Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт в присутствии цинка

    Двадцать из первых тридцати элементов периодической системы, а также четыре более тяжелых элемента необходимы для жизни. Водород, углерод, азот и кислород присутствуют в организме в виде многих соединений. Натрий, калий, магний, кальций и хлор присутствуют в виде ионов в крови и межклеточных жидкостях. Фосфор в виде фосфат-иона обнаружен в крови эфиры фосфорной кислоты содержатся в фосфолипидах и других соединениях гидроксиапатит содержится в тканях костей и зубов. Сера — важная составная часть инсулина и других белков. Фтор, содержащийся в виде фторид-иона в питьевой воде, необходим для образования прочных зубов и костей он необходим также для нормального роста крыс. Кремний, ванадий, хром, марганец, железо, кобальт, медь, цинк, селен, молибден, олово и иод в небольших количествах необходимы для жизни (микроэлементы). Сведения о некоторых из этих элементов были получены только в опытах с животными (особенно с крысами), однако весьма вероятно, что полученные данные относятся также и к человеку. [c.418]


    Определению не мешают свинец, марганец, никель, кобальт, медь, цинк, кадмий, алюминий, щелочноземельные и лантаниды. Мешает определению присутствие железа. Ниже (см. стр. 204) приводится предлагаемый в этом случае ход определения. Мешают хлорид-ионы, если содержание их более чем в 20 раз превышает содержание комплексона. В этом случае рекомендуется проводить титрование с тиомочевиной в качестве индикатора (см. метод Б ). [c.203]

    Осаждение сульфидом аммония и отделение марганца и цинка от никеля, кобальта и меди. К находящемуся в колбе раствору, содержащему марганец, щелочноземельные металлы и т. п. (стр. 952), прибавляют 2—3 мл раствора аммиака и насыщают сероводородом. Марганец, никель, кобальт, медь, цинк и немного платины (из платиновой чашки) осаждаются. Затем прибавляют еще такое же количество аммиака, наполняют колбу до горла водой, закрывают пробкой и оставляют стоять по крайней мере 12 ч (лучшее 24 ч или еще дольше). Фильтруют через небольшой фильтр, промывают осадок водой, содержащей хлорид аммония и сульфид аммония, и выщелачивают осадок разбавленной соляной кислотой, содержащей сероводород [1 объем соляной кислоты (пл. 1,11 г см ) на 5 объемов сероводородной воды]. Марганец и цинк, если они присутствуют, переходят в раствор. [c.961]

    Определению не мешают палладий, ртуть, кадмий, медь, олово, сурьма, алюминий, никель, кобальт, марганец, цинк, барий, кальций, натрий, калий. Железо (1П) образуете реактивом желтый комплекс, поэтому в присутствии железа добавляют фосфорную кислоту. [c.187]

    Комплексон совершенно не оказывает влияния на высоту, форму и наклон этой волны. В отсутствие комплексона определению урана мешают катионы, восстанавливающиеся вблизи области восстановления уранилового комплекса. В присутствии комплексона марганец, никель, кобальт и цинк определению не мешают, так как их комплексы в этих условиях полярографически не выявляются [117]. [c.151]

    Сочетание экстракции с методом атомной абсорбции позволяет снизить Сн определяемого элемента. Так, при определении микроэлементов (железо, кобальт, никель, цинк, свинец и медь) в морской воде для их концентрирования использовали смесь органических реагентов и органических растворителей. Подача в пламя раствора анализируемых элементов в органическом растворителе дает возможность снизить С в 3—5 раз. Благодаря отделению (в процессе экстракции) определяемых элементов от основных компонентов матрицы (воды) устраняются многие помехи на последующих стадиях анализа, в том числе помехи, связанные с физическими свойствами раствора из-за присутствия большого количества солей. [c.241]


    На этой диаграмме отражены самые важные из полученных ими данных. Все обнаруженные элементы показаны диагональными штрихами. Сначала сравнивается относительное химическое содержание металлов в нефтях с относительным содержанием металлов в земной коре это показано дополнительным штрихованием в нижней половине некоторых квадратов двойное поперечное штрихование указывает на то, что эти металлы присутствуют в количествах, гораздо больше средних, по сравнению с обнаруженными в земной коре. Это относится к ванадию и никелю. Молибден, показанный горизонтальной штриховкой, по-видимому, тоже присутствует в количествах выше средних а вертикальная штриховка свидетельствует, что хром, кобальт, медь, цинк и свинец содержатся приблизительно в таких же средних количествах, как и в земной коре. Другие обнаруженные элементы обычно бывают в меньших количествах, чем их находят в земной коре. [c.77]

    Пиридин, как было найдено нами, создает величину pH, соответствующую 6,5. Следовательно, можно ожидать, что пиридин будет полностью выделять индий из растворов его солей в виде гидроокиси, а кроме того, позволит выделять гидроокись индия в присутствии таких металлов, как марганец, кобальт, иикель, цинк, кадмий, медь, щелочные и щелочноземельные. [c.42]

    Вариант П. Выделяют железо, алюминий, хром, индий,, галлий, титан и цирконий пиридином. Из фильтрата после прибавления солянокислого пиридина выделяют сероводородом никель, кобальт и цинк. Из фильтрата после удаления пиридина выделяют марганец сероводородом в присутствии гексаметилентетрамина. В фильтрате от марганца после разрушения органических веществ азотной кислотой определяют, как обычно, щелочные земли, магний и щелочи. [c.111]

    Другими элементами, могущими присутствовать в шихте и не удаляемыми полностью во время плавки и конвертирования, являются никель, кобальт и цинк. Никель обычно в значительной степени не удаляется и переходит в черновую медь. Цинк [c.134]

    Изучением скорости разложения окиси углерода при атмосферном и пониженных давлениях занимались многие исследователи в связи с важным значением этой реакции в доменном процессе [3, 4]. В литературе ее принято называть реакцией Бэлла. Было установлено, что распад СО с заметной скоростью возможен в присутствии катализаторов. Катализаторами для этой реакции являются железо, никель, кобальт, хром. Цинк, медь, кремний, молибден совершенно инертны. Оптимальная температура распада СО зависит от типа катализатора. Большинство исследователей указывает, что наибольшая скорость распада на Ге наблюдается при 450—600°. Шамот, содержащий в своем составе железо, его окислы и соли, также катализирует реакцию Бэлла, причем максимальная скорость на нем достигается при 700°. [c.81]

    Изомеризацию проводят при нагревании в присутствии катализаторов и без растворителя или в растворителях, имеющих высокую диэлектрическую постоянную (метанол, этанол, нитробензол, ацетонитрил, вода ). Катализаторами изомеризации являются азотсодержащие соединения основного характера (монометиламин, пипе-ридин . 2, коллидин, пиридин металлы (медь, кобальт или цинк ) и однохлористая медь . В присутствии веществ основного характера механизм изомеризации следующий (В — основание)  [c.125]

    Для увеличения срока службы катализаторов используются различные добавки, например цинк, хром. Стабильным катализатором является медь с добавками 5% окиси кобальта и 2% окиси хрома, нанесенная на асбест. В присутствии этого катализатора процесс проводится при сравнительно низких температурах (275—300 °С). Производительность катализатора по ацетальдегиду — около 0,9 кг/(кг катализатора-ч). Степень превращения спирта в этих условиях составляет 35—50% за проход. [c.62]

    Металлические аноды обычно содержат около 90 % никеля, примеси железа, меди и кобальта и до 1 % серы, а также в небольших количествах так называемые микропримеси (цинк, свинец, сурьму, мышьяк и др.). Кроме того, в них присутствуют платиновые металлы, селен, теллур. [c.126]

    Существенно на скорость выделения водорода влияет природа катодных участков. Некоторые металлы, например платина, кобальт, никель и др., катализируют выделение водорода, и катодный процесс на них протекает с высокими скоростями. Поэтому, если в составе металла или сплава находятся металлы, катализирующие выделение водорода, то коррозия с выделением водорода может ускоряться за счет этих компонентов в сплаве. Другие металлы, например, ртуть, свинец, кадмий, цинк, не катализируют или слабо катализируют катодное выделение водорода, и катодный процесс на них протекает медленно. Поэтому присутствие в составе сплава таких компонентов или не меняет скорости коррозии основного металла, или снижает ее из-за уменьшения площади поверхности, занимаемой основным металлом, на которой происходят и растворение металла и выделение водорода. Влияние природы металла на скорость выделения водорода количественно можно оценить по перенапряжению водорода на различных металлах (см. табл. 22). Чем ниже перенапряжение водорода, тем большей каталитической активностью к реакции выделения водорода обладает металл и тем выше скорость выделения водорода при данном потенциале катодного участка, а следовательно, и больше скорость коррозии. Чем выше перенапряжение, тем меньше и скорость выделения водорода при данном потенциале катодного участка, тем ниже скорость коррозии металла. Таким образом, скорость коррозии с выделением водорода может быть замедлена снижением температуры и уменьшением концентрации ионов Н , очисткой металла от примесей, катализирующих выделение водорода, а также изоляцией поверхности металла. Перемешивание раствора практически не влияет на скорость выделения водорода. [c.216]


    Однако добавка кислоты, в особенности сильной, может изменить благоприятное для осаждения никеля соотношение концентраций (ИОНОВ водорода и никеля. Это поведет к увеличению доли участия ионов Н+ в разряде. Обычно в никелевую ванну вводят слабые, мало диссоциированные кислоты и таким образом сохраняют pH раствора в ограниченных пределах. Процесс катодного осаждения никеля очень чувствителен ik присутствию примесей в растворе. Обычные примеси в черновом (анодном) никеле — )медь и железо. Никелю всегда сопутствует кобальт. Реже встречаются цинк, мышьяк, свинец. При анодном растворении никеля эти примеси большей частью переходят в раствор. В дальнейшем они могут отлагаться на катоде, что приведет к загрязнению катодного никеля, ухудшению его структуры. Последнее сопровождается падением выхода по току. [c.385]

    В 1913—1914 гг. Баденская анилино-содовая фабрика [118] опубликовала ряд патентов но синтезу углеводородов и кислородсодержащих соединений из окиси углерода и водорода под давлением 100 ат и выше и при температурах 300—400° в присутствии катализаторов. В состав последних входили различные металлы (никель, кобальт, железо, марганец, хром, титан, цинк и др.). Позднее было выяснено, что только некоторые из названных металлов могут применяться как катализаторы синтеза. Этой же фирмой был разработан синтез метанола [119] над катализатором 7нО — СггОз. [c.556]

    Комплексонометрическое титрование кобальта в ферритах [1452]. Кобальт отделяют на анионите. Аналогично разделяют также никель, кобальт и цинк. I г пробы растворяют ъ 9 N растворе соляной кислоты и окисляют двухвалентное железо перегидролем. Полученный раствор вводят в колонку диаметром 1 мл и длиной 50 см, заполненную 28 г анионита. Далее вымывают из колонки никель, пропуская через нее 80 мл 9 N раствора соляной кислоты. После отделения никеля пропускают через колонку 75 мл 4 N раствора соляной кислоты, что приводит к полному удалению из колонки кобальта. Содержащую кобальт фракцию раствора упаривают до объема 5—10 мл, прибавляют избыток раствора комплексона III, 10 мл ацетатной буферной смеси с pH 4,8 и оттитровывают непрореагировавший комплексон III стандартным раствором сульфата меди в присутствии 1- (2-пиридилазо) -2-нафтола. [c.195]

    В случае отсутствия фосфата вливают холодный фильтрат, полученный 11ри операции 3, в раствор аммиака, объем которого в четыре раза больше объема концентрированной азотной кислоты, взятой при операции 3. Темнокрасный ос адок указывает на присутствие железа. Фильтруют и исследуют фильтрат на никель, кобальт и цинк по п. 7. Гидроокись железа на фильтре обрабатывают смесью из 2 мл реактивного железистосинеродистого калия и 10 капель 6/У уксусной кислоты. Темносиняя или зеленая окраска осацка ни фильтре подтверждает присутствие железа. [c.283]

    При анализе почвы, золы растений и других подобных объектов часто требуется определять так называемые микроэлементы (бор, кобальт, медь, цинк, молибден и др.), присутствие которых совершенно необходимо для нормального роста и развития растений, для получения высоких урожаев21 2 . Обычное содержание 2 микроэлементов в почвах составляет Ю З—Ю- %. Установлено, [c.7]

    В общем, хелатообразование посредством атомов кислорода или азота осуществляется только тогда, когда возможно образование пяти- или шестичленных циклов, причем наиболее устойчивым является пятичленный цикл. В присутствии избытка лиганда могут образоваться 2 1-комплексы. Как правило, в этих случаях, двухвалентная медь является четырехсвязной (четырехковалентной), т. е. она насыщается при соединении с двумя молекулами лигандов (либо одинаковых, либо различных) так, чтобы оказались использованными все четыре возможные связи. Марганец и щелочноземельные металлы ведут себя аналогично. Однако двухвалентное железо, кобальт и цинк являются щестиковалентными по отношению к лигандам типа этилендиамина, а трехвалентные ионы шестивалентными по от-ношению к лигандам типа глицина. [c.150]

    Цианидный метод не вполне пригоден для единичных точных определений никеля. Однако метод этот очень удобен для массовых определений никеля в металлур1гических продуктах, и при соблюдении необходимых условий он дает достаточно точные результаты. Метод заключается в прибавлении титрованного раствора цианида калия к аммиачному раствору соли никеля до образования комплексного цианида К2[К1(СК)4]. Конец титрования определяют по исчезновению мути иодида серебра, прибавленного в качестве индикатора. В присутствии железа или хрома прибавляют лимонную кислоту. Главные мешающие элементы — медь кобальт и цинк — обычно находятся в таких малых количествах, что ими можно пренебречь. Если же эти элементы присутствуют в больпшх количествах или если требуется ббльшая точность, то никель выделяют сначала осаждением диметилглиоксимом, как описано на стр. 462, осадок растворяют в горячей азотной кислоте, диметилглиоксим разрушают путем кипяченря с персульфатом или хлоратом и затем титруют обычным способом. [c.466]

    Комплексон совершенно не оказывает влияния на высоту, форму и наклон этой волны. В отсутствие комплексона определению урана мешают катионы, восстанавливающиеся вблизи области восстановления уранилового комплекса. В присутствии комплексона марганец, никель, кобальт и цинк определению не мешают, так как их комплексы в этих условиях полярографически не выявляются [7] (см. полярограмму 5). Только присутствие свинца делает определение урана невозможным (об определении урана в присутствии свинца и комплексона IV см. стр. 240). Указанный метод был применен для анализа некоторых минералов, например ауксенита и т. п. [c.226]

    В анализируемом растворе не должно содержаться много солей аммония, так как ионы аммония увеличивают растворимость осадка. Присутствие в растворе не более 1% оксалата аммония практически не сказывается на точности сп деления магния. Следует по возможности избегать также добавления большого избытка осадителя вследствие того, что растворимые фосфаты склонны соосалодаться с фосфатом магния, и это приводит к повышенным результатам. Перед определением магния из раствора должны быть удалены марганец, никель, кобальт и цинк. [c.179]

    Следует иметь в виду, что почти весь марганец осаждается вместе с магнием. При небольшом его содержании в осадке оксн-хинолината магния определяют марганец, пересчитывают на оксихинолинат марганца Mn( ,Hв0N)з 2H20 и в результаты определения магния вносят соответствующую поправку. Если содержание марганца выше нескольких десятых процента, то его до осаждения кальция и магния отделяют в виде сульфида. Если присутствует цинк, кобальт или никель, то их также предварительно отделяют. [c.183]

    Препятствующие анализу вещества. Определению магния при помощи титанового желтого мешают алюминий, кадм1ий, кобальт, никель, цинк, олово, медь, мышьяк, ртуть и аммоний. Кальций, барий и стронций сами не реагируют с титановым желтым, но в присутствии магния усиливают окраску, поэтому присутствие больших количеств их недопустимо. По данным С. С. Шрайбмана определение магния в присутствии 5-кратного избытка кальция возможно без всяких предосторожностей. При соотношении Са Мд до 200 1 (при наличии кальция не больше 1 г/л) следует применять шкалу с введением иона кальция, а при более высоких соотношениях необходимо предварительно отделить кальций. По [c.349]

    Эти реагенты были использованы для экстракционноспектрофотометрического определения палладия и платины [293—295]. Экстрагирующиеся соединения образуются в широком интервале кислотности водной фазы, но только в присутствии хлорид-ионов. Определению платины и палладия не мешают многие элементы, в том числе железо, кобальт, никель, цинк, кадмий, висмут [c.68]

    Определению не мешают серебро, ртуть, медь, мышьяк, сурьма, алюминий, хром, никель, кобальт и цинк в концентрациях, не превышающих двенадцатикратную концентрацию свинца. Мешающее влияние некоторых из этих элементов, если они присутствуют в пятидесятикратной концентрации, устраняют двойной экстракцией. Раствор дитизоната, полученный описанным способом, встряхивают с двумя порциями по 50 мл 1%-ной азотной кислоты. Водные экстракты, содержащие свинец, сливают в другую делительную воронку. Слой четыреххлористого углерода промывают, взбалтывая его два раза с порциями по 20 мл дистиллированной воды, промывную воду прибавляют к водному экстракту. [c.297]

    Фильтрат, содержащий марганец, никель, кобальт, цинк (а также кальций и магний), упаривают до возможно малого объема и, накрыв стакан стеклом, прибавляют 50 мл царской водки. Кипятят, вновь упаривают подобную обработку повторяют еще два раза. После этого прибавляют 25—30 мл соляной кислоты и упаривают еще раз для удаления азотной кислоты. При этом коричная кислота разрушается, остающиеся маслянистые капли органических веществ не мешают в дальнейшем. Жидкость упаривают до малого об ъема и нейтрализуют аммиаком до слабокислой реакции. Далее никель, кобальт и цинк можно выделить в виде кристаллических сульфидов сероводородом в присутствии буферной смеси из ниридипа и его солянокислой соли [12]. Последующее отделение цинка от никеля и кобальта можно провести осаждением его в виде сульфида в присутствии буферной смеси монохлоруксусная кислота — ацетат натрия [41]. Из фильтрата, содержащего марганец, кальций и магний, выделяют марганец сероводородом в присутствии гексаметилентетрамина. В фильтрате от сульфида марганца кальций и магний определяют как обычно. [c.22]

    Раствор разбавляют водой примерно до 80—90 мл, перемешивают и нагревают до кипения. Отрегз лировав пламя для поддержания слабого кипения, проводят осаждение, медленно прибавляя но каплям при постоянном помешпванпи 20 мл реактива. В начале осаждения скорость прибавления реактива не должна быть более 25—30 капель в минуту после того, как выделившийся осадок начнет коагулировать, скорость прибавления реактива увеличивают примерно до 50—60 капель в минуту (весь процесс осаждения занимает около 18 минут). По окончанпи прибавления реактива стакан покрывают часовым стеклом, дают жидкости кипеть примерно 1 минуту, после чего стакан переносят на водяную баню и оставляют стоять около часа, время от времени перемешивая. Жидкость фильтруют, стараясь ие переносить осадок на фильтр. Чтобы раствор не охлаждался, стакан подогревают на водяной бане. Если бериллий отделяют только от марганца, никеля и кобальта, то осадок, оставшийся в стакане, промывают 2—3 раза декантацией обычной горячей промывной жидкостью (к 20 мл реактива прибавляют 280 мл горячей воды). В случае, если кроме указанных металлов присутствует цинк, осадок промывают декантацией горячим раствором (20 мл реактива, 10 г NH4 1 доводят водой примерно до 100. нл). После перенесения осадка па фильтр его промывают обычной промывной жидкостью. [c.49]

    Если в пробе присутствует цинк, он дает с кобальтом суммарную волну, так как их потенциалы восстановления очень близки друг другу. В этом случае кобальт определяют другим путем, на-прпмер фотоколориметрпчески с нптрозо-К-солью (стр. 144). [c.165]

    Этот метод можно применить непосредственно для определения кадмия в присутствии свинца, висмута, олова (И) и умеренного количества цинка (2п С(1< 3000).0н основан на экстракции дитизоном из 5%-ного раствора едкого натра. Если присутствует цинк, применяют раствор дитизона в четыреххлористом углероде, а не в хлороформе. Если присутствуют медь, серебро и ртуть, кадмий отделяют предварительно экстракцией пиридинроданида кадмия. Однако это не приводит к желательным результатам, если присутствуют никель и кобальт. Поданным табл. 49 можно судить о точности метода. [c.317]

    Осаждение гидроокиси бериллия в присутствии ЭДТА. Это один из лучших методов отделения бериллия. Бериллий—один из очень немногих элементов, осаждаемых аммиаком в присутствии ЭДТА. В растворе остаются алюминий, хром (П1), ванадий (V), если его немного, свинец, железо (1П), висмут, медь, кадмий, никель, кобальт, марганец, цинк. Фосфорная кислота мешает разделению, ее надо предварительно отделить. Титан осаждается. Если алюминий присутствует в количестве, значительно превышающем содержание бериллия, этот метод разделения следует предпочесть методу с оксихинолином. [c.570]

    Практически любое месторождение полезных ископаемых — комплексное. Например, в железной руде часто присутствуют титан, ванадий, кобальт, медь, цинк. Полиметаллические месторождения в различных пропорциях содержат олоно, никель, вольфрам, молибден, редкие металлы. Попутные компоненты нефти — газ, сера, йод, бром, а газовых месторождений — конденсаты, гелий, азот. Ископаемые угли богаты колчеданом, германием, глиноземом. Это все лишний раз напоминает, что природа (и порода ) не терпит пустоты. Позаботившись о богатейшей, разнообразной наполненности своих месторождений, она как бы сама подсказывает человеку комплексное использование своих богатств. [c.146]

    Цинк рассеян по многим породам. В природе он находится преимущественно в виде сульфидов, образуя минералы сфалерит (7п5), марматит (2п, Ре) 8 и др. Самостоятельных -цинковых руд не существует минералы цинка практически всегда сопровождают минералы свинца или меди. В этих полиметаллических рудах присутствуют также минералы железа, кадмия, в малых количествах — минералы никеля, кобальта и некоторых редких и благороднйх металлов. Содержание цинка в этих рудах колеблется в пределах 0,5—15%. Сульфидные руды хорошо поддаются обогащению, поэтому на заводы поступают концентраты, содержащие не менее 40% ципка в виде сульфида, а также сульфиды и окислы свинца, железа, меди, кадмия и других элементов. [c.266]

    Обнаружение ионов цинка. В колонку вносят 4 капли раствора, содержащего ионы цинка и кобальта, концентрация которых в растворе не превышает 0,001 г-экв/л, затем каплю воды, 3 капли тетрароданомеркуроата аммония и 2 капли 2 н. раствора азотной кислоты. Вверху образуется ярко-голубая зона (цинк в присутствии ионов кобальта), внизу — розовая зона (кобальт)  [c.185]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Присутствующие в анализируемом растворе катионы, осажденные в виде сульфидов, делят затем на подгруппы соответствующими реагентами. Наиболее часто применяют для этого щелочь в сочетании с Н2О2. Окисляя перекисью водорода, переводят хром (III) в Сг (VI), что предупреждает образование малорастворимых Мп(СгОз)2 и Zn( rOa)2. Если вместо щелочи действовать аммиаком и хлоридом аммония, то алюминий, хром и железо осаждаются и в избытке аммонийных солей растворяются марганец (II), железо (II), кобальт (II), никель (II), цинк. [c.207]


Смотреть страницы где упоминается термин Кобальт в присутствии цинка: [c.212]    [c.709]    [c.110]    [c.72]    [c.20]    [c.402]   
Химический анализ в ультрафиолетовых лучах (1965) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

ДЦТА, методика в присутствии алюминия, висмута, кобальта, железа, цинка

Определение больших количеств марганца в присутствии больших количеств никеля, кобальта, меди или цинка



© 2025 chem21.info Реклама на сайте