Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масса абсолютная физическая

    Масса абсолютная (физическая) атома т [c.199]

    А, — Относительная атомная масса. Отношение абсолютной (физической) массы атома элемента В [т (атом В)] к атомной единице массы (mj т(атом В)/т . Ранее называлась атомный вес элемента , входила в первоначальную формулировку Периодического закона Д. И. Менделеева (1869) свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов. Значения А, всех элементов — см. раздел 2.1, значения Лр элементарных частиц — см. рубрики iV , М , N . [c.200]


    М — Молярная масса. Отношение абсолютной (физической) массы порции вещества В (тв) к количеству вещества в ней [c.205]

    При современном состоянии наук, динамическая ли или атомическая гипотеза о строении вещества, всякая неизбежно должна допустить в веществе незаметные, невидимые, скрытые от прямого ощущения движения, без которых нельзя понять ни света, ни тепла, ни газового давления, ни большой массы механических, физических и химических данных. Для древнего человека оживотворены движением казались только животные, для нас ныне без самобытного движения немыслима ни одна малейшая доля вещества, всякая снабжена живою силою, энергиею в той или другой мере. Таким образом, движение стало понятием, неразрывно связанным с понятием материи, и подготовилась почва к новому возбуждению динамической гипотезы о строении вещества. В самом атомном учении стала утверждаться все с большею силою та обобщающая мысль, по которой мир атомов устроен так же, как мир небесных светил, <0 своими солнцами, планетами и спутниками, одушевленными всегдашнею живою силою движения, образующими частицы, как небесные тела образуют системы, подобные солнечной, и неделимыми лишь относительно, как неделимы планеты солнечной системы, и устойчивыми и прочными, как прочна система мира. Такое представление, не требуя абсолютной [c.103]

    Количество вещества, адсорбированного единицей массы адсорбента, называют абсолютной адсорбцией и обозначают А. В общем случае величина А больше гиббсовского поверхностного избытка Г. Однако для ПАВ ввиду их высокой адсорбционной способности можно пренебречь концентрацией в объеме по сравнению с очень высокой концентрацией в адсорбционном слое и принять Л I". В настоящее время известны пять типов экспериментально получаемых изотерм физической адсорбции паров и газов на твердых адсорбентах (рис. 20.10). Тип I — изотерма для мономолекулярной (однослойной) адсорбции и хемосорбции тип II — S-образная кривая, не достигающая предела адсорбции, характерна для полимолекулярной адсорбции тип III — монотонно возрастающая кривая без перегибов, типична для поверхностей со слабой адсорбционной способностью типы IV н V близки к // и III, но имеют максимум адсорбции, обусловленный капиллярной конденсацией, относятся к полимолекулярной адсорбции. [c.332]

    Физическая основа иного качества явлений космического масштаба по сравнению с наблюдаемым в лаборатории состоит, возможно, в том, что в космосе основным видом взаимодействия является гравитация, играющая второстепенную роль в случае малых масс. Так, сила гравитационного взаимодействия между протоном и электроном в атоме водорода составляет всего лишь 4-10 от силы кулоновского притяжения, удерживающего электрон в атоме. С другой стороны, сила тяготения, как считается, может достигать в космических объектах такой величины, что свет не в состоянии ее преодолеть и объект перестаёт светиться — это явление возникает как следствие гравитационного коллапса. Из всего сказанного важно понять, что второй закон термодинамики не является абсолютным принципом и теряет смысл и для систем, содержащих малое число частиц, и для систем космического масштаба. [c.193]


    ХУ1-3-10. а) Закон распределения материальных частиц (с массой покоя, не равной нулю) дает возможность произвольного выбора нулевого уровня энергии. Покажите, каким образом три закона распределения влияют на изменение энергии каждого уровня Де и что эти законы существенно не меняют этого изменения, б) Закон распределения фотонов требует, чтобы энергия, которую имеют фотоны, была определена в абсолютном значении. Покажите, как закон налагает такое требование, и объясните его физический смысл. [c.170]

    Второй важной характеристикой атома после заряда ядра является его масса. Истинная масса атома элемента, выраженная в граммах, называется абсолютной атомной массой (т ). Так, масса атома углерода равна 1,99 10 кг. Однако выражать значения масс атомов с помощью общепринятых единиц массы — грамм или килограмм — неудобно, поскольку получаются очень малые значения, что затрудняет пользование ими. Поэтому при вычислении атомных масс за единицу массы принимают 712 часть массы атома изотопа углерода с массовым числом 12. Эта единица измерения атомной массы называется углеродной единицей (у. е.) или атомной единицей массы (а. е. м.) 1 а. е. м. = 1,667 10 кг. Она создает единую основу для химических и физических расчетов. [c.11]

    Атомы и молекулы характеризуются определенной массой, в связи с чем в химии используют два способа обозначения — абсолютная атомная (молекулярная) масса и относительная атомная (молекулярная) масса. Явления, происходящие с участием простых и сложных веществ, можно разделить на два типа физические и химические. [c.25]

    Существует несколько физических методов абсолютного измерения молекулярных масс, в первую очередь основанных на использовании седиментации или рэлеевского рассеяния света. Они требуют существенно большего количества индивидуального биополимера, чем описанные химические и биохимические методы, проводятся путем прецизионных измерений на дорогостоящем оборудовании и применительно к задаче измерения молекулярных масс белков и нуклеиновых кислот постепенно утрачивают свое значение. Седиментационные методы основаны на использовании уравнений (7.2) или (7.3). В первом случае измерению подлежат константа седиментации биополимера и коэффициент диффузии. Во втором случае нужно достичь состояния седиментационного равновесия и измерить распределение концентрации исследуемого биополимера вдоль центрифужной ячейки, т.е. концентрацию биополимера на нескольких разных расстояниях г от оси ротора. Оба метода требуют определения парциального удельного объема, или, что то же самое, плавучей плотности биополимера в условиях, используемых для седиментации. [c.267]

    Опираясь на физическое понятие вероятности, покажем связь абсолютных вероятностей Р (т) с концентрациями целевого компонента в ячейках. Пусть в некоторый момент времени концентрации в ячейках, принадлежащих объему аппарата, бьши равны С[, С2, , s. Масса целевого компонента в аппарате найдется как [c.656]

    Измерение теплоемкости полимеров в широком диапазоне температур дает информацию о характере тепловой подвижности повторяющихся элементов цепи макромолекулы и его изменении при фазовых (плавление, кристаллизация, полиморфное превращение кристалла) или физических (стеклование) переходах. В области низких температур, в которой производится большинство прецизионных измерений, экспериментальные значения теплоемкости полимеров, находящихся в твердом состоянии, подобно теплоемкости других твердых тел, являются монотонно возрастающей функцией температуры, достигая относительного насыщения при некоторой характеристической, так называемой дебаевской температуре, соответствующей возбуждению всех внутримолекулярных ( скелетных ) колебательных степеней свободы полимерной цепочки [1]. Абсолютные теплоемкости полимеров в этой области температур (вблизи 300 К) сравнительно мало изменяются в гомологическом ряду, однако проявляют заметную зависимость от массы повторяющихся звеньев цепи [1], что может быть качественно учтено следующими эмпирическими соотно тениями [2, 3]  [c.6]

    Глава 4. Абсолютные методы определения молекулярной массы Физические методы [c.118]

    Здесь уместно привести слова Энгельса Если техника... в значительной степени зависит от состояния науки, то в гораздо большей мере наука зависит от состояния и потребностей техники. Если у общества появляется техническая потребность, то она продвигает науку вперед больше, чем десяток университетов Потребность анализировать чистые вещества, особенно полупроводниковые, дала мощный толчок развитию аналитической химии. Предел обнаружения элементов нужно было снизить в 100—1000 раз, а в некоторых случаях и больше. Отвечая на этот запрос, аналитическая химия ускоренными темпами двигалась в двух направлениях. Основным направлением было снижение абсолютного предела обнаружения прямых методов определения примесей, особенно физических и физико-химических, а также разработка новых методов, обеспечивающих определение крайне малых концентраций вещества,— радиоактивационного и масс-спектрального с искровым источником ионов. На этом пути аналитическая химия имеет немало достижений. Радиоактивационный метод дает возможность определить до 10"" —некоторых элементов-примесей в полу- [c.14]


    Как будет показано в гл. 3 абсолютная распространенность изотопов была определена только для нескольких элементов, в частности для аргона химические данные по атомным весам более точны, чем атомные веса, рассчитанные на основании физических измерений [2123], особенно для таких элементов, как серебро и бром, имеющих распространенные изотопы. В Международных таблицах 1955 г. приведены значения атомных весов 36 элементов, полученные преимущественно или полностью на основании масс-спектроскопических или ядерных данных. [c.42]

    Как было упомянуто в гл. 2, расхождение между вычисленными физическими и измеренными химическими атомными весами элементен вызвано трудностью точного измерения изотопных отношений для элементов,содержащих распространенные изотопы. Трудности, присущие измерению отношения двух изотопических пиков, сильно отличающихся по интенсивности, увеличиваются, если последние образуются не одним соединением. В этом случае ограничиваются получением воспроизводимых отношений. Абсолютные отношения измеряются редко чаще всего необходимо добиться лишь высокой чувствительности, даже при измерении разницы в распространенностях изотопов. Имеется много факторов, вызывающих случайные и систематические ошибки в определении распространенности. Вначале рассматриваются ошибки, имеющие место при масс-спектрографических определениях 11334], а затем возможные ошибки в масс-спектрометрии. Масс-спектрограф не может конкурировать с масс-спектрометром в измерении относительной распространенности. В самом деле, образцы, изученные на масс-спектрометре, использовались для калибровки масс-спектрографов при исследовании распространенности изотопов. Так как масс-спектрографы широко применялись в прошлом для измерений распространенности изотопов и используются сейчас при элементарном анализе нелетучих твердых тел в искровых ионных источниках, то имеет смысл прежде всего рассмотреть ошибки, возникающие при фотографическом методе регистрации. [c.72]

    Весь многолетний опыт моделирования ФХС убеждает нас в том, что химическое вещество нельзя рассматривать как бильярдный шар , лишенный химической индивидуальности. В отличии от механических систем - в химическом мире нет абсолютно подобных по свойствам индивидов. Химическое вещество подобно только само себе. Даже изомеры алканов, имея одинаковый химический состав, молекулярную массу и близкое молекулярное строение, отличаются от н-алканов физическими и химическими свойствами. [c.12]

    Величина внутренней энергии системы зависит как от вида и массы веществ, образующих систему, так и от их температуры и агрегатного состояния. Определить абсолютную величину внутренней энергии системы не представляется возможным. Термодинамика не занимается изучением отдельных слагаемых, из которых состоит внутренняя энергия системы. Ее основная задача изучить изменение содержания всей этой энергии в целом в результате того или иного физического или химического процесса в данной термодинамической системе. [c.163]

    В соответствии с теорией А.М. Бутлерова стандартизированные (применительно к комнатной температуре, атмосферному давлению, критическому состоянию и т.д.) физические свойства индивидуальных углеводородов и узких нефтяных фракций можно представить в виде функции от их молекулярной массы и молекулярного строения. Разумеется, одной лишь информации о молекуярной массе абсолютно недостаточно для идентификации углеводородов, содержащихся в нефтях. Так, по молекулярной массе нельзя различить н.-алканы от изоалканов или от алкилцикланов и алкилбензолов. Фи-зико-химическая индивидуальность различных классов углеводородов одинаковой молекулярной массы, но различающихся по молекулярному строению, вполне закономерно проявляется через такие их свойства, как температура кипения и плавления, критические температура и давление, мольный объем, давление насыщенных паров, поверхностное натяжение и др. [c.69]

    Прогрессивная материалистическая наука полностью опровергает учение физиче ских идеалистов, как ненаучное, ложное, тянущее человечество назад, к средневековью Знаменитый русский физик П. Н. Лебедев в 1899 г. доказал, что световой луч, падая нв гу или иную поверхность, оказывает на нее определенное давление. А раз свет можеэ эказывать давление, значит он обладает и определенной массой. Свет материален с той же степенью достоверности, как материально вещество ,—говорит академик С. И. Вавилов. Таким образом, между веществом и светом нет абсолютной грани, ибо и то и другое—лишь различные формы движущейся материи. Более того, из опытов Лебедева вытекает, что иежду массой и физической мерой ее движения—энергией—существует определенна взаимосвязь. [c.22]

    Одним из физических эффектов, который используется в этом случае, является нелинейная зависимость сухого трения от скорости. Так, если некоторое тело массой т движется по тангенциально колеблющейся поверхности с. относительной скоростью v и(t)=x-i (где X- абсолютная скорость, =ao osa)f- колебательная скорость поверхности, а- амплитуда, и - круговая частота), то сила трения выражается в виде 2-зависимости от скорости [47]  [c.144]

    Атомы элементов и молекулы веществ характеризуются определенной физической (абсолютной) массой т например, масса атома водорода Н составляет 1,67-г, масса молекулы Р4 2,06-10 г, масса молекулы Н,0 2,99- 10 г, масса молекулы Н2804 1,63 К) г. Абсолютные массы атомов элементов и молекул веществ чрезвычайно малы, и пользоваться такими значениями неудобно. Поэтому введено понятие об относительной массе атомов и молекул. [c.9]

    Один из основателей учения о радиоактивности. Научные работы посвящены также исследованию кристаллических тел, магнетизму. Совместно с женой М. Склодовской-Кюри открыл (1898) полоний и радий, определил их атомные массы, физические свойства и место в периодической системе элементов установил характер радиоактивного излучения и его свойства. Независимо от А. Беккереля обнаружил (1901) биологическое действие радиоактивного излучения. Предложил использовать период полураспада для установления абсолютного возрабта земных пород. [c.32]

    Понятие о твердой фазе. Термодинамическое определение фазы (см. гл. II, 9) включает следующие основные положения. Во-первых, подразумевается, что система находится в состоянии термодинамического равновесия, т. е. обеспечены условия свободного массопереноса и теплообмена как в объеме каждой фазы, так и в системе в целом. Во-вторых, каждая фаза, составляющая систему, должна быть физически однородной ее частью. При этом химическая однородность фазы не обязательна. Примером физически однородной (однофазной), но химически неоднородной системы являются воздух — молекулярный раствор газов, не взаимодействующих друг с другом, молекулярные водные растворы неэлектролитов и т. п. Химическая неоднородность в однофазной системе наблюдается только при полном отсутствии химического взаимодействия между компонентами. Если такое взаимодействие при образовании фазы возможно, то оно приводит к возникновению и физически и химически однородной однофазной системы. Например, смесь газообразного оксида азота и кислорода физически однородна. Если бы эти газы пе взаимодействовали друг с другом, то их смесь была бы однофазной, но химически неоднородной (как воздух). Поскольку в системе возмол<но химическое взаимодействие, приводящее к образованию нового вещества (дыокспд азота НОг), то состояние термодинамического равновесия наступит тогда, когда система станет и физически и химически однородной. В-третьих, термодинамическое определение фазы предусматривает наличие межфазной границы раздела — поверхности, отделяющей данную фазу от всех остальных фаз в системе н от окружающего пространства. Поверхностный слой фазы находится в иных условиях по сравнению с объемом и обладает избыточной свободной энергией. Вследствие этого свойства поверхности отличаются от свойств вещества в целом. Поэтому понятие фазы применимо к макроскопическим объектам, для которых объемные свойства являются определяющими. Если поверхностными свойствами по сравнению с объемными пренебречь нельзя (что наблюдается, например, в тонких пленках), то классическое понятие фазы становится неприменимым. При этом не имеет значения абсолютное количество вещества в объеме данной фазы, важ[ю лишь соотношение между поверхностью и объемом. Например, фазой нельзя считать тонкую масляную пленку на поверхности воды, хотя общая масса этой пленки может быть значительной. [c.302]

    Понятие о твфдой фазе. Термодинамическое определение фазы (см. 9 гл. II) включает следующие основные положения. Во-первых, подразумевается, что система находится в состоянии термодинамического равновесия. Во-вторых, каждая фаза, составляющая систему, должна быть физически однородной ее частью. При этом химическая однородность фазы не обязательна. Примерами физически однородных (однофазных), но химически неоднородных систем являются воздух — молекулярный раствор газов, не взаимодействующих друг с другом, молекулярные водные растворы неэлектролитов и т.п. В-третьих, термодинамическое определение фазы предполагает наличие межфазной границы раздела — поверхности, отделяющей данную фазу от всех остальных фаз в системе и от окружающего пространства. Поверхностный слой фазы находится в иных условиях по сравнению с объемом и обладает избыточной свободной энергией. Вследствие этого свойства поверхности отличаются от свойств вещества в целом. Поэтому понятие фазы применимо к макроскопическим объектам, для которых объемные свойства являются определяющими. Если поверхностными свойствами по сравнению с объемными пренебречь нельзя (что наблюдается, например, в тонких пленках), то классическое понятие фазы становится неприменимым. При этом не имеет значения абсолютное количество вещества в объеме данной фазы, важно лишь соотношение между поверхностью и объемом. Например, фазой в термодинамическом смысле нельзя считать тонкую масляную пленку на поверхности воды, хотя общая масса этой пленки может быть значительной. [c.185]

    Физический смысл определяется как количество влаги, которое необходимо сообщить единице массы тела, чтобы увеличить его потенциал переноса влаги на единицу Ст = dujdQ. Удельная массоемкость существенно положительная величина, т. е. при увеличении влагосодержания тела возрастает и его потенциал переноса. Из соотношения (5.7) следует, что потенциал переноса 0 абсолютно сухого тела равен нулю. На этом основании может быть построена шкала потенциала переноса влаги, если принять некоторое тело за эталонное [1]. [c.241]

    В действительности измерения релаксации напряжения скрывают широкий спектр времён релаксации и весьма чувствительны к структуре полимера. Повышение молекулярной массы ( т.е. увеличение вязкости по Муни ) и возрастание длинноцепочечной разветвлён-ности приводят к более длительным релаксационным процессам, т.е. к меньшим значениям ( абсолютным ) наклона кривой. Однако в отличие от Л6 этот показатель зависит от вязкости по Муни. Более вязкие каучуки имеют более длинные полимерные цепи, что приводит к большему числу точек физического межмолекулярного взаимодействия и, следовательно, к замедлению релаксационных процессов. Однако такое же влияние на скорость релаксации оказывает и повьипе-ние длинноцепочечной разветвленности. [c.441]

    Читая литературу по кюрию, нетрудно заметить, что в последние годы все большее внимание исследователей привлекает другой, более тяжелый изотоп с массой 244. Он тоже альфа-излучатель, ио имеет больший период полураспада—18,1 года. Его энерговыделеиие соответственно меньше — 2,83 ватта на грамм. Поэтому с ним проще работать при изучении химических и физических свойств в меньшей степени сказываются радиационные эффекты . Кюрий-244 можно даже подержать в руках, правда, ес.пи работать в перчатках в абсолютно герметичном боксе. И еще одно важпое обстоятельство этот изотоп можно получать в больших количествах, если в качестве исходного сырья использовать ие чистый уран, а уран-плутоние-вое ядерное горючее. Тогда кюрий-244 будет получаться тоннамн как побочный продукт ядерной энергетики. [c.421]

    Рассмотрим рассчитанные выше два предельных случая соотношения между числом мицеллообразования и радиусом ядра мицеллы. Во-первых, ситуацию, при которой число мицеллообра-зования уменьшается до единицы и даже становится дробным. Во-вторых, вариант, при котором число мицеллообразования столь велико, что соответствующий ему по расчету размер ядра больше, чем физический размер нерастворимых цепей полимера, составляющих это ядро (верхний предел. мицеллообразования). Конечно, этот предел зависит от абсолютной молекулярной массы и других свойств нерастворимого компонента привитого сополимера и не является однозначной велич.иной, иодобно числу мицеллообразования, равному единице. [c.290]

    Средние молекулярные массы Му, и Мп определяются с по-мош ью абсолютных методов, так как их вычисление проводится без всяких предположений о форме и размерах макромолекул. Среднемассовое значение молекулярной массы можно определить методами светорассеяния или приближения к седимептационному равновесию. Среднечисловые молекулярные массы могут быть найдены методами осмометрии, криоскопии, эбулиоскопии, изотермической перегонкой, измерением тепловых эффектов конденсации или вычислены из данных определения концевых функциональных групп химическими или физическими методами. [c.87]

    Ограничения. Совершенно очевидно, что любой расчет влияния массы изотопа на скорость реакции должен основываться на некоторой общей теории скоростей реакций. Эта теория должна базироваться на детальном описании роли отдельных атомов и сил, создаваемых электронным облаком. Такие силы действуют подобно эластичному клею, удерживая вместе атомы, входящие в состав молекулы. Очень полезной оказалась теория абсолютных скоростей реакций, например, в изложении Глесстона, Лейдлера иЭйринга 139]. Ее ограниченная применимость к практическим случаям обусловлена неполнотой имеющихся сведений о фактическом переходном комплексе и возможностью в настоящее время выполнить достаточно точный квантово-механический расчет только для простейших систем. В противоположность многим сложным, но стабильным молекулам мы еще не знаем ни конформации, ни даже структуры большинства переходных комплексов. Между тем для точного предсказания скорости и изотопного эффекта определенной реакции требуются подробные сведения о переходном состоянии. Однако, что весьма важно, экспериментальные результаты дают возможность проверить наличие предполагаемого переходного комплекса и выбрать из нескольких возможных тот, который действительно участвует в реакции. Для этого обычно достаточно качественного соответствия. На большее, как правило, нельзя рассчитывать, поскольку ряд физических параметров предполагаемого переходного комплекса можно лишь грубо оценить. [c.13]

    Измерение абсолютных значений изотопных отношений было осуществлено Ниром 11506] для аргона. Метод Нира применим к любому элементу, изотопы которого могут быть легко отделены один от другого и получены в чистом виде. Для получения отношения истинной распространенности к измеренной в своем масс-спектрометре Нир использовал образец, приготовленный из чистых Аг и Аг. Применяя электростатическую развертку спектра, он нашел, что дискриминации приводят к завышению истинного значения Аг/ Аг на0,63%. Нир использовал этот поправочный коэффициент, вызванный дискриминацией по массам, в своем приборе для получения величин относительной распространенности изотопов углерода, азота, кислорода и калия. Далее измерения были распространены на неон, криптон, рубидий, ксенон и ртуть [1507]. Лишь в случае аргона, когда проводилось прямое сравнение с эталоном, можно было с уверенностью исключить систематическую ошибку. Однако и для других исследуемых образцов принято, что систематические ошибки меньше ошибок, полученных ранее, и что величины распространенностей изотопов, определенные для этих образцов, позволят использовать их как вторичные эталоны. Интересно отметить, что для некоторых элементов, таких, как серебро, хлор и бром, которые состоят из двух изотопов со сравнимой распространенностью, абсолютные значения изотопных отношений точнее вычисляются на основании химических атомных весов и физически определенных масс изотопов, чем прямым измерением на масс-спектрометре. Для таких элементов химический атомный вес и атомный вес изотопа используются для проверки абсолютной точности измерений распространенности. Самый легкий элемент — водород — может быть использован для изучения дискриминации по массам благодаря большой величине отношения масс На и HD. Водород и дейтерий легко доступны задача получения истинных отношений H2/HD решается при анализе искусственных смесей известного состава и сравнением результатов измерения подобных образцов с измерениями смесей неизвестного состава. Это было сделано для образцов, содержащих 0,003—0,830 мол.% дейтерия [808], при использовании ионных источников без вспомогательного магнита. Результаты анализа определенного образца могут колебаться до 3% при изменении условий работы источника при наличии магнита источника изменение изотопных отношений достигало 25%. При использовании магнита источника значение отношения HD/Hg было всегда завышенным наблюдалась тенденция к еще большему увеличению этого отношения с увеличением количества анализируемого образца. Подобные эффекты не отмечались в отсутствие поля магнита источника. В этих условиях для смесей, содержащих около 0,1% дейтерия, была установлена абсолютная точность измерения 3%. [c.78]


Смотреть страницы где упоминается термин Масса абсолютная физическая : [c.294]    [c.206]    [c.206]    [c.206]    [c.206]    [c.206]    [c.206]    [c.6]    [c.28]    [c.40]    [c.51]    [c.476]    [c.40]    [c.51]    [c.146]    [c.280]    [c.659]    [c.9]   
Справочник по общей и неорганической химии (1997) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Масса абсолютная



© 2025 chem21.info Реклама на сайте