Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитраты стабильность

    Вода с таким содержанием нитритов и нитратов стабильна, так как в ней очень высок запас связанного кислорода. [c.13]

    Фладе-потенциал железа в хромате Ер = 0,54 В) отрицательнее Фладе-потенциала железа в азотной кислоте (Ер = 0,63 В). Предложено [10] следующее объяснение хромат-ионы сильнее адсорбируются на пассивной пленке, чем нитрат-ионы, уменьшая тем самым общую свободную энергию системы и увеличивая стабильность пассивной пленки. Другие пассиваторы адсорбируются сходным образом, но характеризуются различной энергией адсорбции. — Примеч. авт. [c.76]


    Электролиты, находящиеся в коллоидном растворе, уменьшают дзета-потенциал и соответственно понижают устойчивость коллоидного раствора. Именно поэтому с целью повышения устойчивости применяют диализ для удаления электролитов из коллоидного раствора. Однако глубокий диализ приводит к противоположному результату, вызывая коагуляцию коллоидов. Рассмотрим коллоидный раствор положительно заряженных частиц (Agl), , который содержит некоторое избыточное количество ионов Ag и примеси нитрата натрия, от которой необходимо избавиться с помощью диализа. Во время диализа происходит одинаковое относительное уменьшение концентрации всех ионов, которые находятся в растворе, — примеси Na+, N07 и ионов Ag . Последние должны содержаться в растворе для сохранения адсорбционного равновесия, т. е. для сохранения стабильным наряда коллоидных частиц (Agi),,,. Как видно из рисунка 106, уменьшение концентрации ионов серебра в растворе, происходящее вместе с уменьшением концентрации примесей (Na и N07), вначале мало влияет на величину адсорбции ионов Ag+. Заряд ядра и соответственно величина термодинамического потенциала почти не изменяются, а в связи со значительным уменьшением концентрации противоионов (ионов N07) в растворе возрастает дзета-потенциал устойчивость коллоидного раствора увеличивается. [c.423]

    Характеристические соединения. В отличие от щелочных металлов элементы подгруппы кальция образуют прочные характеристические оксиды 30, Их получают термическим разложением карбонатов или нитратов. Все оксиды — тугоплавкие бесцветные гигроскопические вещества. Они бурно взаимодействуют с водой с выделением большого количества теплоты и образованием гидроксидов. Все гидроксиды Э(0Н)2 являются сильными основаниями. Их растворимость в воде и сила основания растет от Са(0Н)2 к Ва(0Н)2. Помимо характеристических оксидов, металлы подгруппы кальция (в отличие от Ве и М ) образуют пероксиды ЭОа. Они намного менее стабильны в сравнении с оксидами (например, СаОа взрывается при 275°С) и сильные окислители. [c.131]

    Получены математические модели процесса модифицирования НА, определены области оптимальных значений факторов технологического процесса приготовления нитрата аммония, содержащего не более 4% комплексных синергических добавок, имеющего фазовую стабильность в пределах от -50 С до +90°С. Проведенные экспериментальные исследования по фазовой стабилизации нитрата аммония позволили выделить перспективные направления решения проблемы его полиморфизма. [c.61]


    Растворы солей имели то преимущество, что их легко готовить и они в течение длительного времени сохраняют стабильность, но плотность таких растворов ограничена. Поскольку нитрат натрия легко растворяется в воде, его использовали для приготовления надпакерных жидкостей, помещенных в несколько скважин. Вскоре в этих скважинах произошли серьезные коррозионные повреждения труб. Исследования различных растворов одной или нескольких солей позволили рекомендовать для плотностей от 1,0 до 1,2 г/см хлорид натрия от 1,2 до 1,4 г/см хлорид кальция и от 1,4 до 1,7 г/см смесь хлоридов кальция и цинка. Растворы смеси хлоридов кальция и цинка более высокой плотности сочли слишком агрессивными. Позднее диапазон плотностей надпакерных жидкостей был расширен /сначала до 1,8 г/см путем применения смесей бромида и хло- рида кальция при допустимых скоростях коррозии, а затем до максимального значения 2,15 г/см с внедрением раствора бромида кальция. В конце 50-х годов возрастающая стоимость труб нефтяного сортамента и увеличение затрат на ремонт скважин вызвали повышенное внимание к замедлению коррозии. Высокие скорости бурения, которым в это время придавали особое значение, повлекли за собой многочисленные коррозионные повреждения бурильных труб. Повышенные частоты вращения ротора и нагрузки на долото, изготовление труб из упрочненных сталей, более высокие давления и температуры — все эти факторы так или иначе способствовали росту числа поломок бурильных труб. [c.74]

    Обычно соблюдают следующий порядок. Для общего анализа отбирают особую пробу, а для определения растворенных кислорода, углекислоты и сероводорода отбирают еще три пробы, выполняя затем в них соответствующие аналитические операции. В пробе для общего анализа определяют цвет, наличие и вид осадка, запах и вкус, если это необходимо и возможно по характеру пробы. Взболтав жидкость, отливают порцию для определения взвешенных веществ, остальное количество фильтруют и из фильтрата отбирают пробы для определения жесткости, кальция, щелочности, хлоридов, нитритов, окисляемости и сухого остатка. Определение всех этих показателей, кроме сухого остатка, может быть закончено за 30—40 мин, после чего приступают к более трудоемким операциям для определения железа, алюминия, натрия, калия, сульфатов, нитратов, кремниевой кислоты и аммиака. Перечисленные примеси относительно стабильны, и их определение может выполняться во вторую очередь. [c.410]

    Для обработки теплиц и складов, а иногда и в лесном хозяйстве применяют дымовые шашки-металлич. коробки, содержащие термически стабильный пестицид (чаще всего у-изомер гексахлорциклогексана) в смеси с окислителем (КСЮз, КаСЮз, нитраты и др.), горючим в-вом (уголь, [c.501]

    В азотнокислых растворах стабильность Ри(П1) ниже, чем в растворах НС1, вследствие его окисления нитрат-ионами. При концентрации НЫОз>5 М происходит довольно быстрое окисление Ри(П1) даже при комнатной температуре. Присутствие даже небольших количеств нитрит-ионов и окислов азота ускоряет этот процесс. В сернокислых растворах плутоний (HI) постепенно окисляется кислородом воздуха. [c.83]

    Растворимость нитрата аммония показана на рис. 339, а температурные интервалы стабильности разных кристаллических форм — в табл. 88 [c.388]

    Преобладающее влияние специфической сольватации в растворителях с высокой диэлектрической проницаемостью отмечалось 40 лет назад Фреденхагеном [381. Он показал, что синильная кислота (е =113 при 22 °С) является значительно худшим растворителем для электролитов, чем вода. При О °С концентрации насыщенных растворов в синильной кислоте равны для хлорида калия 0,037 М, для нитрата калия 0,050 М, для цианида калия 0,1 М. Фреденхаген также отмечал, что в жидком, аммиаке, который образует весьма стабильные комплексы с ионами серебра, растворимость иодида серебра очень велика растворимость бромида и хлорида меньше, а фторид серебра является труднорастворимым веществом. В воде, которая сильно сольватирует малые анионы, но слабее аммиака сольватирует ионы серебра, порядок изменения растворимости становится противоположным фторид -серебра является растворимой солью, а другие галогениды — труднорастворимыми, причем растворимость уменьшается в ряду хлорид, бромид, иодид. [c.301]

    После полного растворения навески в стакан добавляют одну каплю азотной кислоты, опускают электроды, соединенные с потенциометром, и, как только показания рН-метра становятся стабильными, начинают титровать 0,01 н. раствором нитрата серебра (см. гл. 1, разд. Потенциометрическое титрование ). [c.150]

    Разработаны схема непрерывного, полностью автоматизированного процесса сульфирования масел газообразным серным ангидридом в жидком сернистом ангидриде [а. с. СССР 138615 2, с. 141 21, с. 139] пособ получения эффективных сульфонатных присадок при использовании водного раствора нитрата кальция для нейтрализации. сульфокислот промышленная технология высокощелочных присадок НГ-102 и НГ-104 с большей моющей способностью и предложен способ получения присадки НГ-104, обладающей высокими моющими и диспергирующими свойствами и хорошей стабильностью при длительном хранении масла [15, с. 69]. Во ВНИИ НП разработан высокозольный сульфонат (присадка ПМС) с 3,5—5-кратным избытком металла против стехио-метрического количества [1, с. 158 с. 145], создан процесс сульфирования масла газообразным серным ангидридом в пленочном роторном сульфураторе непрерывного действия, ранее применявшемся для сульфирования синтетических алкилбензолов. Бутков, Филиппов и Барабанов [1, с. 95] разработали способ получения магнийсульфоносульфонатной присадки ВНИИ НП-121 путем предварительного окисления масла М-11 из сернистых нефтей. Авторами составлен ряд товарных композиций с использованием этой присадки такие композиции можно добавлять к маслам различных групп для карбюраторных и дизельных двигателей. [c.68]


    Определяем тепло, выделяющееся при кристаллизации. Тепловой эффект превращения расплавленного нитрата аммония в кристаллическую модификацию, стабильную при 80 С, равен 33,17 ккалЫг КН4КОз. [c.445]

    На фиг. 43 представлены результаты проверки стабильности цетанового числа, полученного при добавлении к топливу различных присадок. Наблюдениям было подвергнуто дизельное топливо каталитического крекинга с начальным цетановым числом 39, содержавшее по 0,5% указанных выше присадок. В течение первых шести недель все присадми, кроме нитратов, оказались сравнительно стабильными. После этого срока устойчивыми остались только нитрокарбамиты и пероксиды. Нитроалканы и нитраты продолжали терять свою активность, и за 43. Снижение цетанового числа ди- [c.97]

    К. специфическому взаимодействию относится способность некоторых веществ образовывать комплексные относительно нестойкие соединения. Например, нитрат серебра, растворенный в таких неподвижных фазах, как этиленгликоль, глицерин, триэтиленгли-коль или бензилцианид, образуете олефинами комплекс, благодаря чему парафины легко отделяются от олефинов, задерживающихся на сорбенте. Смесь олефинов разделяется далее на индивидуальные вещества вследствие различия в стабильности образующихся комплексов, которая быстро падает при повышении температуры. [c.173]

    НОН РЬОН" + Н КОз-+НОН- НЫОз + ОН-Г идроксид свинца - слабое основание, так как малорастворим в воде. Та его часть, которая все же растворилась, диссоциирована на ионы РЬОН и ОН. Диссоциация по второй ступени до ионов РЫ и ОН практически не происходит, т. е. химическая связь между атомами свинца и кислорода в ионе РЬОН достаточно прочна и эта частица в данных условиях устойчива. Это значит, что первое уравнение соответствует реально протекающему взаимодействию в растворе соли свинца. Его результатом является связывание ионов свинца в стабильную частицу РЬОН и появление в растворе некоторого количества протонов. Азотная кислота HNO очень сильный электролит, в растворах диссоциирует нацело. Поэтому вторая реакция необратима и идет справа налево (можно поставить знак <—). Таким образом, гидроксид-ионы в данном растворе образовываться не могут, и протоны остаются нескомпенсирован-ными. Не по заряду, т. к. раствор, по определению, электронейт-рален, какие бы процессы в нем не проходили, и суммарный заряд положительных ионов равен суммарному заряду отрицательных. Поэтому нитрат свинца в растворе гидролизован и его раствор имеет кислую среду. [c.138]

    Соли металлов семейства платиноидов немногочисленны. В соответствии с общей тенденцией понижения характерных степеней окисления в горизонтальных триадах наблюдается следующая закономерность. Элементы первой вертикальной диады Ки и Оз, у которых стабильными являются высокие степени окисления, вовсе не образуют солей, где они выступали бы в качестве катионообразователей. Для элементов второй диады — родия и иридия — известны солеобразные производные, отвечающие степени окисления +3, главным образом сульфаты КЬг (804)3 -ИНзО и 1гз (804)3 -бНгО, а также двойные сульфаты типа квасцов [в чем проявляется горизонтальная аналогия со многими элементами в степени окисления +3 — А1 (+3), Ре (+3), Сг (+3) и т. п.1. Отметим, что стабилизация этих солей обусловлена образованием кристаллогидратов — аквакомплексов. Более многочисленны солеобразные соединения элементов третьей диады — палладия и платины, отвечающие главным образом их степени окисления +2. Так, получены Э804-2Н20, Э(МОз)з-21 20, 3(0104)2-41 20. Известен также ацетат палладия Р(1 (СН3СОО)2. Соли слабых кислот, не содержащие кристаллизационной воды, термически нестабильны. В избытке реагентов, включающих одноименный анион, они легко образуют комплексные соединения. Для степени окисления +4 существуют лишь малостойкие нитраты Э(КОз)4. [c.423]

    Помимо названных соединений известны сульфиды Ро5, РозЗз, нитрат, сульфат, хромат, иодат полония (+3). Таким образом, химия полония укладывается в один ряд с халькогенами, однако нарастание металлических свойств и появление стабильной степени окисления (+3) определяет дополнительную аналогию с лантаноидами и его соседом — висмутом. В настоящее время основную массу полония получают облучением висмута нейтронами  [c.429]

    Природный натрий — стабильный изотоп 1 Ма. Искусственно получен радиоактивный изотоп Ма с (3-излучением и периодом полураспада 15,06 ч. По распространенности в литосфере натрий занимает шестое место среди других элементов системы Менделеева. Доказано присутствие его в атмосфере Солнца и в космическом пространстве. Наиболее распространен в природе хлорид натрия, содержащийся в морской воде и образующий после высыхания морей мощные пласты каменной соли (галита) (Соликамск, Илецк, Артемовск и др.). Из вод залива Кара-Богаз-Гол на Каспийском море добывают глауберову соль Ка2804Х X ЮНаО (мирабилит). В Чили находится богатейшее месторождение нитрата натрия. [c.289]

    Границы стабильности растворов. Данные о доступной области потенциалов в растворах ДМСО приведены в табл. 11. Аналогичная картина наблюдалась для других растворителей. Следует отметить, однако, что K IO4 очень сильно растворяется. В этом растворе интервал потенциалов в анодной области такой же, как и в других перхлоратах или нитратах, между тем в катодной области интервал рабочих потенциалов шире по сравнению с другими соединениями, за исключением солей тетраалкиламмония. Соль K IO4 считается удобным электролитом, так как ее легко получить и хранить в чистом виде. [c.41]

    КАЛЬЦИЕВАЯ СЕЛИТРА, то же, что кальция нитрат. КАЛЬЦИЙ (от лат. alx, род. падеж al is-известь лат. al mm), Са, хим. элемент II гр. периодич. системы, относится к щелочноземельным элементам, ат. н. 20, ат. м. 40,08. Прир. К. состоит из шести стабильных изотопов - Са (96,94%), - Са (2,09%), Са (0,667%), Са (0,187%), Са (0,135%) и " a (0,003%). Поперечные сечения (10 м ) захвата тепловых нейтронов изотопов с мае. ч. 40, 42, 44, 46 и 48 равны соотв. 0,22, 40, 0,63, 0,25 и 1,1. Конфигурация внеш. электронной оболочки 4s степень окисления +2, очень редко +1 энергии ионизации Са - Са - Са соотв. равны 6,11308 и 11,8714 эВ электроотрицательиость по Полингу 1,0 атомный радиус 0,197 нм, ионный радиус (в скобках указано координац. число) Са 0,114 нм (6), 0,126 нм (8), 0,137 нм (10), 0,148 нм (12). [c.293]

    Нестабилизированные Ц. н. обладают мадой атмосферо-стойксхл ью и очень низкой термич. стабильностью в обычных условиях безводные нитраты разлагаются менее чем через 3 мес. При нагревании Ц. н. подвергаются деструкции уже при 40-60 °С, причем скорость разложения быстро возрастает с повышением т-ры и в присутствии к-т и щелочей. Термич. разложение Ц. н.- самоускоряющийся процесс, а при быстром нагревании возможны вспышка (для Ц. н., увлажненных спиртами, т. всп. 13 °С) и взрыв. Т-ра воспламенения зависит от скорости подвода теплоты при медленном нагревании -190 °С, при быстром - от 160-170 до 141 °С. Энергия активации термич. распада и тепловой эффект термич. разложения на воздухе Ц. н. составляют соотв. 119-142 МДж/моть и 3,15 МДж/кг. Введение стабилизаторов (напр., дифениламина) повышает атмосферо- и термостойкость Ц. н. [c.338]

    Слоистые мембраны получают путем прикрепления однородной тонкой пористой пленки из нитрата целлюлозы к картонной подложке, изготовленной из высокоочищенной целлюлозы. Такая пленка имеет губкоподобную структуру, характерную для поверхностных фильтров с хорошо определенными размерами пор. Довольно высокая прочность подложки во влажном состоянии обеспечивает создание слоистых мембран с прочностью, достаточной для того, чтобы выдержать усилия, развивающиеся при фильтрации под давлением. Слоистые мембраны сохраняют работоспособность даже при использовании для фильтрации жидкостей с пульсирующей подачей. Пленочный слой определяет производительность, химическую стабильность и эффективность удерживания фильтра. Он работает как микротонкое сито. [c.87]

    Соли рубидия и цезия, в анионе которых лигандом является кислород, обычно называют солями кислородсодержащих кислот. Анионы у солей кислородсодержащих кислот могут быть по своему строению тетраэдрическими (сульфаты, фосфаты, перманганаты, перренаты, хроматы, перхлораты, перйодаты), пирамидальными (сульфиты, хлораты, броматы, иодаты), плоскими, в виде правильного треугольника (нитраты, карбонаты) и, наконец, просто треугольниками (нитриты). Соли, анионы которых содержат элементы VII группы, плохо растворяются в воде и разлагаются прп нагревании с выделением кислорода. В большинстве случаев рубидиевые и цезиевые соли кислородсодержащих кислот не образуют кристаллогидратов при обычной температуре. Малоустойчивые в водных растворах сульфиты и нитриты рубидия и цезия йЛегко взаимодействуют с аналогичными соединениями переходных элементов, давая комплексные соединения, отличающиеся высокой стабильностью в растворе и, как правило, незначительной растворимостью в воде. [c.113]

    При осаждении нитрата тория избытком щелочи в присутствии неэлектролита получается прозрачный коллоидный раствор отрицательно заряженной гидроокиси тория, стабильный в течение нескольких дней. Alg b и Na l способствуют коагуляции гидроокиси тория, причем более заметное действие оказывает хлорид магния. [c.29]

    Первые попытки объяснить химизм процессов, происходящих при механической обработке твердых тел, были сделаны известным французским ученым М. Бертло. Согласно его модели при Неханической обработке в местах контакта частиц возникают зоны локального перегрева, в которых происходят химические реакции. Однако тепловая модель Бертло оказалась несостоятельной. Например, в ряду однотипных неорганических солей (хлораты, броматы, нитраты различных щелочных металлов) механическая стабильность изменяется вне связи с термической стабильностью, что противоречит модели Бертло, [c.111]

    Способ 2 [4—7]. ТЬОг со свойствами керамики можно получить по так называемому золь —гель методу. Т1и(ЫОз)4 медленно нагревают в струе воздуха до 200 °С. По достижении этой температуры заменяют воздух перегретым водяным паром и поднимают температуру до 475 °С за 3 ч. Вещество нагревают в течение еще 3 ч при этой температуре в струе водяного пара. Полученный по реакции пирогидролиза рыхлый порошок ТЮг имеет поверхность 80 м /г размеры отдельных кристаллитов достигают 70 А. Содержание нитрата составляет 0,03 моль на 1 моль ТИОз. Если такой высокодис-иерсный оксид настаивать в течение 1 ч при 80 °С с разбавленной азотной кислотой при pH 2,5—4, то образуется стабильный золь, который можно сконцентрировать до 7 М по ТЬ02, причем вязкость золя не возрастает. [c.1236]

    Дигидропиридины, полученные по методу Ганча, содержат в каждом р-положении заместители, способные к сопряжению, что обеспечивает их стабильность настолько, что их можно выделить и затем окислить в соответствующие ароматические производные пиридина. Классические методы дегидрирования 1,4-дигидропиридинов основаны на применении азотной или азотистой кислот это превращение также может быть гладко осуществлено с использованием церий(1 0аммонийнитрата, нитрата меди(П), нанесенного на монтмориллонит, или диоксида марганца, нанесенного на бентонит [260]. [c.146]


Смотреть страницы где упоминается термин Нитраты стабильность: [c.54]    [c.108]    [c.261]    [c.62]    [c.104]    [c.369]    [c.335]    [c.60]    [c.300]    [c.282]    [c.70]    [c.69]    [c.81]    [c.86]    [c.568]    [c.307]    [c.310]    [c.619]    [c.738]    [c.135]    [c.197]   
Химия целлюлозы и ее спутников (1953) -- [ c.362 , c.366 , c.375 , c.384 ]




ПОИСК







© 2025 chem21.info Реклама на сайте