Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газ-носитель разбавление

    В качестве носителей серебряных катализаторов используют окись алюминия, окись бериллия, силикагель, пемзу и т. д. При приготовлении катализаторов на носителях последние пропитывают водными растворами нитрата серебра с последующим прокаливанием. Полученный катализатор восстанавливают до металлического серебра. При отравлении катализатора сернистыми соединениями его регенерируют водородом, газообразным аммиаком, парами окиси этилена, разбавленными воздухом или инертным газом. [c.172]


    Промывку носителя разбавленным раствором кислоты (хлороводородной или фосфорной) или щелочи проводят для удаления железа и алюминия. Если сорбент используют для разделения соединений основного характера, то после обработки кислотой необходима дополнительная промывка 5%-ным раствором гидроксида натрия в метаноле. [c.108]

    Промывку носителя разбавленным раствором кислоты (соляной или фосфорной) или щелочью осуществляют для удаления железа и алюминия.  [c.108]

    Проявительный метод — наиболее распространенный метод газовой хроматографии. Поэтому в дальнейшем рассматривается преимущественно проявительный анализ. Существенным его достоинством является возможность практически полного разделения на составляющие компоненты. Недостаток метода состоит в том, что вследствие разбавления компонентов смеси газом-носителем значительно уменьшается концентрация веществ после вымывания их из колонки. Однако это компенсируется применением высокочувствительных детекторов. [c.11]

    Из- эманатора (см. рис. 4.5) вынимают золотую пластинку и смывают активный налет ( Bi и без носителя) разбавленной (1 1) азотной кислотой в стакан и полученный раствор этих изотопов упаривают досуха. Смывают со стакана невидимый осадок 10 Л1л 0,01 AI H l. Переливают раствор в стакан на 50 мл и опу- [c.171]

    Испарение веществ в основном потоке газа-носителя называется динамическим испарением . Инструментально этот метод реализовать легко, однако он имеет тот недостаток, что поступающее в колонку испаренное вещество сильно разбавлено газом-носителем. Разбавление можно уменьшить, пользуясь краном 5 (рис. 2.12), управляемым соленоидом, который запирает его на время процесса испарения. Перепускной клапан 4 (рис. 2.12) лишь предохраняет кран 5 от прямого попадания в него вешества. [c.73]

    Ввиду исключительной легкости гидрогенизации этилена (он может гидрогенизироваться уже при—89° [51]) было высказано предположение, что для задержки реакции на стадии этилена необходимо применять относительно неактивный катализатор. Сравнительно малоактивные катализаторы нужного качества приготовлялись двумя путями 1) сильным разбавлением активных катализаторов такими инертными носителями, как силикагель или кизельгур (в отношении от 100 1 до 1000 1), и 2) частичным отравлением (отравление палладия ртутью или свинцом, отравление никеля серой или селеном). Присутствие разбавляющего пара также способствует избирательной гидрогенизации ацетилена в этилен благодаря торможению реакции гидрополимеризации ацетилена в более высокомолекулярные углеводороды. [c.240]


    Зависимость содержания соли в носителе от концентрации ее в растворе представлена на рис, 51. По мере увеличения концентрации поглощаемого вещества в растворе степень адсорбции его пористым материалом стремится к определенному пределу, отвечающему насыщению носителя поглощаемым веществом. Соотношение компонентов на носителе определяется скоростью насыщения, которая зависит от коэффициента диффузии компонентов, вязкости раствора, температуры пропитки, размеров зерен носителя, его пор и удель-Рис. 51. Зависимость концен- НОЙ, поверхности. Для разбавленных трации соли в носителе (или ка- пропиточных растворов изотерм"а ад- [c.134]

    Если разбавленная суспензия с концентрацией твердой фазы <1% содержит гелеобразные коллоидные частицы (например, пропиточный раствор, подаваемый на регенерацию в производстве ванадиевого катализатора КС на алюмосиликатном носителе) ее фильтруемость обычно соответствует баллу 1. Фильтрование такой суспензии необходимо проводить на фильтрах с намывным слоем вспомогательного вещества. [c.215]

    Очень часто при проведении анализа возникает необходимость в градуировочных стандартах различной концентрации. Последние готовятся самими исследователями из эталонных материалов или веществ и не предназначены для использования в других лабораториях. Обычно их приготовляют из концентрированных растворов разбавлением до требуемой концентрации Однако эта операция становится проблематичной, если необходим раствор исследуемого соединения в следовых концентрациях. Аналогичная ситуация характерна, например, для растворов большинства хлорсодержащих пестицидов, которые плохо растворяются в воде В таких случаях растворяемое вещество осаждают на носителе, например силикагеле, путем испарения раствора пестицида в другом растворителе, например гексане, в присутствии носителя. Затем через колонку с силикагелем пропускают воду. Благодаря большой удельной поверхности силикагеля вода быстро насыщается растворяемым веществом. Этот метод предложен для приготовления стандартных растворов ПАУ и ПХБ [6,32 . [c.160]

    В 1934 г. был найден улучшенный катализатор типа У32. В этом катализаторе носителем служит активированная отбеливающая глина, обработанная фтористоводородной кислотой, на которую нанесено 10% WS2. Такой разбавленный носителем ка- [c.260]

    Какова бы ни была система испарения и ввода пробы, необходимо, чтобы вводимая проба была достаточно концентрированной, т. е. чтобы разбавление ее газом-носителем было минимальным. Время подачи жидкой пробы должно быть достаточным для полного ее испарения, в то время как время ввода испарившейся пробы в колонку, наоборот, минимальным. Температура испарителя должка быть на 20—30° С выше температуры кипения самого высоко-кипящего компонента смеси. Для полного и быстрого испарения пробы необходимо, чтобы запас тепла в испарителе был достаточно большим. При соблюдении этих условий можно получать хорошее разделение смесей даже при значительных объемах. [c.206]

    Через слой сорбента в колонке непрерывно пропускается исследуемый газ, содержащий, например, три компонента, разбавленные газом-носителем. Пусть по величине сорбции эти вещества располагаются так, что первый сорбируется слабее остальных, а третий — сильнее. После установления сорбционного равновесия в колонку вводится порция газа-носителя, не содержащая компонентов смеси. При движении слоя этого газа вдоль сорбента вследствие десорбции веществ перед фронтом слоя возникает изменение концентрации (рис. 61, а, область II). Так как смесь содержит три компонента, то образуется три таких фронта, -- [c.143]

    Теория газовой хроматографии сформулирована в соответствии с теорией разбавленных растворов. Это связано с тем, что разработка теории велась в рамках проявительного метода, в котором анализируемые вещества значительно разбавляются газом-носителем. Однако в газовой хроматографии возможны случаи, например, в любом из вариантов фронтального метода, когда разбавле- [c.144]

    По первому способу определенную порцию раствора с концентрацией 5-20% в виде пробки продавливают током инертного газа-носителя вдоль всего капилляра под давлением до 30 атм (в зависимости от длины капилляра). При этом на стенках капилляра остается некоторое количество жидкой фазы, которое определяется концентрацией раствора, вязкостью, скоростью потока газа-носителя, смачиваемостью стенок и диаметром капилляра. По второму способу капиллярную колонку заполняют разбавленным 1—2%-ным раствором жидкой фазы в летучем растворителе. После этого закрытый с одной стороны капилляр медленно продвигают через нагретую печь. Летучий растворитель испаряется, и жидкая фаза в виде тонкой пленки 0,1—0,2 мк покрывает стенки капилляра. [c.78]

    Таким образом, объем вводимой пробы не должен превышать указанного объема одной теоретической тарелки при этом не допускается смешения пробы с газом-носителем. Из-за механических трудностей осуществить этот идеальный случай ввода пробы не удается. Однако в настоящее время разработаны способы, позволяющие вводить в хроматографическую колонку минимальные дозы за минимальное время. Наиболее удачен метод поршня или пробковый метод при минимальном разбавлении пробы газом-носителем при этом она занимает на начальном участке хроматографической колонки весьма малый объем. [c.235]


    Однако применение солюбилизованных систем в медицине требует чрезвычайной осторожности. Слишком высокие концентрации ПАВ могут вызвать повреждения тканей и снижение терапевтической активности лекарства. Но главная опасность применения таких систем как носителей лекарств состоит в том, что они очень лабильны, при введении в организм происходит их разбавление, мицеллы распадаются и солюбилизованное лекарство выпадает в осадок. [c.445]

    При определении микроколичеств веществ к анализируемому веществу можно добавить нужное количество нерадиоактивного носителя и выделить определяемое вещество в наиболее чистом состоянии по принципу метода изотопного разбавления. Подобные определения можно проводить путем титрования [181. [c.316]

    Приготовление катализатора путем пропитки носителя разбавленным раствором. По этой методике нанесение платины или палладия на носите и. осуществляют путем пропитки носителя сравнительно разбавленными раство рами хлоридов этих металлов. Раствор хлорида платины или палладия, свобод ный от нитратов и содержащий 5 г металла в смеси 50 мл воды иЪ мл концентри рованной соляной кислоты, помещают в охладительную смесь. После охлажде ния к раствору добавляют 50 мл 40%-ного формальдегида и 11 г носителя (дре весного угля или асбеста, предварительно обработанного, как описано выше). Затем при перемешивании приливают раствор 50 г едкого кали в 50 мл воды Температуру смеси при этом поддерживают ниже 5 после завершения этои операции втечение 15мин. доводят температуру до 60°. Катализатор тщательно декантируют с водой, после чего промывают разбавленной уксусной кислотой. Окончательную промывку катализатора проводят на фильтре горячей водой до полного отсутствия в фильтрате хлоридов, щелочей и восстановителей. В заключение катализатор сушат при 100 и помещают в эксикатор. [c.140]

    Из эманатора (рис. 4.5) вынимают золотую пластинку, смывают активный налет ( Bi и без носителя) разбавленной (1 1) азотной кислотой. Выпаривают азотную кислоту досуха. Смывают невидимый остаток, содержащий 2i2pij 2 мл раствора 0,05 н. по НС1, 7 Ai по уксусной кислоте и 1,5—2 Ai по [c.171]

    Промывку носителя разбавленным раствором кислоты (соляной или фосфорной) и щелочью применяют для удаления железа, алюминия и других металлов, при этом заметно уменьшается активность. Обработка фосфорной кислотой необходима при определении хлорфенолов. Например, для обнаружения пентахлорфе-нола в биологических объектах экстракты хроматографировались на колонке с хромосорбом С (60—80 меш) с добавкой 2% о-фос-форной кислоты и 3% ДЭГС [141]. Однако в этом случае температура термостата колонок не должна превышать 185°, так как кислота может улетучиться. [c.49]

    Сендерс и Додж [46] рассмотрели термодинамические данные по гидратации этилена и пришли к следующему заключению Ясно, что в настоящее время (1934 г.) невозможно получить константу равновесия, отклоняющуюся от теоретической менее чем в сто раз . Они изучали гидратацию этилена в паровой фазе при 360—380° и давлениях от 35 до 135 ат над окисью алюминия и окисью вольфрама в качестве катализаторов. На основании своих результатов и результатов других исследователей они пришли к выводу, что еще не найден активный катализатор для реакции гидратации. Выдано большое количество патентов по гидратации этилена в присутствии кислых солей и фосфорной кислоты на носителях [39] в паровой фазе при высоких температурах и давлениях. Один из таких процессов, в котором в качестве катализатора используется фосфорная кислота, применяется в промышленности. Этилен может реагировать с разбавленной 10 %-ной серной кислотой при температурах 240—260° и давлениях около 141 кг/см , при этих условиях образуется равновесная смесь этилена, этанола и этилового эфира. Спирт или эфир мон<ет быть возвращен в процесс для получения другого продукта, но технические трудности процесса помешали его промышленному использованию [29]. [c.355]

    Отсутствие взаимного влияния хемосорбированиого оксида углерода может быть объяснено разбавлением электрондефицитных платиновых центров неактивными частицами платины, связанной с серой, а также распределением их по ее поверхности среди акцепторных центров носителя. Повышение электронной дефицитности платины вследствие промотирования катализатора серой приводит к ослаблению связи Р1- С при хемосорбции молекул углеводорода и к подавлению реакций, для которых такая хемосорбция определяет скорость, например для реакции гидрогенолиза. [c.57]

    Построение калибровочного графика проводят следующим йбразом. В колонки с одинаковыми внутренними диаметрами или калиброванными по объему вносят смесь осадителй и носителя. Смесь готовят тщательным перемешиванием безводной окиси алюминия с диметилглиоксимом в сухом виде в соотношении 100 1. Колонки заполняют смесью на 2/з их высоты, как указано выше (см. 17, стр. 306), Приготавливают серию растворов соли никеля, содержащих от 0,01 до 0,5 г-экв/л, путем последовательного разбавления дистиллированной водой 1 н. раствора нитрата никеля, поддерживая постоянным значение pH раствора. В колонки вносят по 0,2 мл приготовленных растворов. Через 3—5 мин после [c.312]

    Отработанный и отпаренный катализатор нааравляется вниз через стояк реактора 4 и, пройдя регулирующий клапан, поступает в захватное сооружение транспортной линии регенератора У-2, где подхватывается струей воздуха (носителя) и транспортируется в разбавленной фазе в регенератор Р-2. [c.59]

    Наиболее распространенным катализатором для этого процесса является фосфорная кислота на твердом носителе (широкопористый силикагель, алюмосиликат). Выбор параметров процесса наряду с отмеченными ранее факторами обусловлен экономическими соображениями, особенно снижением энергетических затрат на получение пара и рециркуляцию непревращенных веществ. Температура противоположным образом влияет на равновесие и на скорость кроме того, ее повышение ведет к усиленной полимеризации олефина и уносу фосфорной кислоты с носителя. Поэтому гидратацию этилена ведут при 260—300°С, когда для поддержания нужной концентрации Н3РО4 в поверхностной пленке катализатора требуется высокое парциальное давление водяного пара (2,5—МПа). Чтобы повысить степень конверсии водяного пара, получгть не слишком разбавленный спирт и этим снизить расход энергии, работают при некотором избытке этилена [(1,4ч-1,6) 1]. Это п11едопределяет выбор общего давления 7—8 МПа, когда рав-новес ая степень конверсии этилена равна 8—10%. Однако фактическую степень конверсии поддерживают на уровне 4%, что позволяет работать при достаточно высоких объемной скорости (2000 ч ) и удельной производительности катализатора по спирту [180—220 кг/(м -ч)], получая после конденсации 15%-ный эта но . [c.191]

    Получать АПК-2 можно по следующей технологической схеме (рис. 60). Таблетированную окиСь алюминия через воронку загружают. в аппарат 1, предварительно заполненный на /з обессоленной водой, где проводят обессеривание. После загрузки носителя реактор полностью заливают водой, подают острый пар для нагревания и перемешивания массы, обрабатывая таким образом уАЬОз в течение 1 ч. В том же аппарате носитель отмывают до отсутствия серы в промывной воде, затем сушат его в сушилке 2 при 250— 300 °С. Раствор Рс1(ЫОз)2 получают в реакторе 3 разбавлением [c.149]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]

    Теория активных ансамблей Н. И. Кобозева (1938). Активный центр Н. И. Кобозев рассматривает как докристаллическую струк-туру — ансамбль из п атомов, стабилизированный на поверхности носителя . Такие катализаторы названы адсорбционными. Для их иолучепия используются очень разбавленные растворы солей металлов. Степень заполнения (а) поверхности катализатора -- в пределах [c.183]

    Расщепление ДМД-ректификата, по данным ФИН, проводится в вертикальном туннельном реакторе с движущимся сверху вниз плотным слоем зериеного катализатора фосфорная кислота на носителе при 250—300 °С и разбавлении сырья водяным паром при массовом отношении пар сырье, равном 0,5. По методу фирмы Bayer для получения изопрена применяется катализатор того же типа, однако процесс осуществляется в псевдоожиженном слое (входящий поток). Характерной особенностью последнего метода является совместное разложение ДМД и ВПП, причем теплота, выделяющаяся при выжиге кокса, образующегося преимущественно из ВПП, расходуется на компенсацию эндотермического теплового эффекта. Другая важная черта метода — это использование для разбавления сырья не чистого водяного пара, а части погона от упаривания водного слоя, образующегося при синтезе ДМД. Разложение ДМД ведется при 200—300 °С, а регенерация катализатора — при 600—700 °С. [c.367]

    Уравнением (XII,10) не учитывается расход носителя, который требуется для нагревания смеси до температуры перегонки, испарения смеси и компенсации потерь тепла в окружающую среду. Чтобы избежать чрезмерно большого расхода носителя и разбавления им паров, тепло для указанных выше целей подаодят в куб с помощью глухого пара или другого теплоносителя. [c.482]

    Таким образом, выход выделяемого препаративной хроматографией продукта, кроме факторов, связанных с самим процессом хроматографирования, определяется и факторами, действующими в процессе улавливания параметрами приемника-ловушки, его геометрией и поверхностью контакта скоростью газа-носителя адсорбционной активностью наполнителя кратностью циркуляции газа в ловушках степенью разбавления газом-носителем температурой термостатирования ловушек и природой, главным образом летучестью улавливаемого вещества. [c.207]

    Представим себе два крайних случая, которые могут возникнуть в зависимости от способа ввода пробы [87, с. 259]. Пусть в первом случае вещество после разбавления газом-носителем поступает в колонку с концентрацией Со, причем эта концентрация не превышает область линейной изотермы сорбции, а объем образовавшейся пробы КтУи-р достаточно велик (здесь Кщ — степень разбавления пробы газом-носителем). Допустим, что этот объем продвигается в колонку без дальнейшего разбавления. Если скорость газа-носителя со, то время ввода пробы /пр = /Ст1 пр/со. За это время проба поступит в колонку в режиме фронтальной хроматографии, а скорость фронта составит Ыф= (о/Го. Это означает, что после окончания ввода пробы в колонку она займет слой сорбента, равный [c.152]

    Так как обычно величина навески пробы невелика, то операция пробоотбора, обеспечирзающая представительность навески, играет существенную роль. Дальнейшая подготовка к анализу или отсутствует, или сводится к смешению пробы с разлнчно1 о рода добавками — буферными смесями, носителями, веществом, содержащим внутренний стандарт, или просто разбавлением, например графитовым порошком. При определении следов анализу может предшествовать концентрирование элементов. Если вещество вво- [c.104]


Смотреть страницы где упоминается термин Газ-носитель разбавление: [c.203]    [c.209]    [c.75]    [c.152]    [c.146]    [c.254]    [c.100]    [c.115]    [c.384]    [c.37]    [c.40]    [c.128]    [c.341]   
Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.53 ]




ПОИСК







© 2025 chem21.info Реклама на сайте