Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реологические молекулярное строение

    Реологические и фильтрационные свойства бурового раствора зависят от размера, формы и молекулярного строения взвешенных в нем частиц. По размеру эти частицы удобно разделить на три группы 1) коллоиды размером от 0,05 до 1 мкм, придающие раствору вязкостные и фильтрационные свойства 2) илы и барит (иногда называемые инертной твердой фазой) размером от 1 до 50 мкм, обеспечивающие необходимую плотность бурового раствора, но оказывающие отрицательное влияние, если повышать плотность не нужно, и 3) песок размером от 50 до 420 мкм (при использовании в вибрационном сите сетки с размером ячеек 420 мкм), который, хотя и закупоривает крупные отверстия в некоторых очень пористых пластах, в остальном оказывает лишь отрицательное воздействие в силу своей абразивности. [c.17]


    Как известно, молекулы полимеров представляют собой цепочки различной длины, каждая из которых содержит ряд мономерных звеньев. При этом, естественно, движение одной части полимерной цепи влияет на перемещение других ее частей. Поэтому невозможно описать процессы, происходящие в полимерах при течении, без знания их молекулярного строения и структуры, а также механизма течения. В настоящее время хорошо известно, что реологические свойства полимеров зависят от их молекулярной массы, молекулярномассового распределения, степени разветвленности молекул. Считается, что первым результатом сдвига является разрушение межмолекулярного взаимодействия, которое возникает вследствие взаимодействия цепей. В свою очередь взаимодействие цепей есть функ- [c.26]

    Информация о молекулярном строении объектов исследований может быть представлена на различных уровнях дискретизации (фрагментный, структурно-групповой, компонентный состав) или в виде специальных физико-химических, физиологических, химмотологических, реологических и др характеристик [c.11]

    ЗАВИСИМОСТЬ РЕОЛОГИЧЕСКИХ СВОЙСТВ ПОЛИМЕРА ОТ МОЛЕКУЛЯРНОГО СТРОЕНИЯ [c.83]

    При рассмотрении влияния особенностей молекулярного строения полимера на его реологические свойства основное внимание будет уделено установлению корреляции между строением и свойствами. Ясно, что такое рассмотрение не претендует ни на абсолютную строгость, ни на полноту описания всех известных экспериментальных результатов. Мы просто надеемся, что излагаемые представления будут способствовать лучшему пониманию того, как изменение особенностей молекулярного строения полиолефина влияет на его реологические свойства. [c.83]

    В последние годы были предприняты попытки на основании систематического изучения влияния показателей молекулярного строения на реологические свойства полимеров при сдвиговом и продольном течениях разработать методы расчета реологических характеристик промышленных материалов, обладающих умеренно широким и широким ММР [122—123]. Известно большое число характеристик молекулярного строения полимеров, однако при установлении их количественных корреляций с показателями реологических свойств (как и с показателями других технологических свойств) целесообразно ограничиться только теми характеристиками молекулярной массы и ММР, которые с достаточной точностью определяются опытным путем, а именно среднечисленной [Мп] и среднемассовой (Mw) молекулярной массой [122]. [c.202]


    Механические — составляют наиболее обширную группу методов исследования граничных слоев жидкости, так как их механические свойства непосредственно связаны со строением аномальных слоев и действующими на них молекулярными силами. Именно из-за тесной связи со структурой механические (реологические) параметры получили в физико-химической механике название структурно-механических. [c.73]

    Вопрос об истинных значениях массы молекул асфальтенов, или об их молекулярном весе, имеет принципиальное научное значение для понимания важнейших физических свойств самых сложных по химическому составу и наиболее высокомолекуляр-ных по размерам молекул неуглеводородных составляющих нефти. Не менее важное значение имеет и знание истинных величин их молекулярных весов для решения вопроса о химической структуре и физическом строении этих твердых аморфных компонентов нефти. Неудивительно поэтому, что разработкой методов определения молекулярных весов асфальтенов и установлением связи между размерами их молекул и рядом фундаментальных физических их свойств, прежде всего реологическими свойствами и растворимостью, с образованием как истинных, так и коллоидных растворов, занимались многие исследователи на протяжении более 50 лет. Накоплен большой экспериментальный материал по изучению молекулярных весов смол и асфальтенов, выделенных из сырых нефтей, из тяжелых остатков продуктов переработки, из природных асфальтов. Если для нефтяных смол нет существенного расхождения в значениях молекулярных весов, полученных разными исследователями (обычно значения молекулярных весов лежат в пределах 400—1200), то для асфальтенов уже можно наблюдать большие расхождения. Данные, полученные различными методами, лежат в весьма широких пределах от 2000—3000 до 240 000—300000. Совершенно ясно, что самые низкие значения должны быть отнесены к собственно молекулам асфальтенов, т. е. истинным молекулярным их величинам. Значения же молекулярных весов в пределах от 10000 до 300 ООО соответствуют надмолекулярным частицам асфальтенов, т. е. ассоциатам молекул асфальтенов различной степени сложности. Значения молекулярных весов этих ассоциатов, или мицелл, зависят от многих факторов, но прежде всего от растворяющей способности и избирательности применяемых растворителей и концентрации асфальтенов в растворах. Весьма существенно на значениях найденных молекулярных весов частиц сказываются чистота и степень разделения по размерам молекул [c.69]

    Экспериментальные методы исследования структуры полимеров. Можно сказать, что методологической основой методов исследования молекулярной структуры вещества является принцип наблюдения реакции после подачи импульса. Иначе говоря, тот или иной импульс (например, излучение) подается на исследуемое вещество, и по характерной реакции последнего можно судить о его строении. Характер реакции при таких исследованиях, начиная от метода дифракции рентгеновского излучения и кончая методами исследования реологических свойств, после соответствующей обработки, например с помощью преобразований Фурье, дает информацию о целом спектре структурных уровней вещества. Следовательно, изучение всего спектра структурных уровней данного полимерного образца, в том числе строения повторяющихся элементов цепи, конформации макромолекулы и характера молекулярной агрегации [c.161]

    Факторы, влияющие на стабильность полимеров, как и прФ исследовании процессов коррозии, можно условно разделить на внешние (рис. 2.1), эксплуатационные (связанные с влиянием среды и нагрузок) и внутренние (рйс. 2.2) или факторы состояния полимеров (определяемые химическим составом, строением, особенностями структуры и фазовым состоянием, молекулярной массой, силами межмолекулярного взаимодействия, деформационными, реологическими и другими свойствами), а также конструктивно-технологическими факторами (характеризующими особенности конструктивного и технологического изготовления изделий) (рис. 2.3). [c.36]

    Установление связей между химическим строением макромолекул, величиной молекулярного веса, ко нцентрацией растворов высокомолекулярных соединений и их реологическими свойствами является важной проблемой физико-химии полимеров. [c.84]

    Выше было показано, что с увеличением молекулярного веса возрастают вязкость, податливость и максимальные времена релаксации, в то время как повышение степени разветвленности действует в противоположном направлении. Кроме того, всегда существует вопрос о том, какими усреднениями следует пользоваться при сравнении экспериментальных результатов. По всей вероятности, различные реологические свойства в разной степени зависят от различных усредненных значений молекулярных весов, равно как и от степени разветвленности макромолекул. Следует также учесть, что определенную роль может играть изменение относительного содержания длинных ответвлений рассчитанного как число боковых цепей, приходящееся на 1000 атомов углерода основной цепи, с изменением молекулярного веса полимера. Все эти проблемы могут быть экспериментально разрешены только тогда, когда будет надежно освоено фракционирование полимеров и полученные фракции будут характеризоваться, исходя из их молекулярного веса, тонких особенностей строения полимерной цепи и по реологическим свойствам. [c.101]


    Пример № 1. Яркую иллюстрацию сказанного можно найти в истории развития теоретической и экспериментальной реологии. Длительное время она рассматривалась главным образом как специфическая механика вязко-упругих жидкостей, затем центр тяжести приложения реологических исследований был перенесен в область научных основ переработки полимерных материалов. После этого резко возросла технологическая значимость реологии, и реологические характеристики материалов с непреложной необходимостью стали также относить к технологическим свойствам [84, 87, 89, 100— 102]. Однако Б последнее время выяснилось, что результаты реологических измерений дают важную информацию о структурных особенностях полимеров. Это расширило возможность применения реологических методов для характеристики фундаментальных свойств систем (их молекулярно-массовых параметров, химического строения структуры) и чрезвычайно усилило интерес к ннм [103]. [c.195]

    Строение молекул, молекулярная масса пленкообразующих олигомеров и полимеров влияют на физико-химические (например, реологические) и технологические свойства лакокрасочных материалов и во многом определяют эксплуатационные, в частности электрические характеристики формируемых покрытий. Строение молекул отверди-телей и олигомерных модификаторов также может оказывать влияние на эти свойства. [c.17]

    Изучение реологических свойств позволяет хотя и косвенно создать некоторое представление о строении исследуемой жидкости. Торн и Роджер нашли простую аддитивную связь между молярной вязкостью П мол. и строением молекулы. В проведенных ранее исследованиях установлено повышение вязкости с увеличением молекулярного веса в одном гомологическом ряду, причем эта зависимость имеет частично линейный, а частично квадратичный характер. Для неассоциированных жидкостей, определяемая таким методом молярная вязкость равна сумме атомных [c.292]

    В связи с этим существенный интерес представляет исследование свойств однофазных растворов, и в том числе их реологического поведения. Но реология растворов полимеров, как и вообще любых систем, подвергаемых деформированию, зависит не только от типа растворителя и молекулярного строения полимера, но в значительной степени и от характера взаимодействия между макромолекулами и их взаимного р-асположения (структуры полимера в растворе). В гл. I при изложении развития представлений о природе растворов полимеров говорилось о том, что 1на смену представлениям о коллоидной структуре пришло представление о молекулярном строении их. Вывод о молекулярнодисперсной структуре растворов полимеров не означает, однако, что в этих растворах отсутствуют временные ассоциаты, обусловленные флуктуационными явлениями, типичными воо-бще для любой жидкости. [c.148]

    Реологические свойства расплавов полимеров представляют интерес в связи с изучением внутреннего строения полимеров и анализом таких процессов их переработки, как, например, формование волокон или литье под давлением. Поэтому этот вопрос был предметом изучения в большом числе экспериментальных и теоретических работ, часть из которых цитируется ниже. С другой стороны, вязкоупругие свойства расплавов полимеров рассматривались лишь в очень ограниченном числе публикаций [1—3], хотя очевидно, что эластичность полимеров также связана с их молекулярным строением и особенностями процессов переработки. Имеется довольно большое число указаний на то, что эластичность, которую проявляют расплавы полимеров, иногда еще в большей степени определяет особенности процесса переработки, чем вязкость. Такие явления, как эффект Вейссенберга и увеличение диаметра струи после выхода из насадки (эффект Барруса), характерные для полимерных расплавов, безусловно, связаны с эластичностью расплавов. В настоящее время известны несколько методов оценки эластичности полимерных систем, например при установившемся течении, при релаксации напряжений и по динамическим свойствам. Последняя группа методов дает наиболее прямую информацию о вязкоупругих свойствах системы. [c.282]

    Детальное описание реологических свойств всех полиолефинов, выпускаемых в промышленных масштабах, выходит далеко за пределы возможного. Здесь рассматриваются только самые общие закономерности проявления реологических свойств, а конкретные данные о тех или иных материалах приводятся лишь в качестве необходимых примеров. Несколько подробнее описаны методы измерения параметров, характеризующих вязкостные свойства полиолефинов. Кроме того, излол ены теоретические представления о связи между молекулярным строением и особенностями реологических свойств, что позволяет до некоторой степени рационально подойти к выбору материала. [c.55]

    Следует отметить, что многие исследования последнего времени, направленные на установление взаимосвязей между реологическими характеристиками растворов и расплавов полимеров и показателями их молекулярного строения, вьшолнены на мономолекулярных (монодисперсных) полимерах,. которые можно рассматривать только в качестве модельных объектов. [c.201]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Изменение реологических характеристик (динамической вязкости и напряжения сдвига) для растворов смосой комплексов соответствует характеру зависимостей Ау,. от состава п соотношения комплексов в композициях (см. таблицу). Реологические свойства структурированных растворов смесей комплексов так же, как II растворов индивидуальных комплексов [3], слабо чувствуют различие в характере упаковки молекул в надмолекулярной структуре. Это объясняется тем, что все комплексы трет-бутилтриалкилборатов лития, независимо от строения, длины алкильных заместителей и растворителя, образуют в растворе изоструктурные молекулярные ассоциаты. Чем больше ассоциаты различаются по размеру в смесях комплексов, тем плотнее они упаковываются в растворе. Реологические свойства гелей отражают в основном механическую ситуацию в системе (течение, скольжение крупных ассоциатов, доменов), изменение свободного объема в процессе структурирования растворов комплексов — молекулярное состояние, порядок упаковки молекул и характер взаимодействия компонентов. [c.59]

    Основные научные работы посвящены изучению механизмов реакций ароматических соединений и молекулярных перегруппировок с участием карбониевых ионов. Открыл ряд реакций изомеризации, установил механизмы и количественные закономерности перемещения заместителей в ароматическом ядре. Изучил строение и реакционную способность аренонневых ионов и их аналогов. Больщая серия его работ посвящена использованию ЭВМ для рещения структурных задач органической химии. Разрабатывает пути практического использования различных типов органических соединений (ингибиторов термоокислительной деструкции полимеров, добавок, улучшающих реологические свойства нефтей, закалочных сред, уменьшающих деформацию тонкостенных деталей, и др.). [208] [c.254]

    Загущенные масла в отличие от нефтяных по своему поведению относятся к неньютоновским жидкостям. Полимеры, будучи введенными в масло, существенно меняют его реологические характеристики, что выражается в проявлеш1и, в частности,эффектов Вайсенберга и Баруса. Коллоидное состояние загущенных масел не позволяет использовать для прогнозирования загущающего эффекта рассмотренные выше уравнения, которые оказываются пpaвeaлнвы tt преимущественно для нефтяных масел. Для растворов макромолекул рекомендуется применять выражения, аргументами в которых являются тип загущающей присадки, ее концентрация к молекулярная масса [11]. Учитывая сложное строение растворов полимеров для указанных целей предлагается использовать номограммы [21]. [c.14]

    Физические свойства. Во многих работах приведены данные исследований вязкости растворов поливинилового спирта [21—31]. Эвва [21] исследовал структурную вязкость и реологические свойства водных растворов поливинилового спирта. Скорость течения изменяется с напряжением t по уравнению q = Ах , где А vi п — константы, зависящие от температуры, концентрации и степени полимеризации. Саито [30] объясняет повышение вязкости растворов полимеров при добавлении детергентов образованием комплексов вследствие селективной адсорбции ионов детергента за счет дисперсионных сил и наличия сил притяжения между ионами детергента и диполем в полимере. Комплексообразование больше зависит от строения молекул детергента, чем от строения полимера. Исследованию молекулярной структуры и кристалличности поливинилового спирта посвящен ряд работ [32—39]. [c.340]

    Приведенные выще примеры наглядно показывают, что реологические (в данном случае вязкостные) свойства полимеров в разной степени зависят от фундаментальных характеристик. Хорошо известно, что вязкостные свойства полимеров определяются их химическим строением, молекулярной массой и ММР, в то время как высокоэластические свойства в большей степени определяются ММР и разветвленностью макромолекул. Так, коэффициент нормальных напряжений возрастает с увеличением произведения ((g)wMw), характеризующего среднемассовое значение объемов статистических клубков макромолекул, а модуль высокоэластичности Ge = 2ai2(ou—сггг) уменьшается с возрастанием ширины ММР. [c.203]

    Это обусловлено несколькими причинами. Во-первых, практически все процессы переработки полимеров сопровождаются вытяжкой расплавов, причем во многих случаях она служит определяющей технологической операцией (например, при формовании плоских и рукавных пленок, волокон, нитей и т. д.). Вот почему физическое и кинематическое моделирование определенных стадий растяжением раснлавов оказывается более адекватным, чем использование сдвигового деформирования. Во-вторых, реологические характеристики при растяжении очень чувствительны к условиям вытяжки и фундаментальным (например, молекулярно-массовым) свойствам испытываемых объектов, и поэтому могут устанавливаться надежные корреляционные зависимости по цепочке строение полимера — параметры деформации — технологичность ири переработке. Наконец, способность расплава к растяжению и прежде всего к накоплению обратимых деформаций во многом определяет степень ориентации полимера и его физико-механические свойства в конечном продукте. [c.223]

    Получены воскообразные кристаллические и растворимые полимеры, содержащие двухвалентный ципк [12, 13, 30]. Они отличаются высоким молекулярным весом их температура размягчения зависит от химического строения. При быстром подавлении реакции образования полидибутилфосфината ципка [И] полимер получается в аморфной, метастабильной форме он медленно кристаллизуется при комнатной температуре. Это обстоятельство и хрупкость полимера при —40° С указывает на то, что его температура стеклования ниже комнатной. Полиметилфенилфосфинат цинка проявляет необычные реологические свойства в интервале температур 100—200° С [106 [. Синтезированы сополимеры 132 цинка(И) и двух разных фосфиновых кислот (1 1), их свойства приведены ниже в таблице [18, 112]. [c.264]

    При переработке пластических масс в изделия основными методами прессованием, литьем под давлением, экструзией и каландро-ванием — они нагреваются до перехода в вязкотекучее состояние. В этом состоянии пластмассы должны обладать определенной текучестью. Пластические массы с нужной текучестью могут быть изготовлены на основе полимеров с заданными реологическими свойствами (вязкость, текучесть). Реологические свойства полимеров важны при переработке пластмасс любыми методами. Поэтому при синтезе полимеров технологический процесс всегда создается с ориентацией на получение в первую очередь продукта с определенными реологическими свойствами и соответственно со всем комплексом показателей, которые их определяют (строение, молекулярный вес и полидисперсность). [c.83]

    На основе полученных данных авторы пришли к заключению, что механизм термокаталитического осаждения асфальтенов обусловлен в основном изменениями химического строения, и в частности, отщеплепием парафиновых цепей и увеличившейся концентрацией конденсированных ароматических и нафтеновых колец в молекуле. Эти асфальтены по своим физическим и реологическим свойствам значительно отличаются от асфальтенов, осаждаемых растворителями при комнатной температуре, в частности, своей более низкой степенью коллоидной дисперсности, более слабой склонностью к образованию молекулярных ассоциаций в растворах и меньшим объемом. Структурные различия между асфальтенами обоих типов подтверждаются также данными рентгеновских дифракционных спектров, которые, по-видимому, указывают па более упорядоченное строение асфальтенов, выделенных с помощью термокаталитического метода. [c.101]


Смотреть страницы где упоминается термин Реологические молекулярное строение: [c.165]    [c.378]    [c.338]    [c.93]    [c.4]    [c.188]    [c.378]   
Кристаллические полиолефины Том 2 (1970) -- [ c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Реологические



© 2024 chem21.info Реклама на сайте