Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец сероводородом

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]


    Выше приведено описание нового метода осаждения кобальта и никеля в виде сульфидов сероводородом из раствора, содержащего пиридин. При этом кобальт и никель выделяются в виде кристаллического осадка, который легко отфильтровывается и промывается. Было чрезвычайно желательно найти также условия осаждения этих металлов, при которых марганец количественно оставался бы в растворе. Из нагретого раствора, содержащего марганец, сероводород выделяет в присутствии пиридина плотный серо-зеленый осадок сульфида марганца, однако осаждение проходит не количественно. В результате многочисленных опытов оказалось, что ни пиридин, ни хлористый аммоний, в каких бы относительных количествах они не добавлялись, полностью не удерживают марганца в растворе. [c.82]

    Вариант П. Выделяют железо, алюминий, хром, индий,, галлий, титан и цирконий пиридином. Из фильтрата после прибавления солянокислого пиридина выделяют сероводородом никель, кобальт и цинк. Из фильтрата после удаления пиридина выделяют марганец сероводородом в присутствии гексаметилентетрамина. В фильтрате от марганца после разрушения органических веществ азотной кислотой определяют, как обычно, щелочные земли, магний и щелочи. [c.111]

    Натрия гидроксид Калия гидроксид Аммония гидроксид Натрий углекислый Калий углекислый Калий углекислый Натрий сернокислый Натрий сернокислый Натрий сернокислый Натрий сернисто-кислый Натрий хлористый Барий хлористый Кальций хлористый Магний хлористый Марганец хлористый Железо хлорное Железа сульфид Железа сульфид Натрия сульфид Сероводород Сера Сера Сера [c.115]

    При кислотном разложении минералов вольфрама необходимо присутствие в конце разложения окислителя, чтобы избежать образования растворимых соединений вольфрама низшей валентности и последующих потерь их с промывными водами. Восстановление вольфрама может происходить, в частности, за счет сероводорода, выделяющегося при разложении кислотой сульфидных минералов. При разложении вольфрамита необходимо, кроме того, окислять железо и марганец для более полного их отделения при последующей обработке раствором аммиака. [c.257]

    Сульфиды щелочных металлов осаждают из раствора многие элементы. В обычном случае осаждение сульфид-ионами в щелочных растворах следует после предварительного отделения сероводородом в сильнокислых растворах, т. е. после удаления элементов, осаждающихся в сильнокислых растворах. Осложнений, вызываемых такими элементами, как алюминий, титан, хром, уран и редкоземельные металлы, л гко можно избежать добавлением тартратов, но тогда можно осаждать только марганец (в присутствии тартратов он осаждается не полностью), железо и элементы, осаждающиеся в слабокислых или почти нейтральных растворах. Иногда элементы данной группы осаждают вместе с группой меди, отделяя их все таким способом от группы мышьяка, как это описано ниже (см. Осаждение сульфидом аммония , стр. 90). [c.87]


    Сернистый никель значительно ме ее растворим, чем сернистый марганец (стр. Зк), так что -возможно осаждение сернистого никеля- сероводородом в присутствии уксусной кислоты и ацетата натрия. Марганец при аналогичных условиях ке осаждается в виде сульфида. Но е-сли, с другой стороны, прибавить сернистый а-.ммоний к горячему разбавленному раствору, содержащему комплексные цианиды марганца и никеля, то никель останется в растворе, а осаждение. мар-га-нца -в -виде сульфида будет полны.м  [c.251]

    Железо и марганец. Железо может содержаться в составе органоминеральных комплексов, обладаюш,их достаточно высокой растворимостью или находящихся в коллоидном состоянии. В реках, загрязненных шахтными водами и стоками травильных цехов, часто содержится железный купорос, постепенно окисляющийся. Если в воде присутствует сероводород, может образовываться тонкодисперсная взвесь ГеЗ, придающая воде черную окраску. Содержание железа в воде достигает в некоторых случаях 3—5 мг л. [c.44]

    Способность устранять запахи и привкусы, обусловленные присутствием сероводорода, удалять марганец, сорбировать соединения меди и мышьяка, катализировать окисление фенола, сахара и других органических соединений. [c.215]

    Как показали исследования отделение никеля и кобальта от марганца осаждением их сероводородом лучше всего проводить из растворов, содержащих пиридин и его солянокислую соль и имеющих pH около 4,5. В этих условиях осаждение происходит медленно, вследствие чего получается кристаллический, легко отделяемый фильтрованием осадок. Марганец при такой относительно высокой кислотности раствора не выделяется. [c.86]

    Осаждение сульфидом аммония и отделение марганца и цинка от никеля, кобальта и меди. К находящемуся в колбе раствору, содержащему марганец, щелочноземельные металлы и т. п. (стр. 952), прибавляют 2—3 мл раствора аммиака и насыщают сероводородом. Марганец, никель, кобальт, медь, цинк и немного платины (из платиновой чашки) осаждаются. Затем прибавляют еще такое же количество аммиака, наполняют колбу до горла водой, закрывают пробкой и оставляют стоять по крайней мере 12 ч (лучшее 24 ч или еще дольше). Фильтруют через небольшой фильтр, промывают осадок водой, содержащей хлорид аммония и сульфид аммония, и выщелачивают осадок разбавленной соляной кислотой, содержащей сероводород [1 объем соляной кислоты (пл. 1,11 г см ) на 5 объемов сероводородной воды]. Марганец и цинк, если они присутствуют, переходят в раствор. [c.961]

    Известно, что от К. м. безвозвратно теряется около 10% ежегодной доСычи металла, кроме дополнительных потерь, связанных с антикоррозионными мероприятиями и ликвидацией последствий от коррозии. По механизму коррозионного процесса различают К- м. химическую и электрохимическую. Под химической коррозией подразумевают взаимодействие металлов с жидкими или газообразными веществами на поверхности металла, не сопровождающееся возникновением электродных процессов на границе раздела фаз. Напрнмер, реакции нри высоких темперагурах с кислородом, галогенами, сероводородом, сернистым газом, диоксидом углерода или водяным паром. Под электрохимической коррозией подразумевают процессы взаимодействия металлов с электролитами в водных растворах или в расплавах. Для защиты от коррозии поверхность металла покрывают тонким слоем масляной краски, лаков, эмали, другого металла, используют ингибиторы коррозии, электрохимическую защиту металлов, вводят в сплавы новые элементы, сильно повышающие коррозионную устойчивость, такие как хром, марганец, кремний и др. [c.136]

    Окись ртути. Суспензия окиси ртути имеет pH, приблизительно равный 7,4. Для некоторых целей ее применение особенно удобно потому, что избыток осадителя может быть полностью удален из осадка прокаливанием, а ртуть, перешедшая в раствор, может быть осаждена сероводородом. Осаждение лучше всего удается из растворов хлоридов. Железо, хром и алюминий осаждаются количественно в холодном растворе, но осадки могут быть загрязнены щелочноземельными металлами, если последние присутствовали в растворе. Цинк, кобальт, никель, бериллий, церий и лантан осаждаются до некоторой степени на холоду и в большей степени из горячих растворов марганец осаждается на холоду только при долгом стоянии [c.109]

    Напишите уравнения реакций получения сероводорода, его полного и неполного сгорания и взаимодействия с трихлорндом железа и с перманганатом калия в кислой среде, учитывая, что марганец переходит в сульфат марганца (П). [c.128]

    Осадок Промывают 2—3 раза горячей водой и фильтрат вместе с промывными водами сохраняют. Затем растворяют осадок, в горячей разбавленной (1 3) соляной кислоте, собирая раствор в стакан, в котором проводилось осаждение. Промывают фильтр горячей водой, нагревают раствор до кипения, вновь осаждают по-прежнему аммиаком, фильтруют, собирая фильтрат в стакан с сохранением первым фильтратом, и умеренно промывают осадок. Соединенные фильтраты подкисляют уксусной кислотой, нагревают до кипения и пропускают 10—15 мин сероводород. Дают постоять 15 мин на краю паровой бани, фильтруют и промывают осадок сероводородной водой, слабо подкисленной уксусной кислотой и содержащей небольшое количество хлорида аммония. Фильтрат, в котором находится весь марганец, теперь готов для определения в нем марганца методом, описанным на стр. 502. [c.495]


    Марганец можно отделить от большого числа элементов осаждением сероводородом. Так, осаждение сероводородом в растворах, содержащих минеральные кислоты (стр. 83), служит для отделения элементов сероводородной группы от мар] анца. Осаждение в уксуснокислом или муравьинокислом растворах (стр. 85) служит для отделения цинка и, наконец, как [c.496]

    Fe. Металлический марганец, наплавленный на медь, облучают дейтронами или протонами. Мишень растворяют в 6 НС1, разбавляют раствор водой до М концентрации по НС1, добавляют носители железа, кобальта, марганца, цинка и фосфора, после чего примесь меди удаляют осаждением сероводородом. Железо осаждают купферроном, осадок отфильтровывают через бумажный фильтр, озоляют и остаток растворяют в НС1. Снова добавляют носители кобальта, марганца, цинка, фосфора и осаждают железо купферроном. Процесс очистки повторяют 3—4 раза. [c.244]

    В растворах, подкисленных уксусной кислотой, в присутствии комплексона сероводородом быстро осаждаются ртуть, висмут, сурьма, таллий и серебро. Сульфид свинца не осаждается вовсе, и только через некоторое время начинают выделяться сульфиды меди и кадмия. С большим трудом выделяются также мышьяк и олово вследствие небольшой кислотности раствора. Таким способом можно хорошо обнаружить, например, сурьму в присутствии свинца, меди и кадмия. В аммиачной среде в присутствии комплексона не осаждаются сероводородом железо, никель, кобальт, марганец и цинк. [c.166]

    Фильтрат, содержащий марганец, никель, кобальт, цинк (а также кальций и магний), упаривают до возможно малого объема и, накрыв стакан стеклом, прибавляют 50 мл царской водки. Кипятят, вновь упаривают подобную обработку повторяют еще два раза. После этого прибавляют 25—30 мл соляной кислоты и упаривают еще раз для удаления азотной кислоты. При этом коричная кислота разрушается, остающиеся маслянистые капли органических веществ не мешают в дальнейшем. Жидкость упаривают до малого об ъема и нейтрализуют аммиаком до слабокислой реакции. Далее никель, кобальт и цинк можно выделить в виде кристаллических сульфидов сероводородом в присутствии буферной смеси из ниридипа и его солянокислой соли [12]. Последующее отделение цинка от никеля и кобальта можно провести осаждением его в виде сульфида в присутствии буферной смеси монохлоруксусная кислота — ацетат натрия [41]. Из фильтрата, содержащего марганец, кальций и магний, выделяют марганец сероводородом в присутствии гексаметилентетрамина. В фильтрате от сульфида марганца кальций и магний определяют как обычно. [c.22]

    Сульфиды, как уже указано, легко образуются при непосредственном взаимодействии металлов с серой, а также в результате обменных реакции между солями этих металлов н растворимыми сульфидами, в том числе и сероводородом. Сульфиды цинка ZnS— белого, кадмия dS — желтого и ртути HgS — красного и черного цвета в поде нерастворимы. Кристаллический сульфид цинка, содержащий небольшие количества активаторов (медь, марганец, таллий), способен после освещения длительно светиться. [c.332]

    Так же, как и при электролизе цинка, первой стадией очистки марганцевого электролита является гидролитическая очистка. Раствор после выщелачивания нейтрализуют аммиаком или избытком огарка до pH = 6,5. При этом сульфаты железа и алюминия, присутствующие в растворе, гидролизуются и дают осадок гидроокисей. Одновременно частично удаляются из раствора за счет адсорбции или образования основных солей ионы мышьяка и молибдена. Гидролиз соли марганца происходит при более высоком значении pH (>8,5), вследствие чего марганец в осадок не выпадает. После гидролиза электролит очищают от меди, никеля, кобальта и других тяжелых металлов. Для этого раствор обрабатывают газообразным сероводородом или сульфидом аммония. В осадок выделяются сульфиды этих металлов. Осадок отфильтровывают. В фильтрате содержится некоторое количество коллоидальной серы и сульфидов. Чтобы избавиться от этих примесей, в электролит добавляют железный купорос Ре304 до содержания в растворе 0,1 г л железа. При pH = 6,5—7,0 железо окисляется кислородом воздуха и выпадает в виде гидроокиси, адсорбируя коллоиды при этом удаляются также остатки мышьяка и молибдена. [c.103]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    В соответствии с действующими нормативами по некоторым показателям к качеству питьевой воды предъявляют такие же и даже более высокие требования, чем к химически чистым реактивам. В международных [29] и европейских [30] стандартах указаны предельно допустимые концентрации некоторых веществ (в мг1л) синтетические детергенты — 0,2, свинец — 0,1, медь, марганец, мышьяк, сероводород, хром и цианиды — 0,05, кадмий и селен — 0,01, фенолы — 0,001. Рекомендуются следующие пороговые концентрации фосфорорганических инсектицидов (но органолептическому признаку, в мг/л) хлорофос и карбофос — [c.10]

    В каталитических реакциях ядами являются вещества, которые мешают действию катализатора, ослабляя или полностью уничтожая его активность. Яды проявляют свое действие в малых количествах и при очень низких концентрациях в отношении отравляемого катализатора. Отравляющее действие наиболее характерно для гетерогенных систем. Яды бывают твердые, жидкие и газообразные. Среди твердых каталитических ядсв находятся свинец, медь, марганец, цианиды, арсенаты и некоторые неомыляемые вещества. Ртуть, вода, этиловый и амиловый спирты принадлежат к жидким ядам, а окись угле-рода, двуокись углерода, сероводород, сера, хлор, кислород и водяной пар действуют как газообразные яды. Эти вещества были подразделены соответственно их действию на 1) сильные яды 2) умеренно действую1цие яды и 3) слабые яды [41, 52]. [c.382]

    Коллоидальный рений или его соединения в коллоидальном состоянии, например дисульфид (осажденный сероводородом и подкисленный серной кислотой золь рение-вой кислоты) Пропитывание раствором молибдата алюминия Г алоидные соединения молибдена, урана, Еана-дия или иодистые серебро, медь, никель, олово, марганец и кобальт или их смеси Раствор молибдата аммония 0,1% молибденового ангидрида [c.505]

    Катализатор гидрогенизации не чувствителен к сере водный раствор молибдата аммония смешивают с водным раствором нитрата хрома и получают молибдат хрома пропускают через эту смесь сероводород (селеноводород, теллуроводород) до тех пор, пока яблочно-зеленый цвет не изменится в темнокоричневый, после чего добавляют кислоту до тех пор, пока маточный раствор не станет бесцветным препарат отфильтровывают, промывают и сушат вместо хрома можно применять железо, марганец, медь или никель этот катализатор пригоден также для гидрогенизации толуола в гексагидротолуол, нафталина в тетралин и декалин смеси, состоящей из 75% водорода и 25% этилена, в этан, пиридина в гексагидропиридин и т. д. [c.289]

    Катализаторы, кроме кобальта и железа, содержат также металлы от V до VIII группы периодической системы Элементов — ванадий, молибден, вольфрам, ниобий, тантал, хром, марганец или их окиси свинец, олово, цинк, кадмий и твердые окиси неметаллов V группы (фосфор, мышьяк, сурьма) катализаторы обрабатывают водородом при 200°, а также сероводородом, селеноводоролом, сероуглеродом, ио-дистым водородом, например активный уголь пропитывают молибдатом аммония, азотнокислым свинцом и фосфорной кислотой и обрабатывают при 300° сероводородом или уголь пропитывают вольфраматом аммония, нитратом кобальта и пятиокисью сурьмы и обрабатывают сероводородом при 350° наконец, уголь можно пропитывать ванадатом аммония, азотнокислым кобальтом и фосфорной кислотой и нагревать при 350° с водородом и сероуглеродом в катализаторе может также содержаться окись урана [c.359]

    Научные работы охватывают многие области химии. Был прекрасным экспериментатором. До конца жизни оставался сторонником теории флогистона. Открыл (1768) фтористый водород, предложил (17(39) способ получения фосфора, выделил (1774) в свободном виде хлор, марганец и оксид бария. Установил (1772), что атмосферный воздух состоит из двух видов — огненного (кислорода) и флогистированного (азота). Совместно с Т. У. Бергманом и Ю. Г. Ганом разработал (1774) способ получения фосфора из золы рогов и костей животных. Они же провели (1774) исследование пиролюзита ( черной магнезии ) и установили, что при его восстановлении углем образуется неизвестное в то время металлическое тело, названное ими магнезиумом. Г. Дэви предложил (1808) назвать этот металл марганцем. Открыл (1775) мышьяковистый водород и мышьяковую кислоту. Получил и исследовал (1777) сероводород и другие сернистые соединения. Первым указал на возможность различной степени окисления железа, меди и ртути. Исследовал минералы. Одновременно с Ф. Фонтаной обна- [c.567]

    Вероятно, одним из лучших методов отделения железа от других элементов нри анализе горных пород и подобных им материалов является осаждение его сульфидом аммония в присутствии тартратом (стр. 115) после предварительного отделения сероводородной группы сероводородом в растворе, содержащем минеральную и винную кислоты Этим методом железо может быть отделено от алюминия, титана, циркония, ниобия, тантала, урана, ванадия и фосфора. Элементы, сопровождающие железо при этом разделении, — никель, кобальт, цинк и маранец (частично) — редко встречаются в горных породах и легко отделяются, например никель и марганец, осаждением железа аммиаком. Сульфид железа для дальнейшей обработки нужно растворить. Для этого возможно два метода  [c.438]

    Электролит, в котором обычно остается от 0,1 до 1 мг никеля и кобальта (главным образом кобальта), долл ен быть испытан следуюш им образом. Если присутствует марганец, то сначала кипятят раствор с персульфатом аммония, прибавленным в избытке, фильтруют и промывают осадок двуокиси марганца. Фильтрат обрабатывают сероводородом, нагревают его на краю паровой бани 1 ч, фильтруют через маленький фильтр и промывают осадок холодной водой, содержаш ей немного хлорида аммония и бесцветного сульфида аммония. Осадок затем прокаливают сумму окисей никеля и кобальта взвешивают. Этот осадок должен весить не более 1—2 мг, и, при таком малом его количестве, для перечисления на металл можно умножить его массу на 0,75 и результат прибавить к массе осадка на катоде (факторы для перечисления NiO, СоО и С03О4 на металлы равны соответственно 0,786, 0,787 и 0,734). Если масса окисей превышает 2 мг, то следует считать, что электролиз был проведен неудовлетворительно, и поправку вводить по массе металла, полученного прокаливанием окисей в токе водорода (стр. 432). [c.465]

    Нитраты, окислители, большинство тяжелых металлов, кадмий, марганец и избыточные количества железа должны отсутствовать Тяжелые металлы могут быть удалены кипячением с тиосульфатом натрия в разбавленном сернокислом растворе или добавлением к 0,5—1%-пому по содержанию свободной серной кислоты анализируемому раствору нескольких кусочков алюминия, з ипячением в течение получаса, фильтрованием через фильтр, на дно которого положено несколько кусочков алюминия, и промыванием холодной 1Юдой. Ни одним из этих методов полное отделение кадмия не достигается, и его надо удалять либо электролизом из раствора, содержащего 5% серной кислоты по объему, при силе тока 1 а, на катоде, предварительно покрытом кадмием, либо осаждением сероводородом. Последнее производится насыщением сероводородом раствора, содержащего 10—12% по объему серной кислоты. Если осадок не появляется, прибавляют по каплям аммиак до образования осадка и затем снова пропускают сероводород в течение нескольких минут. Раствор затем нагревают до 70—90° С, продолжая пропускать сероводород, фильтруют, промывают осадок холодным 8—10%-ным по объему раствором серной кислоты и, наконец, водой.  [c.490]

    Из кислых растворов, содержащих только вольфрам, сероводород выделяет лишь небольшой осадок, тогда как совместно с сульфидом молибдена и другими сульфидами осаждаются значительные количества вольфрама. Это соосаждение можно предупредить, прибавляя винную или щавелевую кислоты. Сульфиды щелочных металлов дают темно-коричне-вые растворы тиовольфрамата, если отсутствуют такие элементы, как марганец, совместно с которыми вольфрам частично осаждается. Препятствует ли винная кислота соосаждению вольфрама в этих условиях, как в случае осаждения сероводородом из кислых растворов, нам не известно. Подкисление раствора тиовольфрамата приводит к неполному выделению коричневого хлопьевидного сульфида WSз при условии отсутствия тартратов и оксалатов. В присутствии я<е этих реагентов осаждение не происходит. [c.767]

    Фильтраты, содержащие кальций, магний и марганец, собирают в колбу емкостью 150 мл, прибавляют 2 мл раствора аммиака и насыщают сероводородом. Затем прибавляют еще 2 мл раствора аммиака. Колбу наполняют свежепрокипяченной водой, закрывают пробкой и.оставляют стоять от 12 до 24 ч. Осадок (он может быть окрашен в темный цвет сульфидом платины или сульфидами железа и других тянселых металлов ) собирают на фильтре (диаметром 7 см) и промывают разбавленным раствором хлорида аммония, содержащим немного сульфида аммония (О дальнейшей обработке фильтрата см. ниже, стр. 1057). [c.1055]

    Борная кислота, бертолетова соль, свинец, сурьма, фосфор, хром Калий, борная, кислота, марганец, медь, мышьяк, нитриты, сульфиды, фториды, олово, селен, литий, сероводород Соединения аммония, олово, свинец, фтор, хлср, хлориды, щелочи, калий, медь, цинк, барий, хром Калий, аммиак, нитраты, сероводород, фосфаты [c.7]

    Сульфиды. Получено два сульфида технеция T 2S7 и ТсЗг. Гептасульфид, подобно рению, образуется в виде малорастворимого темно-коричневого осадка при действии сероводорода на кислые растворы пертехната аммония. В этих условиях марганец образует MnS. [c.270]

    Из кислых растворов технеция(VII) он выделяется в осадок сероводородом, тиоацетамидом или тиосульфатом натрия в виде T 2S7. Носителями могут служить рений, марганец, медь и платина, но одновременно осаждается и ряд других элементов. Технеций в низших окислительных состояниях в отличие от рения не осаждается из концентрированной НС1 сероводородом. С носителями типа ЭХГ (ReOr, СЮГ, ЮГ, ВРГ) технеций(VII) осаждается ионами таллия, серебра и цезия, тетрафениларсонием и нитроном. Технеций лучше всего отделяется от рутения последними двумя реагентами с рением в качестве носителя. [c.274]

    Малинек [72] подверг метод определения молибдена оксином дальнейшему изучению, применил его для анализа руд, шлаков и сплавов и считает его очень точным, надежным и быстрым. Определение проводится в 5 раз скорее, чем определение молибдена в виде РЬМо04 или потенциометрическим методом. Только у образцов со слишком большим содержанием железа или у образцов, которые необходимо сплавлять в железном тигле с перекисью натрия, наблюдалось незначительное соосаждение железа в виде оксихинолята железа. В этих случаях рекомендуется сначала осаждать молибден в виде сульфида и после растворения осадка определять молибден приведенным оксиновым методом. При осаждении молибдена в виде сульфида следует учитывать то, что в щелочной среде в присутствии комплексона сульфидом аммония не осаждаются железо, никель, кобальт, марганец и цинк, и поэтому автор рекомендует следующий ход определения к кислому раствору, содержащему молибден, железо и другие катионы, кроме катионов сероводородной аналитической группы, прибавляют в избытке комплексон и пропускают сероводород до обесцвечивания раствора. Подщелачивают аммиаком и опять пропускают сероводород до приобретения раствором темной окраски сульфосоли молибдена. После насыщения сероводородом раствор подкисляют серной кислотой (1 5) и нагревают на песчаной бане для свертывания осадка сульфида молибдена. Осадок отфильтровывают, промывают сероводородной водой и сульфид молибдена обрабатывают азотной кислотой. После растворения доводят раствор до требуемого pH и определяют молибден оксином в присутствии комплексона, как было указано. Единственный недостаток метода заключается в том, что при высоких концентрациях железа обработка сероводородом вызывает выпадение осадка серы, затрудняющего фильтрование. Этим методом было определено 10 мг молибдена в присутствии 1 г железа с точностью 0,2—0,3%. [c.113]


Смотреть страницы где упоминается термин Марганец сероводородом: [c.514]    [c.295]    [c.127]    [c.119]    [c.119]    [c.114]    [c.9]    [c.201]    [c.87]    [c.138]    [c.731]    [c.89]   
Практическое руководство по неорганическому анализу (1966) -- [ c.496 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.455 ]




ПОИСК







© 2025 chem21.info Реклама на сайте