Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклогексан свойства

    Применяемые в хроматографии органические растворители (петролейный эфир, четыреххлористый углерод, циклогексан, сероуглерод, эфир, ацетон, бензол, толуол, хлороформ, спирты, пиридин и органические кислоты) можно расположить в ряд по их способности адсорбироваться в колонке. Жидкости, находящиеся в начале этого ряда, вытесняются жидкостями, находящимися ниже. Чтобы хорошо разделить смесь веществ (т. е. получить хорошую хроматограмму) для этих веществ и для данного адсорбента, следует подобрать подходящий растворитель. Он не должен адсорбироваться слишком сильно, так как в этом случае растворенные вещества беспрепятственно пройдут, через колонку, но он не должен также адсорбироваться слишком слабо, так как в этом случае все растворенные вещества скопятся на самом верху колонки и, несмотря на последующее приливание большого количества чистого растворителя, будут лишь незначительно продвигаться вниз. Наиболее подходящий растворитель с промежуточными свойствами должен обеспечивать такое [c.53]


    Синтетические цеолиты, получившие название молекулярных сит, обладают интересными структурными особенностями и специфическими свойствами. Одним из наиболее замечательных свойств цеолитов является их способность к избирательной адсорбции. Они иред-ставляют собой новое эффективное средство для осушки, очистки и разделения углеводородных и других смесей (газообразных и жидких) с целью получения чистых и сверхчистых веществ. Цеолиты применяют для извлечения из газовой смеси непредельных углеводородов (этилена), для очистки этилена от примесей ацетилена и двуокиси углерода, для очистки изопентана от примесей к-пентана, для разделения азеотропных смесей (метилового спирта и ацетона, сероуглерода и ацетона) и смесей, содержащих неорганические вещества (сероводород, аммиак, хлористый водород) и т. д. Они используются также для повышения антидетонационных свойств бензинов нутем избирательной адсорбции из них нормальных парафиновых углеводородов, а также для выделения ароматических углеводородов из смесей углеводородов с близкими физико-химическими константами, например извлечение бензола из смеси его с циклогексаном. В качестве осушителей цеолиты являются незаменимыми при наземном транспортировании газов в условиях севера и особенно при осушке трансформаторных масел. [c.12]

    НАФТЕН Ы (циклопарафины) — алициклические насыщенные углеводороды с пяти- и шестичленными кольцами, по химическим свойствам близки к парафиновым углеводородам. Н. входят в состав нефти, являются источником получения ароматических углеводородов (каталитический крекинг). Наибольшее практическое значение имеет циклогексан для синтеза капролактама, ади-пиновой кислоты и других соединений, используемых в производстве синтетического волокна. [c.171]

    Основными критериями для оценки катализаторов служат объемная скорость подачи сырья, выход стабильного риформата (катализата), октановое число продукта или выход ароматических углеводородов, содержание легких фракций в риформате, выход и состав газа, срок службы катализатора. При анализе работы установок, а также при выборе оптимального режима каталитического риформинга надо иметь в виду следующее платина не только выполняет свои функции (дегидрирования-гидрирования), но и защищает прилежащие кислотные центры от закоксовывания, поэтому при низком ее содержании (менее 0,3%) катализатор быстро дезактивируется при недостаточных кислотных свойствах катализатора глубина ароматизации циклопентанов мала, и в катализате риформинга содержится много н-алканов, выход его велик, но октановое число невысокое при высоких кислотных свойствах катализатора парафиновые углеводороды в условиях риформинга изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновесие парафины изопарафины и далее идет интенсивный гидрокрекинг. Кроме того, сильная кислотная функция ускоряет изомеризацию циклогексанов в циклопентаны, и реакция, идущая по схеме [c.140]


    Адсорбционные свойства цеолита при жидкофазной адсорбции парафиновых углеводородов изучали авторы работы [166], рассматривая влияние структурных особенностей и природы растворителя. Было установлено, что замена в растворе ароматического углеводорода (толуола) на изопарафиновый (изооктан) или нафтеновый (циклогексан) резко изменяет адсорбционную способность цеолита СаА. При этом заметно влияние длины углеводородной цепи н-парафина с ее увеличением адсорбция углеводородов из раствора в изооктане понижается [209]. [c.285]

    При полимеризации в растворе существенно облегчается отвод теплоты из реакционных объемов, перемешивание и транспортирование продуктов реакции, возможность организации непрерывного лроизводства и автоматизации управления им. Для полимеризации углеводородов и их производных (этилен, бутадиен и их производные) в качестве растворителей используются гексан, гептан, бензин, толуол, циклогексан и другие углеводороды. Очистка растворителей и реагентов от влаги и кислорода осуществляется осушением и проведением процесса в среде инертных газов. Концентрация мономера в растворе не должна превышать 20%, чтобы избежать роста вязкости системы. Для сокращения расхода растворителя его регенерируют после проведения процесса полимеризации. В образующемся полимере необходимо дезактивировать (или удалять) катализатор, так как он ухудшает свойства полимера и изделий из него (устойчивость к старению, действию химических сред и др.). [c.82]

    При изучении реакций D—Н-обмена в циклогексане, а также гидрогенолиза и дегидрирования циклогексана в присутствии U2 в щироком интервале температур (30— 300 °С) на порошковых Pt- и Ni-катализаторах венгерские исследователи [241] показали, что при температурах выше 200 °С начинают идти реакции дегидрирования и гидрогенолиза на Ni образуются н-гексан, толуол и бензол, на Pt — только бензол. При высоких температурах наблюдается равновесное распределение дейтерия не только в продуктах реакции, но и в исходном циклогексане. Различия в свойствах Ni и Pt связывают с тем, что на Ni в значительно большей степени образуются прочно связанные частицы, ответственные за протекание реакции гидрогенолиза и за отравление активной поверхности металла. [c.166]

    При понижении температуры эксплуатации двигателей могут произойти нарушения в их нормальной работе, связанные с изменением свойств применяемых бензинов. К таким нарушениям следует отнести прекращение подачи бензина в двигатель при низких температурах вследствие выпадения кристаллов льда или углеводородов и образование ледяных отложений на деталях карбюратора и впускной системы (обледенение карбюратора). Подавляющее большинство углеводородов, входящих в состав бензинов, застывает при очень низких температурах. Отдельные углеводороды с довольно высокими температурами застывания — бензол (5,5 °С), п-ксилол (13,0°С), циклогексан (6,3°С)—содержатся в бензинах обычно в небольших концентрациях и в смеси с другими углеводородами, поэтому не оказывают существенного влияния на температуру застывания. Температура застывания бензинов обычно ниже минус 60 °С, что вполне обеспечивает нормальную эксплуатацию двигателей в любых климатических условиях. Именно поэтому температура застывания автомобильных бензинов в технических условиях не регламентируется. Температура застывания авиационных бензинов в соответствии с ГОСТ должна быть ниже минус 60 °С. [c.33]

    Гидрокрекинг полициклических ароматических углеводородов в присутствии катализаторов с сильными гидрирующими свойствами протекает через образование нафтеноароматических углеводородов. Прогидрирован-ные кольца полициклических соединений в этих условиях распадаются, проходя, по-видимому, через стадию изомеризации, с образование.м пятичленного кольца [44, 45]. Раскрытие циклопентанового кольца полициклических соединений происходит в основном по месту связи его с бензольным или цпклогексановым кольцом [44]. Конечными продуктами распада являются бензол, циклогексан и их производные [46—49]. Схема превращений полициклических ароматических углеводородов в процессе гидрокрекинга на примере нафталина показана ниже [19]. [c.46]

    Свойства циклопарафинов. Циклопропан (темп, кип.—32,8°С) и циклобутан (темп. кип. 12,6° С) — газы, циклопентан (темп, кип. 49,3° С) и циклогексан (темп. кип. 80,7° С) -- жидкости, высшие циклопарафины — твердые вещества. [c.311]

    В большинстве случаев реакцию проводят в среде абсолютированного эфира, реже — тетрагидрофурана или другого простого эфира (анизол, ди-н-бутиловый эфир), а также диметил-анилина. Применение этих веществ позволяет в случае необходимости повысить температуру реакционной массы. Все эти растворители — апротонные вещества, обладающие нуклеофильными свойствами. Реакцию можно проводить также в бензоле или циклогексане и даже в отсутствие растворителей, но при повышенных температурах и давлении. [c.254]


    У апротонных растворителей отсутствуют явно выраженные протоно-донорные или протоно-акцепторные свойства. У них не-больщая величина диэлектрической проницаемости и низкий или нулевой электрический дипольный момент. Растворенные вещества в апротонных растворителях заметно не диссоциируют. Апротонными растворителями являются бензол, хлороформ, тетрахлорид углерода, сероуглерод, циклогексан и др. [c.35]

    В циклогексановом ряду конфигурационная изомеризация изучена особенно широко. Скорость достижения термодинамического равновесия в ряду гомологов циклогексана зависит от природы и активности катализаторов, условий проведения реакции и свойств исходных изомеров. Так, Ватерман и сотр. показали [28], что цис-и транс-, 3- и 1,4-диметилциклогексаны в присутствии катализатора Ni/кизельгур при 170—180°С и давлении водорода (7—8)-10 Па быстрее достигают термодинамического равновесия, чем 1,2-диметил-циклогексаны. Под действием скелетного никеля транс-1,2-диметил-циклогексан быстрее достигает равновесия, чем соответствующий цис-изомер. Аллинджеру с сотр. принадлежит серия работ [29—34], посвященных конформационному анализу стереоизомерных гомологов циклогексана, которые с помощью конфигурационной изомеризации в присутствии Pd-катализатора обратимо превращаются друг в друга. Состав термодинамически равновесных смесей, образующихся при этом, позволил авторам рассчитать константы равновесия, значения ряда термодинамических функций, а также энергий взаимных переходов различных конформеров. [c.76]

    Изучение изомеризации предельных угленодородов в течение болсс двух десятилетий все возрастающим числом исследователей дало много сведений, важных как для техники, так и для теории. Исследования в этом направлении стимулировались потребностью в изобутане — сырье для процессов алкилирования, а также желательностью иревращения содержащихся в бензине парафинов нормального строения в изомеры с разветвленными цепями, обладающие более высокими аитидетонацион-иыми свойствами. Практическое значение аналогичного процесса изомеризации алкилциклопентанов в циклогексан или его алкилзамещенные объясняется главным образом тем, что эти последние являются промежуточными соединениями при производстве соответствующих ароматических углеводородов посредством дегидрогенизации. Сам циклогексан также является сырьем для получения адипиновой кислоты для производства иейлопа. Помимо этой практической стороны дела, изучение подобных реакций может пролить свет на поведение углеводородов и помочь в разъяснении механизма каталитических реакций. [c.14]

    Циклический карбоний-ион быстро превращается в смесь изомерных карбоний-ионов А, каждый из которых может либо крекироваться, либо путем переноса водорода образовать нафтены и ароматические соединения В и С. Отнощение v /V2, по-видимому, в большинстве случаев близко к единице, и каждый циклический карбоний-ион имеет примерно одинаковые шансы крекироваться или снова превратиться в циклическое соединение. Не удалось пока объяснить эту уже отмечавшуюся выше при рассмотрении реакций изомеризации сильную тенденцию к сохранению циклической структуры (разд. IV.2). Водо-рододонорные свойства циклогексанов хорошо известны (разд. IV.4) и могут объяснить относительную степень насыщения легких продуктов крекинга отношение олефин/парафин в газах крекинга метилциклогексана и н-гептана равно соответственно 0,46 и 1,2 [274]. [c.131]

    Свободные щелочные металлы благодаря своим высоким электро-нодонорным свойствам способны катализировать различные гетеролитические реакции в закритических условиях, исключающих грмо-генный механизм катализа [28]. Так, литий катализирует пр ррещ-нение этилена к циклогексану при температурах до 450 С и этилена к аммиаку при температурах до 175—200° С- [c.157]

    В некоторых случаях примесь действует более глубоко. Так, например, показано и , что тщательная очистка сырья и водорода от следов воды и генерирующего ее кислорода резко изменяет активность катализатора возрастает его гидрирующая и понижается изомеризующая активность. При этом на -катализаторе WS2 + NiS на AI3O3 можно было получить из бензола почти чистый циклогексан без заметных количеств метилциклопентана. Поскольку количества воды ничтожны, ее действие можно объяснить только понижением уровня Ферми, т. е. изменением полупроводниковых свойств катализатора. [c.272]

    Используемые в качестве высокотемпературных смазочных материалов и гидравлических жидкостей масла, состоящие из моно- и дизамещенных изоалкилбензолов с молекулярной массой 300—1500, рекомендуется [пат. США 360045] получать алкилированием бензола полиизобутиленом при температуре от —18 до —70°С в присутствии промотированного катализатора Фриделя — Крафтса. В ряде случаев для повышения термостабильности ал-килбензолы гидрируют. Однако, как указано в франц. пат. 1556958, при гидрировании алкилбензолов с получением алкилзамещенных циклогексанов, наблюдается некоторое ухудшение низкотемпературных свойств. [c.156]

    Так же как и в углеводородах циклонентанового ряда, первые конфигурационные (пространственные) изомеры возникают среди дизамещенных циклогексанов. Правило, устанавливающее связь между их конфигурацией и физическими (физико-химическими) свойствами, обычно также связывается с именами Ауверса и Скита. В современной редакции оно выглядит следующим образом из двух пар эпимеров (имеются в виду только углеводороды) меньшим содержанием свободной энергии, более низкой температурой кипения (и, следовательно, меньшим временем удерживания) будет обладать эпимер, имеющий экваториальную ориентацию обоих заместителей. Для диметилзамещенных углеводородов это правило соблюдается строго, однако для углеводородов, имеющих заместители большего молекулярного веса, правило сохраняет [c.29]

    Не все приведенные в табл. 62 данные укладываются в рамкж рассмотренных закономерностей. Например, не совсем ясна более высокая реакционная способность г ыс,транс-1,2,3-триметилцик-логексана по сравнению с его г нс, ис-изоыером. Вызывают удивление невысокие скорости перегруппировок пента- и гексаметил-циклогексанов, значительная часть стереоизомеров которых также имеет 1,3-диаксиальные взаимодействия. Возможно, что некоторую роль здесь играет искажение кресловидной конформации циклогексанового кольца, вызванное накоплением большого количества метильных заместителей. Во всяком случае необычные свойства этих стереоизомеров уже отмечались в главе, посвященной их термодинамической устойчивости (см. рис. 14). [c.190]

    Ароматические углеводороды имеют более высокие температуры кипения, чем соответствующие циклопарафиновые углеводороды, Это объясняется более плотной упаковкой молекул ароматических углеводородов (плоское кольцо), а также более сильным физикохимическим взаимодействием между молекулами (наличие я-элек-тронов) (исключение составляет бензол и циклогексан, имеющие близкие свойства). [c.71]

    Исследование состава, свойств и молекулярных весов смол и асфальтенов, выделенных из тяжелых остаточных продуктов высокотемпературной и окислительной переработки нефти (крекинг-остатки, окисленный и остаточный битум, гудрон и др.), показало, что они заметно отличаются от первичных смол и асфальтенов, выделенных из сырых нефтей [31—35]. Смолы, выделенные из отбен-зипенной и откеросиненной нефти, из 50%-ного мазута, гудрона, крекинг-остатка, окисленного битума, характеризовались более низкими молекулярными весами, чем смола, выделенная из сырой нефти. То же самое относится п к молекулярным весам асфальтенов, выделенных из тяжелых остатков переработки нефти. Причем молекулярные веса смол и асфальтенов, выделенных из тяжелых нефтяных остатков, тем ниже, по сравнению с молекулярными весами первичных смол и асфальтенов, выделенных из сырых нефтей, чем более глубокой химической переработке нефть подвергалась. Несмотря на более низкие значения молекулярных весов вторичных, т. е. претерпевших химические изменения, смол и асфальтенов, по сравнению с первичными, растворимость их в органических растворителях ухудшается. Так, например, первичные асфальтены растворимы в циклогексапе, а асфальтены, выделенные из тяжелых остатков высокотемпературной переработки нефти, наоборот, нерастворимы в циклогексане. Это применяется в аналитической практике для разделения первичных и вторичных нефтяных асфальтенов. [c.84]

    Гидрирование смолы, выделенной из ромашкинской нефти, проводилось в автоклаве в присутствии катализатора WSj— —NiS—AI2O3. Смола была выделена из смеси высокомолекулярных соединений ромашкинской нефти по методике, описанной в [23], и характеризовалась следующими свойствами мол. вес 929, содержание гетероатомов более 7% ( 4% серы, 2% кислорода и 1,0% азота), отношение С/Н равно 8,9. Растворенная в бензоле и, и циклогексане смола (2—5-кратное количество растворителя) подвергалась гидрированию при рабочем давлении 300 атм, температуре 300° С, в течение 40—80 час. Здесь также наблюдались реакции обессеривания исходных фракций и насыщение их водородом без снижения молекулярных весов, что указывает на то, что основная часть атомов серы находится в исходных сераорганических соединениях не в виде мостиков, а входит в состав гетероциклов. Каталитическому гидрированию с целью установления особенностей их химического строения подвергались природные нефтяные смолы [17]. Гидрогенизат отделялся от ка-тализата, от него отгонялся растворитель (в токе азота на водяной бане), после чего гидрогенизат доводился до постоянного веса в вакууме. После общей характеристики гидрогенизат разделялся на силикагеле АСК на углеводороды и смолы по методике, описанной в [23]. [c.123]

    Содержащиеся в сырых нефтях асфальтепы хорошо растворяются в таких органических веществах, как сероуглерод, хлороформ, бензол и его гомологи, циклогексан и некоторые другие растворители, но не растворяются в низкомолекулярных парафиновых углеводородах (С5—С,), диэтпловом эфире и ацетоне. Последним свойством и пользуются для выделения асфальтенов из нефти и нефтепродуктов. В бензино-лигроиновых и керосиновых фракциях асфальтены растворяются тегч легче, чем больше в них содержится ароматических углеводородов. [c.493]

    Эти две конформации легко преврагцаются друг в друга, и циклогексан 50 % времени проводит в одной, а половину времени - в другой конформации (хотя конформ ация кресло выгоднее энергетически). На первый взгляд, это, казалось бы, не имеет никакого пракгичес-кого значения, но положение меняется при нали ши какого-нибудь заместителя в кольце. Заместитель более устойчив в экваториальном положении, поскольку при этом он меньше взаимодействует с атомами кольца. При этом проявляется большая устойчивость конформации кресло. Метильный заместитель в мешлциклопжсаке проводит в жва ториальном по.чожении конформации кресло 90 % времени, а это отражается на некоторых свойствах подобных соединений [c.137]

    Циклопропан обладает нарксппескими свойствами (он заторма-Ж ивает проводимость нервных импульсов, хак бы замьжая цепь). Вдыхая его пары, человек перестает чувствовать боль. Циклогексан и его производные часто используются учеными и технологами как удобные модели для изучения свойств, явлений, процессов. В технике, например. [c.141]

    Большое значение в качестве инсектицида приобрел гексахлор-циклогексан (обозначаемый часто НСН) [ГХЦГ, гексахлоран. , производство которого во время второй мировой войны началось приблизительно одновременно во Франции и в Англии (ср. стр. 479). Подобно активному веществу препаратов ДДТ, гексахлорциклогексан как соединение был известен уже очень давно (впервые ои был получен Фарадеем в 1825 г.). Одиако в течение более 4ervi 100 лет его инсектицидные свойства были неизвестны. Из восьми возможных изомеров гексахлорциклогексана наибольшей инсектицидной активностью обладает 7-изомер (гаммексан). [c.521]

    Особые свойства соединений с углеродными кольцами средней величины, ио-видимому, обусловлены различными причинами. Наиболее важным фактором является конформация этих колец. В то время как циклогексан в форме, кресла практически свободен от напряжений, в соединениях со средними кольцами имеются отдельные конформа-цнонно невыгодные связи так же обстоит дело и в случае совершенно плоского циклопентана. В этих кольцах существует напряжение (питцеровское напряжение), которое проявляется во взаимном отталкивании соседних атомов водорода. В циклодекане /, всех С—С-связей находится в неблагоприятной конформации, и питцеровское п.апряжение достигает здесь максимума. Экспериментально найденные усредненные энергии напряжения цнклогептана, циклооктана и циклононана равны [c.925]

    Для более концентрированных растворов, по-видимому, важнее физико-химическое поведение длинных цепей, чем реологические свойства, характеризующиеся параметрами и е. Убедительное доказательство этого факта приводят Брейтенбах, Рпглер и Вольф [28], которые приготовили растворы (3,6— 14,2) вес. % полистирола в циклогексане. Для данных систем получена зависимость разделения фаз от концентрации при температурах Гпер = (26,4—29,4) °С. В этих растворах при сдвиге со скоростью 600 С и при температурах несколько выше Гпор они наблюдали резкое увеличение скорости деградации полимера при подходе к Гпер. При температуре Гпер + + 11,6 К в течение 20 ч не происходит заметной деградации. При температуре Гдер + 0,6 К уже через 1 ч было обнаружено уменьшение предельной вязкости [т]] на 13%. Через 20 ч было получено уменьшение молекулярной массы от 7-10"" до 1,6-10 г/моль. [c.144]

    В смешанных катализаторах, в которых компоненты находятся в соизмеримых количествах, могут образоваться новые, более активные соединения. При этом свойства смешанного катализатора не являются простой суммой свойств его компонентов. К числу модификаторов можно отнести и носители (трегеры), особенно часто применяемые для получения дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со). Роль носителей состоит в повышении активной поверхностп, увеличении термостойкости и механической прочности катализатора и т. п. В качестве носителей используют алюмосиликаты, оксиды алюминия, хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. Так, например, дегидрирование метилциклопен-тана платиной, нанесенной на активированный уголь, ведет к образованию метилциклопентана и пентадиена, а при дегидрировании на Р1-А120з образуются бензол и циклогексан. Носители могут изменять активность и избирательность катализатора и т. п. Следовательно, роль носителя как модификатора свойств катализатора может быть очень большой, и его выбор является существенным при создании оптимального катализатора для данного процесса. [c.442]

    Бензол (СбНб) представляет собой токсичную, горючую и нерастворимую в воде жидкость с т. пл. 5,5 °С, т. кип. 80 "С и плотностью меньше 1 обладает канцерогенными свойствами. В больших количествах бензол получают с помощью каталитических процессов из шестиуглеродных фракций нефти. Промежуточным продуктом этих реакций является циклогексан, при дегидрировании которого образуется бензол  [c.252]

    Единый гомологический ряд образуют циклоалканы — циклопропан, циклобутан, циклопентан, циклогексан и т. д. Природа связей в этом гомологическом ряду остается постоянной (всюду сигма-связи), хотя в химических свойствах и наблюдаются некоторые различия. В то же время каждый из циклоалканов может образовывать гомологи за счет появления боковой цепи и ее постепенного усложнения, причем это усложнение может опять-таки быть различным — в пределах одной цепи или с разделением ее на несколько боковых цепей. [c.46]

    В 1890 г. Г. Заксе впервые высказал мысль, что свойства циклогексана лучше могут быть объяснены, если принять иеплоское расположение атомов углерода в его кольце, причем возможны две конфигурации, получившие впоследствии названия паппа и кресло . Циклогексан послужил модельным соединением при создании конформационного анализа (1950). [c.230]

    Для испытаний эффективности колонок при атмосферном давлении применяют в основном смеси н-геитан — метилциклогексан, бензол — дихлорэтан и бензол — четыреххлористый углерод. Хальденвангер рекомендует смесь циклогексан — циклогексен, которая, как смесь неполярных углеводородов, отвечает всем вышеуказанным требованиям в отношении термодинамических свойств. Смесь 2,2,4-трнметилнентан — метилциклогексан является идеальной эталонной смесью [табл. У1/4 (12), см. приложение, стр. 583]. [c.165]

    Трамадол (ТРМ), химическое название 2-(е)- (диметиламино)-метил -1-(е)-(3-метоксифенил)-циклогексаН 1-(а)-ол, представляет собой синтетический опиоид со свойствами агоииста-антагониста, анальгетик центрального действия средней силы, подобно кодеину, пентазоцину или пропоксифеЕ1у. Ок широко и эффективно применяется для обезболивания в терапии и хирургии, в частности при коро парных, онкологических или ортопедических болях [1,4, 6,20, 22]. [c.196]


Смотреть страницы где упоминается термин Циклогексан свойства: [c.284]    [c.173]    [c.93]    [c.553]    [c.79]    [c.142]    [c.237]    [c.237]    [c.208]    [c.224]    [c.98]    [c.729]    [c.41]    [c.221]   
Производство циклогексанона и адипиновой кислоты окислением циклогексана (1967) -- [ c.72 , c.96 , c.97 ]

Техника лабораторной работы в органической химии Издание 3 (1973) -- [ c.55 , c.69 , c.267 ]

Теоретические основы органической химии Том 2 (1958) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Циклогексан



© 2025 chem21.info Реклама на сайте