Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес, определение диффузии

    Видимо, всегда можно подобрать такие условия, при которых будет осуществляться та или иная модель горения. Задача теории заключается в количественном определении этих условий и в расчете характеристик горения скорости распространения, ширины зоны реакции, пределов воспламенения и т. д. В практически интересных случаях (камеры сгорания, топки и т. д.) в пламени одновременно могут наблюдаться признаки различных моделей. В теории турбулентного горения большую роль играют молекулярно-турбулентная диффузия и смешение. [c.138]


    Сопоставление моно- и бидисперсной структур. Выразим коэффициент диффузии в макропорах бидисперсного катализатора через молекулярный, определенный при нормальных условиях Dq [c.77]

    Эффективный коэффициент диффузии />эф = П/) был определен выше [см. уравнение (2.101)]. Если учесть переходный вид диффузии в порах, то Z) в порах меньше молекулярного коэффициента диффузии D [уравнение (2.103)]. Примем />эф = 0,1Д Теплопроводность пористого катализатора по данным многочисленных исследований Хз 10Х, где X - теплопроводность заполняющего поры газа. Такой результат связан с тем, что структура пористого катализатора образована спекшимися, слипшимися микрочастицами. Точки контакта оказывают большое термическое сопротивление, и в переносе теплоты участвует прослойка газа, примыкающая к точкам контакта микрочастиц. Этим и объясняется тот факт, что теплопроводность пористого тела зависит в основном от теплопроводности заполняющего его газа и в значительно меньшей степени зависит от [c.98]

    Диффузионный метод определения молекулярного веса. Диффузия макромолекул в растворе тесно связана с их размерами и формой по коэффициенту диффузии О и плотности р полимера можно вычислить его молекулярный вес. [c.408]

    Заметим, что число не совпадает с числом Нуссельта ( 1.21), определенным через коэффициент молекулярной диффузии и эффективный диаметр частицы (см. упражнение 1.13) [c.140]

    Другой тип модели с застойными зонами предложен Тернером [143]. В этой модели слой насадки в реакторе гидравлически рассматривается как совокупность сквозных параллельных каналов с повышенной скоростью движения и отходящими от них боковыми тупиковыми зонами— карманами (рис. 25). В результате этого объем потока, проходящего через реактор, как бы делится на две части в параллельных каналах и в карманах . Время пребывания частиц в карманах практически бесконечно, так как перемещение их осуществляется за счет молекулярной диффузии. Поэтому для правильного определения времени пребывания частиц в реакторе необходимо отыскать доли объема в насадке, приходящиеся соответственно на каналы и карманы  [c.78]

    Диффузия в порах будет приближаться к диффузии в газовой фазе, когда средняя длина свободного пробега диффундирующих молекул меньше радиуса пор (при определенных температуре и давлении). В этих условиях большое влияние на диффузию будут оказывать столкновения диффундирующих молекул. Коэффициент диффузии не зависит от радиуса пор, но обратно пропорционален давлению. Поскольку в нормальных условиях величина средней длины свободного пробега молекул имеет порядок 10- см, а под давлением 300 ат —порядок 10 см, в порах с радиусом > 10 см будет преобладать молекулярная диффузия. [c.284]


    Для определения влияния внутренней диффузии на скорость контактного процесса нужно знать уравнение скорости в кинетической области и значения эффективного коэффициента диффузии Dg. Здесь коэффициент можно найти по результатам измерений скорости реакции на зернах разных грануляций либо рассчитать, если известны коэффициенты молекулярной или кнудсеновской диффузии и принята определенная модель внутренней структуры зерна (значения и тг). [c.289]

    Подобные же уравнения можно написать для скорости массопередачи каждого реагента. В слое насадки существенен перенос вещества как путем молекулярной, так и конвективной диффузии. Действительный коэффициент диффузии, который учитывает оба фактора, может быть определен посредством модифицированного закона Фика  [c.243]

    Эффект разделения в масштабе молекул определяется статистическим распределением пустот с определенным диаметром (рис. 30). Если диаметр пустот мал, а соотношение поверхности и объема велико, то доминируют эффекты собственно адсорбции. Если величина среднего свободного пробега молекул газообразного компонента велика, по сравнению с диаметром пустот, то разность между скоростями диффузии компонентов обратно пропорциональна квадратному корню из величины молекулярного веса. [c.84]

    Ключевой задачей теории является определение степени затухания коэффициентов турбулентного обмена с приближением к межфазной границе. Недостаточная разработанность теории турбулентности вообще и особенно в применении к системам жидкость—газ не позволяет пока сделать это строго, исходя лишь из гидродинамических соображений. Однако количественная оценка характера затухания возможна на основе надежных экспериментальных данных о зависимости коэффициента массоотдачи от коэффициента молекулярной диффузии. Показатели степени в законе затухания коэффициентов турбулентного обмена и в зависимости к от Оа связаны простым соотношением. Поэтому выявление характера влияния О а на ки по выражению Д. А. Франк-Каменецкого позволяет как бы физико-химически зондировать пограничный слой. В частности, для свободной границы жидкость-газ, как будет показано ниже, многочисленными экспериментальными работами в большинстве практически важных случаев установлена пропорциональная зависимость между к и коэффициентом молекулярной диффузии в степени 0,5. Это соответствует полученным на основании некоторых допущений предсказаниям основанным на квадратичном законе затухания. Доп. пер. [c.101]

    Когда абсорбируемый растворимый в жидкости газ находится в смеси с нерастворимым газом, первый из них должен диффундировать через второй для достижения поверхности раздела фаз. В результате парциальное давление растворяемого газа у поверхности в общем случае ниже, чем в основной массе газовой фазы. Истинная картина процессов, протекающих в газовой фазе, не ясна, и, вероятно, столь же сложна, что и процессы в жидкости. Обычно употребляют термин газо-пленочное сопротивление , подразумевая под этим наличие у границы фазового раздела со стороны газа неподвижной пленки определенной толщины, через которую растворяемый газ переносится исключительно молекулярной диффузией, в то время как остальная масса газа имеет практически однородный состав. Это точно соответствует пленочной модели для описания процессов, протекающих в жидкой фазе. Однако для газовой фазы такая картина более правдоподобна, так как при перемещении газа относительно поверхности жидкости, несомненно, образуется пограничный слой аналогично слою, образующемуся при движении газа вдоль твердой поверхности. О последнем процессе имеется более подробная информация. Разумеется, можно считать большим упрощением, что погра- [c.146]

    Основываясь на этих моделях, можно сказать, что на коэффициент диффузии большое влияние оказывает молекулярная диффузия в каналах, а также, в зависимости от принятых предположений, диффузия в застойных зонах или перемешивание потоков, имеющих разную скорость. Сопоставление методов определения коэффициентов диффузии показывает, что пригодны канальная модель, комбинация канальной и ячеистой моделей, а в некоторой [c.41]

    Исследовано [281] продольное перемешивание при течении воды сквозь слой стеклянных шариков диаметром 63,5—200 мкм, содержащий 20%-ный раствор хлорида аммония. Коэффициент продольного перемешивания определен по экспериментальной кривой в координатах безразмерное время—концентрация хлорида аммония в промывной жидкости. Коэффициент молекулярной диффузии установлен при низких скоростях жидкости. Отмечены стадии поршневого вытеснения и молекулярной диффузии из пленки жидкости у поверхности частиц. Дано математическое описание процесса. [c.257]


    Таким образом, в граничном слое Прандтля при наличии в нем градиента концентрации массоперенос осуществляется двумя разными параллельно протекающими путями. Суммарная скорость процесса массопереноса определяется скоростью протекания каждого элементарного процесса переноса. Если, однако,торможение одного из этих параллельных процессов значительно меньше торможения другого, то суммарная скорость массопереноса определяется в основном скоростью этого наименее заторможенного, т. е. быстрого, процесса переноса. Скорость конвективного массопереноса в граничном слое Прандтля снижается по мере уменьшения скорости движения V в нем жидкости (см. рис. 143) и его роль в определении суммарной скорости массопереноса тоже уменьшается, а роль молекулярной диффузии возрастает. Начиная с какого-то расстояния от твердой поверхности б молекулярный перенос вещества становится преобладающим по сравнению с конвективным переносом, который преобладает в части слоя Прандтля (77 — б). [c.209]

    Коэффициенты молекулярной диффузии для неэлектролитов и электролитов. Экспериментальное определение коэффициента основано на анализе концентраций растворенного вещества в различных слоях жидкой системы, вероятно, оптическими методами [13, 115, 122]. Для ряда веществ в литературе имеются числовые данные [49]. Кроме того, эти коэффициенты можно вычислить, основываясь на физико-химических свойствах веществ. Для неэлектролитов в разбавленных растворах и растворителей Арнольд [3] дал формулу, подобную формуле для газов  [c.44]

    Коэффициент массоотдачи в обобщении Данквертса зависит от коэффициента молекулярной диффузии в степени 0,5, как и в теории пенетрации, что следует из принятия обеими теориями одного и того же вида неустановившейся диффузии. Данквертс не предложил ни уравнений, ни экспериментальных методов для определения коэффициента /, что исключает возможность широкого применения его теории. [c.75]

    Исследованиями сотрудников Уфимского нефтяного института установлено, что закачиваемые в нефтяной пласт ПАВ влияют не только на процессы, связанные с молекулярно-поверхностными свойствами границ раздела систем нефть — вода — порода, но и на объемные свойства вытесняемой нефти. В результате диффузии в нефти концентрируется определенное количество ПАВ, поступающего в пластовую систему с водой. Лабораторные исследования показывают, что растворение неионогенных ПАВ типа ОП-Ю или ОП-4 в нефти изменяет ее вязкостную характеристику аномально высокие значения вязкости нефти наблюдаются при значительно меньших градиентах давления. Влияние концентрации реагента ОП-4 в нефти на ее реологические свойства показано в табл. 22. [c.86]

    Прямой метод определения параметров моделей многофазных потоков, в случае многофазных систем или систем с ярко выраженной структурной неоднородностью, когда распределение объема между фазами или неоднородностями неизвестно, анализ структуры потоков индикаторными методами в известной мере затруднен. Трудности анализа функций отклика системы на типовые возмущения по составу потока обусловлены сопутствующими помехами, вызванными такими явлениями, как молекулярная диффузия в поры и капилляры твердых частиц, в пленки и карманы в пространстве между этими частицами, конвективная диффузия в застойных зонах системы, адсорбция и десорбция индикатора на поверхности частиц и стенок, ограничивающих поток и т. д. [c.29]

    Рассмотрим кинетику быстрой агрегации (коагуляции) мелких частиц. Задачи определения числа столкновений, играющих главную роль в кинетике быстрой коагуляции, были успешно решены Смолуховским [80], предложившим количественную трактовку кинетики быстрой коагуляции на основе броуновского движения (молекулярной диффузии) частиц, и Левичем [81], решившим подобную задачу для случая движения частиц под воздействием турбулентных пульсаций. [c.88]

    При умеренной скорости течения можно пренебречь молекулярной п турбулентной диффузией и уравнение (18) становится пригодным для определения поперечных [c.138]

    Для ускорения гетерогенных процессов, идущих в диффузионной области, применяют усиленное перемешивание фаз для замены молекулярной диффузии конвективной, что снижает диффузионные сопротивления, препятствующие взаимодействию компонентов (см. ч. I, гл. II). Возможность применения тех или иных способов интенсификации определяется их экономической эффективностью, в частности сложностью аппаратурного оформления. Одновременно с внедрением новых технологических схем и процессов непрерывно улучшается и их аппаратурное оформление. Новые, более совершенные аппараты обеспечивают непрерывный процесс по всей технологической цепочке при комплексной переработке сырья. Современные заводы органического синтеза представляют собой соединение различных технологических цехов, не только вырабатывающих определенный (основной) продукт, но и включающих установки, тщательно улавливающие и перерабатывающие большинство побочных продуктов, бывших ранее отходами. [c.164]

    Предложено много способов для определения коэффициентов диффузии веществ в различных средах [15, 117, 261). Для расчета коэффициента молекулярной диффузии в газовой среде Кафаров [116] рекомендует полуэмпирическое уравнение Арно льда [367], которое дает наименьшие отклонения от опытных данных (не более 21%) в широком диапазоне условий. [c.130]

    Возможные причины перемешивания [99, 116] в промышленных аппаратах следующие неравномерность профиля скоростей потока возникновение противоположного основному потоку турбулентного переноса вещества перенос вещества в противоположном движению потока направления за счет молекулярной диффузии образование застойных зон байпасные и перекрестные токи в системе температурные градиенты и др. Теоретический расчет влияния каждого из этих эффектов на гидродинамику реального пОтока вызывает затруднения. Поэтому в последние годы большое внимание уделяется определению общего коэффициента перемешивания [77, 99, 258]. Основным экспериментальным методом исследования перемешивания является метод искусственного нарушения состава входного потока и исследование реакции системы на возмущение. Эти методы подробно описаны в ряде учебников и монографий [116, 118, 153]. [c.158]

    Активный компонент ванадиевых катализаторов окисления диоксида серы на основе Уз05 находится в виде жидкой пленки на поверхности носителя. Содержание 205 в этих катализаторах составляет 6-9% (масс.). Толщина жидкой пленки, при которой обеспечивается полное использование активного компонента, определенная экспериментально, равна 160 А при 420 С [117] и 2000 А при 485 С [118]. При плотности материала катализатора "Уии = 2,4 г/смЗ из (2.126) находим, что удельная поверхность должна составлять не менее 0,4 м /г, а средний радиус пор-не более 10000 А, что обеспечивает молекулярный характер диффузии в них. Вследствие этого переход в бидисперсной структуре не целесообразен, поскольку условие (2.127) не выполняется [23]. Значение активности (константы скорости к асс) получено [c.81]

    Экспериментальное исследование рассматриваемого процесса проводилось автором работы [40], который изучал размытие КМПО4 в потоке воды в капилляре В = 2,5-10 см, Щр = 0,175 см/сек). Было установлено, что при достаточно больших временах распределение концентрации действительно имеет гауссовый вид (11.72), не зависящий от начального раснределения вводимого вещества, причем экспериментальное размытие вполне удовлетворительно описывается гауссовыми кривыми с эффективным коэффициентом диффузии (П.71), для определения которого использовалось экспериментальное значение молекулярного коэффициента диффузии КМПО4 в воде ( ) = 7-10 см сек). [c.59]

    Диффузионный метод определения молекулярной массы. Диффузия макромолекул в раст пре- тргнп связана с их размепами й Е йои гю коэффициенту диффузии Р и плотности р полимера можно Тзыта Гитъ его молекулярную массу.  [c.537]

    Каскад реакторов полного перемешивания, равнозначный по выходу определенному реальному реактору, будем называть заменяющим каскадом (рис. УПЬЗЗ). Расчет реактора можно свести к расчету заменяющего его каскада, если удастся определить число ступеней. Для этого нужно количественно описать отклонения от полного вытеснения в реальном реакторе. Такие отклонения обусловлены 1) неравномерным распределением скорости потока в осевом (продольном) направлении 2) флуктуациями скорости и завихрениями 3) молекулярной диффузией. Это приводит к тому, что продукты реакции перемещаются из конечной части аппарата в направлении к входу, исходные же вещества переносятся в обратном направлении. На конечном участке аппарата они разбавляют смесь пpoдyкtoв и снижают выход реакции. Следовательно, в общем случае указанные эффекты оказывают неблагоприятное влияние на работу реактора. [c.322]

    Согласно теории Уитмана и Льюиса, в ядре потока концентрахщя постоянная и процесс переноса описывается одномерным стационарным уравнением молекулярной диффузии в тонких пленках при условии фазового равновесия на границе раздела жидкость - жидкость или жидкость - газ. Скорость массопередачи по каждой из фаз определяется выражением (4.3), в котором частные коэффициенты массопередачи равны К1 =1)1/61 и К2 =02182, где >1, /)2, 51, 2 - коэффициенты диффузии и поперечные размеры пленок соответствующих фаз (см. рис. 4.1). Пленочная теория не дает методов для определения толщин пленок 5, и 62, которые зависят от физико-химических свойств жидкостей и гидродинамических условий протекаемых процессов. [c.173]

    Однако в капилляре скорость газа изменяется от оси капилляра к поверхности его стенок. Для упрощенного учета этого фактора можно принять, что во вр)утренней части капилляра газ протекает с некоторой определенной скоростью, а часть газа, примыкающая к стенкам капилляра, остается неподвижной. При этом возникает диффузия между движущейся газовой фазой и неподвижным слоем газа у стенки (так называемая динамическая диффузия). Это приводит к тому, что молекулы в движущемся газе опережают молекулы, задерживающиеся в неподвижной пленке газа у стенок, что вызывает дополнительное размывание хроматографической полосы. Это размывание уменьшается с увеличением коэффициента молекулярной диффузии, при котором облегчается обмен молекулами между движущейся частью газа и неподвижной его частью у стенок. Существенно, что размывание, обусловленное такой динамической диффузией, зависит от скорости газа. С увеличением скорости газа размываннс нозрастает, так как чем больше скорость потока, тем больше отставание от него молекул, попавших в неподвижный слой газа у стенок капилляра. Рассмотрим приближенно зависимость соответствующего коэффициента динамической диффузии )д от скорости потока газа. [c.587]

    Требование, чтобы точка отбора проб была удалена на достаточное расстояние , очень важное. Ирактическая трудность применения методов с использованием индикатора заключается в необходимости достижения однородности распределения индикатора и мгновенного перемешивания его но всему поперечному сечению потока в точке ввода. Если же перемешнБа11ие не является идеальным, выравнивание происходит за счет турбулентной и молекулярной диффузии. В результате этого на некотором расстоянии I от точки ввода индикатор оказывается распределенным равномерно. Иоэтому, если отбор проб для определения концентрации индикатора делать на расстоянии, много большем I, то ошибка при пспользованип уравнения (3.39) будет не очень велика. [c.98]

    Исходя из статистических исследований такой модели, де Ионг и Сафман вывели зависимости для определения коэффициентов продольной и радиальной диффузии. Авторы исходили из предположения, что все каналы имеют некоторую длину м, и что скорость жидкости в каждом канале одинакова или изменяется по параболическому закону. Предполагается также, что скорость потока зависит от угла, образуемого осью канала и направлением потока. Уравнения, полученные этими авторами, кроме скорости течения и диаметра зерна катализатора, учитывают молекулярную диффузию и величину пути, пройденного жидкостью в слое. Коэффициент диффузии для газов и жидкостей различен и возрастает с ростом длины реактора. [c.41]

    Большое число работ 20-22 посвящено определению величины Ре в трех режимах 1) для диффузионного потока, при котором время протекания превышает время, необходимое для выравнивания концентраций в результате молекулярной диффузии вдоль канала 2) для диффузионно-ламинарного потока, при котором время протекания превышает время, необходимое для молекулярной диффузии в поперечном направлении, и меньше времени, необходимого для выравнивания концентраций за счет молекулярной диффузии вдоль канала 3) для ламинарного потока, при котором время протекания меньше времени, необходимого для вырав- [c.46]

    Для ориентировочной оценки предельного значения числа Репр при большей величине которого влиянием молекулярной диффузии можно пренебречь, следует принять определенные значения Сп/со и р. Вероятность образования застойной поры в осадках, состоящих из недеформируемых и непористых частиц, сравнительно невелика. Применительно к указанным осадкам в первом приближении можно считать, что р=0,1. Со значительным запасом можно ограничить Сл/со величиной 0,2. Тогда по уравнению (VI,67) най- [c.261]

    Величина обратно пропорциональна давлению и возрастает с повышением температуры пропорционально чем больше масса и диаметр молекулы, тем труднее она диффундирует. Зависимость коэффициента молекулярной диффузии от свойств среды проявляется в основном в изменении эффективного сечения столкновений. Определение коэффициентов молекулярной диффузии в многокомпонентных смесях представляет собой чрезвычайно сложную задачу. При расчете химических процессов зависимостью коэффициентов диффузии от состава газовой смеси обычно можно пренебречь. Также несущественна в обычных условиях и зависимость ко фициеита диффузии от температуры степенная зависимость В Т) не идет ни в какое сравнение с экспоненциальной температурной зависимостью константы скорости реакции, и при перепадах температуры, набл] даемых в каталитических процессах, коэффициент молекулярвой-ди фузии остается практически постоянным. [c.99]

    Одпако даже в этом упрощенном случае решение задачи о вычислении скорости горения возможно только численным интегрированием уравнений теплопроводности и диффузии. Поэтому до создания ЭВ1 1, применение которых сделало возможным строгое числелшое решеипе задачи при любой степени сложности химического механизма реакции горения (при условии, что коЕСТс1нты скорости и коэффициенты диффузии известны с достаточной точностью), делались попытки на основании тех или иных допущений получить аналитическое решение зтой задачи, сведя систему дифференциальных уравнений к одному уравнению. В настоящее время все оти попытки представляют в значительной мере исторический интерес, хотя наглядность получаемых при атом аналитических выражений нормальной скорости горения в ее зависимости от параметров, характеризующих молекулярные и химико-кинетические свойства горючих смесей, делают их не лишенными определенных преимуществ по сравнению с результатами численных решений задачи. [c.236]

    Уравпенпе (18), записанное для постоянной плотности сплошной фазы, прп = О обычно пспользуется для определения эффективного коэффициента молекулярной диффузии в зернистом слое [c.138]

    Во введении было в общем рассмотрено влияние температуры Т, давления Р, относительной скорости движения фаз ю и молекулярной массы веществ М, передаваемых из одной фазы в другую, на коэффициенты массопередачи. Исследование кинетики обычно проводят при постоянстве Т и Р, для веществ определенной молекулярной массы, т. е. при М = onst. В таких условиях для данной бинарной системы при определенной растворимости и скорости растворения газового Компонента в жидкой фазе на величину коэф-< )ициента массопередачи могут влиять в общем следующие параметры коэффициенты молекулярной диффузии в газовой и в жид кой фазах скорости движения газа и жидкости ш, а также направления движения фаз относительно друг друга, влияющие [c.123]


Смотреть страницы где упоминается термин Молекулярный вес, определение диффузии: [c.537]    [c.60]    [c.106]    [c.106]    [c.147]    [c.151]    [c.223]    [c.65]    [c.272]    [c.220]    [c.40]    [c.186]    [c.199]   
Физическая химия для биологов (1976) -- [ c.408 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекулярная

Молекулярный вес, определение



© 2025 chem21.info Реклама на сайте