не захватывая электронов. Ее кинетическая энергия расходуется в основном на ионизацию и возбуждение вещества. При скорости частицы меньше частица захватывает электроны среды. Заряд движущейся частицы, захватившей электроны, носит название равновесного заряда. Равновесный заряд частицы уменьшается по мере уменьшения ее скорости. При одной и той же скорости равновесный заряд тем меньше, чем больше I вещества. Это приводит к тому, что потери энергии на единице длины в веществе с большим 2 оказываются меньше, чем в веществе с малым 2. Поэтому пробег иона определенной энергии в веществе с большим 7 оказывается больше. Например, пробег иона Ва с энергией 58 МэВ в мишени из тантала равен (5,7 0,5) мг/см , а в мишени из ниобия равен (3,9 0,3) мг/см . [c.65]

    Щелочные и щелочноземельные металлы дают при нагревании в атмосфере водорода соединения тина МеН и МеНд. Реакции протекают с выделением теплоты. Некоторые металлы образуют гидриды не совсем определенного состава, так называемые псевдогидриды. К ним относятся соединения титана, циркония, ванадия, ниобия, тантала, вольфрама, церия, лантана и т. д. [c.15]

    Окрашенные комплексы с анионами сильных кислот. Ряд фотометрических определений основан на образовании ионами металлов окрашенных комплексов с анионами сильных кислот S N , С]-, 1 . Так, широко применяются тиоцианатные комплексы при определении железа, кобальта, молибдена, ниобия. Анионы сильных кислот даже при очень высокой концентрации Н+ не связываются ионами водорода в молекулу кислоты и концентрация аниона реагента в растворе не изменяется. Вследствие этого повышение кислотности не приводит к разрушению окрашенного комплекса. Комплексы металлов с анионами сильных кислот, например [Ре(5СЫ)4] , В П4] , малопрочны и заметно диссоциируют с образованием в растворе свободных ионов определяемого металла. При уменьшении кислотности, т. е. при увеличении pH раствора, эти свободные ионы металла образуют с гидроксид-ионами малорастворимые гидроксиды или основные соли.. Это приводит к дальнейшей диссоциации и разрушению комплекса. Таким образом, образование окрашенных комплексов металлов с анионами сильных кислот целесообразнее проводить в достаточно кислых средах для предотвращения образова ия основных солей или гидроксидов. [c.16]

    Определение в присутствии тантала, ниобия, титана, ванадия, хрома и молибдена. Единственным дополнением, которое следует ввести в метод, изложенный выше (см. Определение в присутствии фосфора, мышьяка, фтора и бора ), является добавление 10—15 мл 3%-ной перекиси водорода перед введением в раствор оксихинолина . [c.573]

    Установлена 2 также возможность определения ниобия по реакции с перекисью водорода в растворах содержавших в 50 мл раствора 25 мл. серной кислоты шЪ мл фосфорной кислоты (85%-ной), если измерение светопоглощения проводить при 342 ммк. Авторы метода отмечают, что в этих условиях чувствительность метода повышается, но зато резко сказывается влияние титана. [c.688]

    Имеются указания на возможность одновременного определения ниобия и тантала по реакции с перекисью водорода в концентрированной [c.688]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]


    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Стали, содержащие ниобий, алюминий и никель нри любых концентрациях углерода, а также ванадий и хром при малых его содержаниях, можно анализировать на водород по методу вакуум-нагрева, так как в этом случае разница в результатах определения водорода хранением с нагревом, с одной стороны, и вакуум-плавлением — с другой, невелика (см. нос.леднюю колонку таблицы, отрицательные разности являются результатом того, что часть водорода выделилась из образцов до вакуум-плавления).  [c.176]

    Газы, растворенные в твердом металле, оказывают существенное влияние на его физико-химические и механические свойства. Экспериментальные данные о растворимости водорода в различных металлах приведены в литературе [1—3]. Изобары растворимости водорода в железе, никеле, меди, кобальте и кремнии нри давлении водорода в одну атмосферу показывают, что абсорбция водорода возрастает с повышением температуры, причем особенно резкое увеличение растворимости водорода наблюдается в точке плавления металла. Для некоторых других металлов, например, титана, циркония, ванадия, тантала и ниобия, растворимость водорода, наоборот, уменьшается с повышением температуры. Каких-либо определенных данных о растворимости водорода в германии не имеется. Между тем в процессе очистки германия его двуокись восстанавливается водородом при температуре плавления германия, и металл в атмосфере водорода остывает в слиток. Абсорбция водорода германием л Ожет происходить одновременно с его восстановлением из двуокиси. При дальнейшей очистке германия путем многократной перекристаллизации в высоком вакууме значительная часть водорода, по-видимому, удаляется. В процессе производства германия десорбция водорода происходит в условиях, обеспечивающих максимальное выделение водорода поэтому в слитке германия либо совсем не остается водорода, либо остаются весьма незначительные его количества. В связи с этим все общепринятые методы определения примеси водорода в металлах, основанные на вакуумнагреве или вакуумплавле-нии, по-видимому, могут оказаться пригодными только для исследования образцов германия в процессе производства, но [c.36]

    Аналогия в свойствах элементов и соединений, как отмечал еще Д. И. Менделеев, наблюдается не только в пределах групп или периодов, но и при движении по диагонали. Развивая идеи Д. И. Менделеева, А. Е. Ферсман писал, что поскольку радиусы ионов при движении по горизонтали периодической системы вправо уменьшаются, а при движении сверху вниз увеличиваются, то диагональ будет соединять ионы примерно одинаковой величины, но разной валентности. Отсюда он сделал вывод, что ионы, встречающиеся по диагонали, могут замещать друг друга в соединениях. Этот вывод чрезвычайно важен и для аналитической химии, особенно при рассмотрении вопросов соосаждения и сокристаллнзации. Оказалось, например, что Еи + (радиус иона 0,124 нм) со-осаждается с Ва304 (радиус иона бария 0,143 нм), и это может быть использовано для выделения европия. Рассматривая элементы центра периодической системы, И. П. Алимарин отмечал, что аналогия действительно наблюдается не только по горизонтали 2г — МЬ — Мо или Н1 — Та — но и по диагонали Т1 — ЫЬ -—W. Сходство химико-аналитических свойств элементов имеет свои положительные и отрицательные стороны. Определение близких по свойствам элементов прн совместном присутствии является сложной аналитической задачей именно из-за близости их химико-аналитических свойств. Например, спектрофотометрическому определению ниобия с тиоцианатом мешают Мо, Ш, Т1 и другие элементы, а определению его с пероксидом водорода мешают Т1 и . Для анализа таких смесей используются самые небольшие различия в свойствах элементов. [c.15]

    Ход определения. Смесь окислов ниобия и тантала, предпочтительно в количестве 0,1 г, полученную методом, который обеспечивает отделение основной массы титана, ю рокаливают, взвешивают и затем сплавляют с 5 г пиросульфата калия. Плав растворяют в 10 дал серной кислоты, прибавив такое же количество перекиси водорода (3%-ной). По растворении вводят еш е 20 мл перекиси водорбда и разбавляют раствор до определенного объема. Конечная концентрация кислоты в растворе должна быть 10—20% по объему. Светопоглощение полученного раствора или аликвотной его части определяют в фотометре с ртутной лампой и с соответствующим светофильтром (436 ммк). Содержание титана вычисляют на основе результатов сравнения анализируемого раствора со стандартными растворами или по калибровочной кривой. [c.688]

    Некоторые металлы не удается выделить электролизом водных растворов. Это металлы, обладающие большим отрицательным потенциалом (щелочные, щелочноземельные), а также металлы, на которых имеется небольшое перенапряжение водорода (ванадий, ниобий, тантал, титан, цирконий). В определенных, условиях они осаждаются па элекТ роде тончайшим слоем, но затем процесс прекращаетс.ч вследствие выделения на них водорода. [c.25]

    Вопрос взаимосвязи аналитической химии с периодическим законом впервые поставлен Н. А. Меншутки-ным через два года после. открытия Д. И. Менделеева. Автор периодического закона настойчиво подчеркивал, что аналогия в свойствах элементов наблюдается не только в группах, но и в периодах, а также по диагонали. Диагональная закономерность сыграла большую )0Ль при разработке методов анализа многих элементов, Ла основании периодической системы можно ожидать, что, наименьшая разница в свойствах элементов, расположенных по горизонтали, будет в длинных периодах. Имеется большая аналогия в свойствах 2г—Nb—Мо, а также НГ—Та—Ш. Диагональная закономерность дает основание ожидать сходства в свойствах Т —ЫЬ— / и 2г—Та—и. Действительно, спектрофотометрическому определению ниобия по реакции с роданидом аммония мешают Мо, Ш и Т , а определению с пероксидом водорода — Т1 и /. [c.84]

    Косвенное комплексонометрическое определение содержания ниобия основано на образовании тройного комплекса ниобия с пероксидом водорода и нитрилотриуксусной кислотой. Избыток нитрилотриуксусной кислоты оттптро- [c.155]

    Ниобий в циркониевых сплавах можно определят- также метолом, основанным на образовании комплексного соединения, окрашенного в желтый цвет, при взаимодействии ионов ниобия с перекисью водорода в коннентрированпом сернокислом растворе . Этот метод применим для анализа циркониевых сплавов, содержаш.их от 0,1 до 60% ниобия, но его нельзя использовать для определения ниобия в танталониобиевых сплавах. [c.145]

    Азот может быть определен, как описано на стр. 198. В отличие-от ниобия тантал быстрее растворяется в смеси кислот с перекисью водорода (см. прнлючание 2 на стр. 198). [c.209]

    Окрашенные комплексы с анионами сильных кислот. Значительная группа колориметрических определений основана на образовании ионами металлов окрашенных комплексов с анионами сильных кислот S N , С1, 1 . Так, широко применяются роданидные комплексы при определении железа, кобальта, молибдена, ниобия. Анионы сильных кислот даже при очень высокой концентрации Н не связываются ионами водорода в молекулу кислоты и концентрация аниона в растворе не изменяется. Вследствие этого повышение кислотности не приводит к разрушению окрашенного комплекса. Комплексы металлов с анионами сильных кислот, например [Fe(S N)4] , [Bil4l, малопрочны и заметно диссоциируют с образованием в растворе свободных ионов определяемого металла. При [c.22]

    Детальное ознакомление с работами П. Г. Меликова и Л. В. Писаржевского, К. Волке и Е. Смит, А. Зивертс и Е. Мюллера [3] привело нас к мысли, что нри синтезе перекисных соединений ниобия и тантала, а также некоторых других элементов, необходимо исходить из соединений определенного постоянного состава, ибо окисление мета-, гекса-, орто-ниобатов или танталатов перекисью водорода различной концентрации нри разной ш,елочности среды и при различных температурах вряд ли может привести к продуктам идентичного состава. [c.185]

    Перекись водорода образует окрашенные комплексы с некоторыми переходными элементами, преимущественно с высоковалент-ны ми. Для фотометрического анализа наиболее важны желтые соединения перекиси водорода с титаном, ванадием, ниобием и ураном. Описаны также методы определения тантала и вольфрама по поглощению в ультрафиолете их комплексов с перекисью водорода. Иютенсивяо окрашенное перекисное соединение — надхромовая кислота неудобна для фотометрического анализа из-за своей неустойчивости. Комплексы молибдена и церия с перекисью окрашены слабее и для этих элементов известно немало других реактивов, тем не менее реакции их с перекисью водорода нередко избирательны, поэтому они применяются в фотометрическом анализе. Известны также неокрашенные соединения ряда металлов [12] с перекисью водорода. [c.251]

    Основными условиями применения в фотометрическом анализе комплексов титана, ванадия, ниобия и тантала с перекисью водорода является силь номи слая среда и достаточный избыток перекиси водорода. Хлориды и сульфаты мало влияют на оптические свойства этих комплексов, хотя по ряду данных они присоединяются к окрашенным комплексам Ме—Н2О2, образуя смешанные комплексы, иногда анионного типа. С другой стороны, комплексы титана и ванадия с Н2О2 вследствие своей невысокой прочности сравнительно легко подвергаются действию различных анионов, связывающих центральный ион. Например, щавелевая кислота резко ослабляет окраску или совсем обесцвечивает раствор перекисноводородного комплекса титана. При этом образуется смешанный комплекс, причем полоса поглощения постепенно сдвигается в ультрафиолетовую область спектра. Известно, что титан образует с фтором более прочный комплекс по сравнению с ванадием. Поэтому в смеси перекисных соединений этих элементов, при действии умеренных количеств фторидо В, можно обесцветить комплексное соединение титана, тогда как окрашенное соединение ванадия не разрушается. Это является основанием одного из методов колориметрического определения ванадия и титана при совместном присутствии. [c.254]

    Возможно определение ниобия в сплавах с цирконием с применением 1-(2-пи-ридил-азо-)резорцина [97]. Ниобий в виде перекисного соединения образует окрашенный комплекс с ксиленоловым оранжевым, 1-(2-пиридил-азо)резорциноиг (ПАР), 1-(2-пиридил-азо-)нафтолом, хромазуролом 5 и др. [97]. В присутствии перекиси водорода ниобий образует окрашенный комплекс с ПАР при pH 5,0-с максимумом светопоглощения при 590 ммк. При pH 5 раствор ПАР имеет максимум светопоглощения при 420 мм>с. Ниобий с ПАР реагирует в молярном отношении 1 1. Молярный коэффициент светопоглощения при 540 ммк равен 32 300.. [c.200]

    Типичный пример влияния вспомогательного лиганда показан [57] на рис. 105. Фторид- и оксалат-ионы, образующие прочные комплексы с ниобием, сильно повышают способность ниобия образовывать окрашенные комплексы с ксиленоловым оранжевым. Однако уже при небольших концентрациях избытка NaF или Н2С2О4 (порядка 0,01—0,02 М) окрашенное соединение разрушается. Наоборот, перекись водорода и винная кислота повышают реакционную способность ниобия только после того, как в растворе создается более высокая концентрация этих вспомогательных лигандов (компонентов). Однако применение их делает определение более надежным, так как при значительном избытке перекиси водорода или винной кислоты они не ослабляют окраски. [c.356]

    Указанные выше особенности взаимодействия высоковалентных элементов с металлохромными индикаторами объясняют особенность ряда методов фотометрического анализа. В частности, для ниобия и тантала разрз ботаяы о вые методы их фотометрического определения с ксиленоловым оранжевым и различными активаторами [57], с ПАР при использовании активатора — перекиси водорода [59] и др. [c.356]

    НИИ цепи — Ме — О — Ме — или—Ме Ме совершенно естественно ожидать, что два различных металла могут войти в одну цепь полимерного иона оксо- или гидроксокомплекса, особенно если численные значения растворимости гидроокисей мало отличаются. Подобные явления хорошо известны в аналитической химии ниобия и тантала, которые в обычных (не комплексантах) кислотах находятся.в виде различных полимерных гидроксокомплексов. В связи с этими явлениями многие свойства ниобия и тантала в смеси отличаются от их свойств, когда они находятся в отдельности [55]. Например, ниобий -связывает в комплекс перекись водорода, образуя прочное соединение, имеющее характерную полосу поглощения в ультрафиолете и очень медленно реагирующее с перманганатом [75]. Тантал в солянокислых или сернокислых растворах находится в полимерной форме и при небольших концентрациях перекиси водорода почти не образует комплекса в обычных условиях перекисный комплекс образуется лишь из фторотантала, если прибавить к нему Н2О2 и А1С1з. Таким образом, в обычных условиях можно рассчитывать, что тантал не будет препятствовать фотометрическому или титриметрическому определению ниобия. Однако нри совместном присутствии тантал и ниобий образуют смешанные гидроксокомплексы и ниобий теряет те особые свойства и отличия от тантала, которые присущи ему в растворе, не содержащем тантала [76]. [c.361]

    Метод хлорирования в применении к анализу тантало-ниобиевых материалов получил некоторое развитие и в работах последних лет. Так, отделение ниобия и тантала от олова и титана рекомендуется проводить хлорированием четыреххлористым углеродом в запаянной трубке. По окончании хлорирования отгоняют в вакууме фосген, избыток четыреххлористого углерода и легколетучие хлориды олова (IV) и титана (IV), После этого возгоняют более трудно летучие хлориды ниобия и тантала и взвепшвают, а затем их переводят в окислы, снова взвешивают и вычисляют содержание ниобия и тантала раздельно косвенным путем. Для определения ниобия и тантала в колумбитах и ауксенитах предлагается хлорирование в токе смеси газообразного хлористого водорода и четыреххлористого углерода. Доп. перев.  [c.673]

    После этого раствор выпаривают до появления паров серной кислоты, разбавляют 100%-ной серноц кислотой до определенного объема,, вводят 1 мл перекиси водорода (30%-ной) и определяют светопоглощение раствора или аликвотной его части , применяя свет ртутной лампы и соответствующий светофильтр (436 л л<ж). Содержание ниобия вычисляют по калибровочной кривой, построенной на основе результатов измерения светопоглощения растворов с определенным содержанием ниобия. Для получения истинного содержания ниобия вводят поправку на титан из расчета, что 0,422 мг титана соответствует 0,70 мг ниобия. Содержание тантала вычисляют по разности [c.688]

    Навеску анализируемого материала переводят в раствор, который доводят до 200—300 мл, прибавляют, соляную кислоту до 10%-ной концентрации (по объему). Для осаждения применяют 10%-ный раствор фениларсоновой кислоты в солянсж кислоте (1 1). Для осаждения 50 мг Zr требуется не менее 250 мг фениларсоновой кислоты. Раствор с осадком нагревают до кипения и кипятят 1—2 мин., затем осадок отфильтровывают горячим через плотный фильтр (синяя лента) и промывают раствором НС1 (1 99), содержащим 0,1% фениларсоновой кислоты. Осадок в фарфоровом тигле озоляют и прокаливают при 1100° С до постоянного веса. В присутствии титана, ниобия и церия перед осаждением прибавляют 30—40 мл 3%-ного раствора перекиси водорода. Если требуется переосаждение (в присутствии больших количеств железа и других примесей), то осадок вместе с фильтром переносят в стакан, прибавляют 10—20 мл H2SO4 (1 1), 20 мл 3%-ного раствора перекиси водорода, 5—10 мл НС1 (1 1) и нагревают (для растворения примесей). Раствор разбавляют до 100—200 мл и прибавляют 5—10 жл 10%-ного раствора фениларсоновой кислоты. При малых количествах циркония осаждение производят из объема не более 25—30 мл, а раствор с осадком оставляют на ночь. При анализе ферроциркония или при определении циркония в сталях рекомендуется большую часть железа предварительно отделить экстракцией хлоридов эiфиpoм. [c.63]

    При наличии титана фосфат осаждают в присутствии перекиси водорода последнюю также прибавляют и к промывной жидкости. Торий не мешает, если фосфат циркония осаждать из 20%-ного (по объему) сернокислого раствора. Ниобий не осаждается, если при выделении 8-оксихинолината циркония прибавлять большой избыток аммиака. В этих условиях тантал образует белый осадок, нерастворимый в соляной кислоте, и поэтому не мешает дальнейшему определению циркония. Другие элементы (за исключением гафния) не осаждаются в виде фс атов из сильно сернокислых растворов. [c.109]

    Тантал с 9-(п-диметиламинофенил)-2,3,7-триокри-6-флуороном (называемым диметилфлуороном) в умереннокислом растворе образует ярко-красный осадок, остающийся при малом содержании тантала в коллоидном состоянии [211]. Эти коллоидные растворы легко стабилизируются желатиной. В отсутствие тантала раствор имеет желтый цвет. Обнаруживаемый минимум — 3 мкг в 10 жл раствора. В присутствии оксалата ниобий не реагирует с диметилфлуороном, а прибавление перекиси водорода разрушает комплекс титана, не затрагивая танталовый комплекс. 0,5 мг Zr в 10 мл раствора не мешают определению тантала. Большие количества циркония мешают. Для отделения от циркония экстрагируют фторидный комплекс тантала смесью ацетона и изобутанола. [c.199]

    Экстракционный пламенно-фотометрический метод определения бора основан на экстрагировании его (0,1—1,0 мг) из водного раствора в виде тетрабутиламмониевой соли борофтористоводородной кислоты метилизобутилкетоном (10 мл). Экстракт в органическом растворителе непосредственно вводят в пламя смеси водорода с кислородом и регистрируют интенсивность излучения при 548 ммк. Вместе с бором экстрагируются и мешают его определению хром (VI), молибден (VI), ниобий (V), ванадий (V), вольфрам (VI), дающие собственное излучение. [c.264]

    Хорошо известные перекисные комплексы титана прочно удерживаются катионитами. И. П. Алимарин и А. М, Медведева [5 ] разработали метод отделения титана от ниобия, основанный на селективном поглош ении титана из 0,5—0,7Af раствора соляной кислоты, содержащего 0,5% перекиси водорода. Отделение титана от ванадатов, молибдатов и вольфраматов выполняется при pH 5 в присутствии перекиси водорода, которая, помимо своей основной функции, препятствует восстановлению указанных анионов. Этот метод использовался в работах И. П. Алимарина и А. М. Медведевой [4], Л. М. Орловой [82], Д. И. Рябчикова и В. Е. Бухтиарова [88]. Для определения титана в лимоните железо предварительно связывают в прочный цианидный анионный комплекс [124]. [c.349]


Смотреть страницы где упоминается термин Ниобий определение водорода: [c.576]    [c.126]    [c.129]    [c.208]    [c.608]    [c.91]    [c.123]    [c.22]    [c.66]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водород определение

Ниобий определение



© 2025 chem21.info Реклама на сайте