Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МетилэтилКетон растворимость

    Жирные кислоты, пригодные для производства синтетических пищевых жиров, должны подвергаться особой очистке. В настоящее время длительными опытами точно установлено, что присутствующие в этих жирах кислоты с нечетным числом атомов углерода усваиваются человеческим организмом так же, как кислоты с четным числом поэтому нет никаких оснований удалять жирные кислоты с нечетным числом углеродных атомов из смеси синтетических жирных кислот. С технической точки зрения нет смысла осуществлять такое разделение кислот, поскольку оба типа кислот присутствуют почти в одинаковых количествах. Напротив, кислоты изостроения должны быть удалены, насколько это возможно, так как они являются причиной появления в моче кислых соединений, растворимых в эфире. Установлено также, что крысы, которых кормили жирами, синтезированными из жирных кислот, полученных на основе синтетического парафинового гача, испытывали задержку в росте. Известно, что эти кислоты имеют довольно разветвленное строение. Жирные кислоты изостроения можно в достаточной степени отделить экстракцией растворителями, например метанолом, метилэтилкетоном, ацетоном, бензином и низкомолекулярными карбоновыми кислотами, в которых они легче растворимы, чем кислоты с прямой цепью [101]. [c.474]


    БНК растворимы в метилэтилкетоне, ацетоне, толуоле, бензоле, этилацетате, хлороформе и практически нерастворимы в алифатических углеводородах и спиртах. С увеличением содержания акрилонитрила растворимость каучуков в ароматических углеводородах повышается. [c.357]

    Метилизобутилкетон также обладает рядом преимуществ по сравнению с метилэтилкетоном (табл. 24), к числу которых относятся большая скорость фильтрования, меньшая температура застывания полученного масла и (вследствие более высокой температуры кипения и низкой взаимной растворимости с водой) меньшие потери. [c.157]

    Это положение иллюстрируется рис. 13 и 14, на которых представлены данные о равновесии в системах ацетон—вода— метилэтилкетон [37] и н-пропанол—вода—нитрометан [38]. Из рассмотрения этих рисунков следует, что в обоих случаях с увеличением концентрации метилэтилкетона или нитрометана, ограниченно растворимого в воде, относительная концентрация последней в паровой фазе возрастает. [c.55]

    Из данных табл. 17 следует, что наибольщей растворяющей способностью по отнощению к парафину обладают толуол и бензол растворяющая способность всех остальных растворителей значительно пиже. По способности растворять парафины все исследованные вещества можно расположить в следующем порядке [59—61] толуол > бензол > метилизобутилкетон > метилэтилкетон > ацетон. Растворимость парафинов в смесях кетона с бен-золом или толуолом с увеличением содержания кетона уменьшается.. Легкоплавкие парафины растворяются во всех растворителях лучше, чем высокоплавкие. [c.75]

    С увеличением содержания метилэтилкетона в растворителе растет количество растворенной в нем воды. Поэтому повышение доли кетонового компонента - растворителя выше 60 - 65% не желательно, так как снижается растворимость парафина. [c.17]

    Примером повышения растворяющей способности таких растворителей, как ацетон и метилэтилкетон, при добавлении к ним толуола могут быть данные О. Г. Сусаниной [11] по исследованию растворимости нафтенов и ароматических углеводородов, выделенных из различных масел. Краткие данные из этой работы приведены в табл. 68. [c.184]

    Другим примером может служить смесь фурфурола и бензола, нри помощи которой также возможно отделение твердых углеводородов от масла. Аналогичная картина наблюдается и для смесей дихлорэтана, ацетона, метилэтилкетона и других растворителей с бензолом и толуолом. Увеличение длины углеводородного радикала в молекулах растворителей, например в кетонах, позволяет достичь такого же эффекта, т. е. полной растворимости углеводородов масла при низких температурах, при которых твердые углеводороды растворяются крайне незначительно. В этом случае увеличение длины углеводородного радикала кетона, повышая ди- [c.185]


    Повышение концентрации толуола в ацетоне резко увеличивает дисперсионные свойства последнего, однако растворимость даже при небольших концентрациях кетона во всех случаях ниже, чем нри охлаждении раствора масла в смеси метилэтилкетона и толуола. [c.205]

    При добавлении толуола к кетону растворимость углеводородов повышается в большей степени для растворо в в ацетоне, чем в метилэтилкетоне. Иными словами, добавление толуола к растворителю с худшей растворяющей способностью (ацетону) вызывает большее повышение растворяющей способности. [c.77]

    Если растворитель не образует с водой азеотропных смесей и разница между температурами их кипения достаточна, то их можно разделять фракционной перегонкой (например, смесь ацетона с водой). Растворители, образующие азеотропную смесь с водой, но обладающие относительно невысокой растворимостью в воде и воды в них (дихлорэтан, нитробензол и др.), можно легко регенерировать из водных растворов. Ббльшая часть избирательных растворителей, используемых в практике очистки нефтепродуктов, от-.носится к третьей группе растворителей, образующих с водой смесь с постоянной температурой кипения и имеющих относительно высокую растворимость в воде и воды в них (крезолы, фурфурол, фенол, метилэтилкетон и др.). Для их разделения пользуются значительной разницей в концентрациях растворителя в парах азеотропной смеси и в жидкой фазе охлажденного конденсата, состоя- [c.106]

    По литературным данным, метилэтилкетон с водой обладает частотной взаимной растворимостью [141. Так, при Т = 20° С растворимость МЭК в воде составляет 22,6%. Однако, как показала экспериментальная проверка, растворимость МЭК даже в слабом растворе кислот становится полной. Таким образол, применение чистого МЭК для экстракции низкомолекулярных кислот не представляется возможным. В целях уменьшения растворимости МЭК в кислой воде применяется дополнительное введение в раствор некоторого количества бензола. [c.88]

    Полимер взвешивают и определяют общий выход. Получаемый полимер не является полностью изотактическим, а содержит также и некристаллизующуюся атактическую фракцию. Для выделения изотактического полистирола в чистом виде используют различную растворимость аморфного атактического и кристаллического изотактического полистиролов в органических растворителях. Наиболее удобным растворителем для разделения этих фракций служит метилэтилкетон. Небольшое количество полученного полимера (около 1 г) помещают в колбу с обратным холодильником и нагревают ее с 10 мл метилэтилкетона в течение [c.46]

    Обмен одного галогена на другой осуществляют для алифатических, ароматических и гетероциклических галогенпроизводных. Наиболее обычной, по-видимому, является реакция обмена хлора или брома на иод при взаимодействии с иодистым натрием в таких растворителях, как ацетон или метилэтилкетон [77—80], этиловый спирт [81], четыреххлористый углерод [82] или диметилформамид [83]. Обмен осуществляется более полно, если неорганическая соль галогена, например иодистый натрий, растворима, а соль, получающаяся в результате обмена, например бромистый или хлористый натрий, нерастворима в органическом растворителе. В противном, случае необходимо брать большой избыток неорганической соли галогена для того, чтобы хоть в какой-то степени довести реакцию до завершения. Если обмен происходит медленно, следует повысить температуру, подбирая растворитель с более высокой температурой кипения, например н-бутиловый спирт, или же следует прибегнуть к обмену тозилатов с неорганическими солями галогенов (разд. А.б) или ароматических галогенпроизводных с галогенидами меди(1) (пример 6.5)  [c.384]

    Метилэтилкетон — бесцветная жидкость с запахом ацетона. Пл. 0,805 т. кип. 79,6° С. Смешивается с этанолом, эфиром, бензолом. Растворимость в воде 37 г на 100 мл, при повышении температуры растворимость уменьшается. С водой образует азеотропную смесь, кипящую при 73,6° С. Легко воспламеняется. С воздухом образует взрывоопасные смеси (нижний предел—1,81%, верхний — 11,5 /о). [c.115]

    Применение большого количества растворителя обусловливается плохой растворимостью тиомочевины в ме-тилэтилкетоне. Отработанный метилэтилкетон можно использовать для повторных синтезов. [c.63]

    Теплота растворения двуокиси углерода в метиловом спирте составляет 16,55 кДж/моль (4050 кал/моль). Данные о теплотах растворения в других растворителях, а также о влиянии содержания воды в метаноле на растворимость двуокиси углерода приведены в работе [257]. Из этих данных следует, что растворимость двуокиси углерода в растворителях при низких температурах велика. Так, растворимость СОд в этилацетате, метилэтилкетоне и метиловом спирте при —60,3 °С и 1,013-10 Па соответственно равна 102,6 96,40 и 74,9 см /г. С увеличением парциального давления СО2 до 5,07-10 —10,13-10 Па (5—10 кгс/см2) растворимость СО2 в метаноле растет примерно пропорционально давлению, а затем гораздо быстрее [314]. Данные о растворимости СО2 в метаноле нод давлением приведены на рис. 1У-87. [c.271]

    Растворимость парафинов в метилэтилкетоне уже значительно выше. Еще большей растворяющей способностью обладает метил-пропилкетон (см. рис. 3). Следовательно, по мере увеличения числа атомов углерода в молекуле кетонов повышается их способность растворять парафины (рис. 4). [c.94]


    Семикарбазоны метилкетонов имеют наивысшую температуру плавления и труднее всех растворяются в органических растворителях. Семикарбазоны кетонов, у которых кетогруппы расположены ближе к середине цепи, растворяются гораздо легче. Поэтому семикарбазон метилкетО На, находяпгегося в смеси с другими изомерами, можно легко выделить в чистом виде кристаллизацией, все другие изомеры остаются в маточном растворе. Следовательно, селективность проявляется дважды первый раз при реакции с семикарбазидом и второй раз при перекристаллизации. Если проследить за выходами, сраэу будут заметны значительные потери. К тому же еще обнаружилось, что если заместитель находится в положении 2, растворимости натриевых солей алкилсульфатов и алкилсульфонатов в органических растворителях чрезвычайно малы, в то время как другие изомеры растворяются относительно легко. Так, из смеси различных изомерных алкилсульфатов или алкилсульфо-катов можно экстрагировать хлороформом, метилэтилкетоном или амиловым спиртом все изомеры, кроме 2-алкилсульфата или 2-алкилсуль-фоната, которые остаются нерастворимыми [84]. Алкилсульфонаты, у которых гидрофильная группа находится у второго атома углерода, негигроскопичны другие же изомеры сильно притягивают влагу и на воздухе расплываются. [c.567]

    Низкий температурный эффект процессов депарафинизации данной группы обусловливается слишком высокой растворяющей способностью применяемых углеводородных разбавителей в отношении застывающих компонентов. Для повышения температурного эффекта депарафинизации к углеводородному растворителю-разбавителю добавляют растворитель-осадитель, обладающей пониженной растворяющей способностью к перерабатываемому сырью, главным образом к его застывающим компонентам, Растворитель-осадитель вводят в депарафинизируемый раствор в таких количествах, чтобы при существенном снижении растворимости застывающих комнонентов низкозастываюнще компоненты оставались полностью в растворенном состоянии, В качестве растворителей-осадителей применяют легкокипящие полярные растворители, в частности ацетон, метилэтилкетон, дихлорэтан и др. В качестве же углеводородного компонента обычно берут низкокипящие ароматические углеводороды — ббтаол или смесь его с толуолом, поскольку эти углеводороды хорошо растворяют входящие в дена рафинируемый продукт низкозастывающие масла. [c.97]

    Вопросу подбора для разных условий карбамидной депарафинизации растворителей-активаторов и установлению величины их оптимальной добавки посвящено большое количество исследований как советских, так и зарубежных авторов [40—46, 37—39, 31, 29]. В перечисленных работах можно найти дальнейшие по- дробности по выбору активаторов. В работе А. М. Кулиева с сотрудниками [38] указывается, в частности, что потребное количество активатора зависит от его природы (табл. 18). Так, при депарафинизации дистиллятов сураханской нефти в растворе углеводородного растворителя оптимальное количество вводимого активатора составляет метилового спирта — 2%, этилового спирта — 4%, изопропилового спирта — 25% и ацетона или метилэтилкетона — 50%. При применении в качестве активатора изопропилового спирта важное значение имеет содержание в нем воды, которое должно составлять 8—9% [38]. Роль воды в этом активаторе заключается, по мнению авторов, в повышении растворимости в нем карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. [c.145]

    Схема регенерации кетон-бензол-толуоловых растворителей, в которых в качестве кетона используют метилэтилкетон, аналогична описанной выше. При этом несколько изменяется режим процесса в сторону повышения температуры на первых ступенях отгона, поскольку температура кипения металэтилкетона выше, чем ацетона (79,6° при 760 мм рт. ст. против 56,1° для ацетона), г Если на депарафинизационной части установки применяют / МЭК в тех случаях, когда нельзя пользоваться влажным растворителем, операция осушки растворителя усложняется вследствие затруднений с получением безводного МЭК. Эти затруднения вызываются тем, что МЭК с водой образует азеотропную смесь, близкую по составу к насыщенному раствору воды в жидком МЭК. Так, количество воды в этой азеотропной смеси составляет 11,0%, а растворимость воды в жидком МЭК при 20" равна 9,9%. При такой близости составов азеотропной смеси и насыщенного раствора нельзя разделять эту азеотропную смесь при помощи процесса, рассмотренного для регенерации дихлор-этап-бензолового растворителя. Поэтому для выделения МЭК применяют другие методы разделения, в частности, орошение паров азеотропной смеси сырьем, поступающим на депарафинизационную часть установки, с целью абсорбции МЭК, хорошо растворимого в нефтяных продуктах. Возможна осушка смеси МЭК с бензолом и толуолом путем вымораживания влаги. [c.244]

    Добавление к ацетону или метилэтилкетону ароматического компонента приводит к увеличению растворимости в нем углеводородов парафина. Однако при повышении содержания ароматического растворителя в смеси с кетоном наряду с ростом выхода депа-рафинированного масла увеличиваются продолжительность фильтрования, ТЭД и температура застывания полученного масла (табл. 18) [46]. Сравнивая приведенные данные, следует отметить, что при одном и том же выходе депарафииированного масла (на- [c.142]

    Благодаря низкой растворяющей способности по отношению к твердым углеводородам и высокой растворимости в них масляных углеводородов такие растворители, как метилизобутилкетон и н-метилпропилкетон, могут быть использованы как индивидуальные, а не в смеси с ароматическими углеводородами [39, 48, 49]. Растворяющую способность высших кетонов и их смесей с ацетоном и метилэтилкетоном можно регулировать, изменяя содержание в них воды. При обезмасливании продуктов с целью получения высокоплавких твердых углеводородов используют насыщенный водой метилизобутилкетон, позволяющий проводить обезмасливание при более высокой температуре, причем выход церезина увеличивается на 1—2% [40]. К недостаткам изученных кетонов следует отнести их малую доступность и дороговизну. Кетоны с семью углеродными атомами в молекуле и более высокомолекулярные не используют в процессах депарафинизации и обезмас-ливания, что объясняется их высокой вязкостью при низких температурах, затрудняющей кристаллизацию твердых углеводородов. Кроме того, более высокая температура кипения таких кетонов усложняет их регенерацию. [c.145]

    При депарафинизации автолового дистиллята туймазинской нефти в растворе алкилата, изопропилового спирта и метилэтилкетона с добавлением разных активаторов наибольший эффект достигнут при использовании спиртов и их смесей (10% масс.), особенно когда растворителем служили,изопропиловый спирт и метилэтилкетон [61]. Этиленгликоль в концентрации 10% (масс.) при депарафинизации этого же дистиллята в растворе изопропа-нола оказался более эффективным активатором, чем вода. Некоторые соединения выполняют одновременно роль растворителя и активатора, например изопропанол, метилэтилкетон, хлористый метилен. В промышленных условиях часто используют двойной растворитель, один компонент которого является растворителем, а другой — активатором, например смесь бензина и изопропанола. Рекомендуются также смеси ксилола и изогексанола, изопропанола и метанола (рис. 86) и другие смешанные растворители. В ряде предложенных трехкомпонентных растворителей одним из компонентов является вода [55, 62, 63], присутствие которой имеет как преимущества, так и недостатки. Вода в отличие от органических растворителей не растворяется в нефтепродукте и, следовательно, не может повышать растворимость в нем карбамида. В то же время вода, являясь растворителем карбамида, способствует гидролизу последнего, что ухудшает технико-экономические показатели процесса. [c.216]

    Необходимое для процесса количество активатора зависит от его природы. Так, для депарафинизации дистиллятов грозненской нефти в растворе углеводородного растворителя требуется метилового спирта 2 (масс.), этилового спирта 25% (масс.), ацетона или метилэтилкетона 40% (масс.). При использовании в качестве активатора пропилового спирта очень важно, чтобы содержание в нем воды было 8-9% (масс.).Вода увеличивает растворимость карбамида, который в безводном изопропиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. Однако при содержании воды более Э% процесс комплексообразования ухудшается. Безводные активаторы, как правило, не способствуют протеданию реакции комплексообразования. [c.75]

    Растворители, применяемые для депарафтизадии. Для депарафинизации дизельных фракций используют смесь полярных растворителей (ацетон, метилэтилкетон и др.) с неполярными (бензол, толуол). Применение смеси обусловлено тем. что полярные растворители при температуре депарафинизации не растворяют твердые углеводороды, а избирательно растворяют масляные углеводороды. обеспечения растворимости н-алканов в полярных растворителях к ацетону добавляют смесь бензола и толуола или только толуол. Требуемая глубина депарафинизации дизельных топлив из разных нефтей достигается различное степенью охлаждения депарафинируемой смеси. [c.164]

    Для рационального использования МТБЭ в составе растворителя для депарафинизации рафинатов и обезмасливания гачей была исследована растворимость парафина марки Т в МТБЭ и других известных растворителях. Было обнаружено что, несмотря на относительно высокую по.пярность, МТБЭ обладает высокой растворяющей способносгью. По своей растворяющей способности [10 отнощению к твердым углеводородам МТБЭ занимает промежуточное положение между толуолом и метилэтилкетоном. [c.136]

    Глубина охлаждения масляной фракции зависит от заданной температуры застывания депарафинированного масла и растворяющей способности растворителя. Так как растворимость твердых углеводородов определяется природой растворителя, то для достижения необходимой температуры застывания масел необходима различная степень охлаждения депарафинируемой смеси. Разность между температурами процесса депарафинизации и застывания получаемого депарафинированного масла называется температурным эффектом депарафинизации (ТЭД). ТЭД полярных растворителей невелик для ацетона он равен 8—9°С, для метилэтилкетона — от 2 до 3°С, а для мс тилизобутилкстона — 0°С. При депарафинизации пропаном или нафтой ТЭД составляет [c.327]

    Депарафинизацией называется процесс выделения из нефтепродуктов твердых углеводородов, выпадающих в виде кристаллов при охлаждении. Наиболее распространенным методом депарафинизации стал метод с использованием селективных растворителей, основанный на различной растворимости углеводородов. В качестве растворителей используются ацетонто-луольная или метилэтилкетон-толуольная смеси и спиртовой раствор карбамида. При карбамидной депарафинизации карбамид образует с алканами нормального строения с числом углеродных атомов более шести и циклическими углеводородами с длинными алифатическими радикалами кристаллические комплексы [c.149]

Рис. 2. Растворимость метилэтилкетопа в кислой воде в зависимости от содержания его в бинарном растворителе (метилэтилкетон -Ь бензол). Рис. 2. Растворимость метилэтилкетопа в <a href="/info/639915">кислой воде</a> в зависимости от содержания его в <a href="/info/809838">бинарном растворителе</a> (метилэтилкетон -Ь бензол).
    Отдельные указания На применимость правила фаз к растворам высокомолекулярных веществ имелись еще в начале XX сто-летия. В. А. Каргин с сотр. подробно исследовал подобные системы и установил связь между применимостью правила фаз к растворению высокомолекулярных соединений и термодинамической устойчивостью и обратимостью растворов. Наиболее важной в этой области является работа В. А. Каргина, 3. А. Роговина и С. П. Папкова по исследованию растворов ацетата целлюлозы в различных растворителях — хлороформе, дихлорэтане, метиловом спирте, нитробензоле, метилэтилкетоне, метилпропилкетоне, бензоле, толуоле, этилацетате. Авторы установили, что при ограниченной растворимости ацетата целлюлозы после расслаивания системы и достижения равновесия как в верхнем, так и в нижнем слое раствора устанавливается определенная концентрация ацетата целлюлозы в зависимости от температуры. Процесс растворения оказался строго обратимым и термодинамически равновесным, концентрации были одними и теми же при подходе к заданной температуре как путем, нагревания, так и путем охлаждения. [c.435]

    В качестве среды, в которой проводится вымораживание парафина, обыкновенно используются парные растворители спиртоэфирная смесь, смесь амилового спирта с этиловым, ацетон — толуол, дихлорэтан — бензол, ацетон — бензол, метилэтилкетон — бензол и другие. В каждой такой смеси один из компонентов является осади-телем твердых парафинов. К ним относятся хлорпроизводные, кетоны и др. В этих растворителях с понижением температуры растворимость парафинов резко падает. Другой же компонент (обычно ароматические углеводороды) является собственно растворителем для всей навески и для тех углеводородных примесей, которые могут частично осадиться вместе с парафином. На точность анализа оказывают также влияние величина навески, кратность разбавления навески растворителями и условия охлаждения. [c.131]

    Изменением состава растворителя легче обеспечивается требуемая растворимость по отношению к компонентам смеси, разделяемой кристаллизацией. Так, при депарафинизации масел и обезмасливании гачей, предназначенных для разделения жидких и твердых углеводородов нефти, широко применяется комбинированный растворитель, состоящий из кетона (метилэтилкетона, ацетона и др.), бензола и толуола. В кетонах сравнительно плохо растворяются твердые углеводороды, однако пониженную растворимость в пих имеют также высокомолекулярные жидкие углеводороды, поэтому при использовании в качестве растворителей только кетонов не удается обеспечить достаточно четкое отделение жидких углеводородов от твердых. [c.227]

    В зависимости от величины молекулярного веса температура размягче- ння смолы изменяется от 20 до 155 . Смолы легко растворяются в ацетоне, толуоле, метилэтилкетоне, хлорбензоле. Смолы окрашены в желтый цвет и представляют собой густовязкие или низкоплавкие хрупкие массы, очень липкие в расплаве или в растворе, с высокой адгезией к подавляющему большинству материалов. Наличие в эпоксидных смолах эпоксидных и гидроксильных групп придает им высокую реакционную способность. Если в реакцию с эпоксидной смолой вступают вещества, содержащие две и более функциональных групп, молекулярный вес смолы быстро увеличивается, повышаются температуры размягчения и механическая прочность, снижается растворимость. Вещества, вступающие в реакцию с эпоксидной смолой и повышающие ее молекулярный вес, носят название отверди тел и. В качестве отвердителей можно использовать полиамины, полиосновные кислоты или ангидриды кислот, многоатомные фенолы, дициандиамид, меламин и другие соединения. [c.736]

    Необходимо следить за тем, чтобы отгонка спирта и избытка метилэтилкетона велась до тех нор, пока температура жидкости не достигнет точно 90°. Если отгонку прекращают слишком рано, то неотогнанный спирт впоследствии повышает растворимость диметилглиоксима слишком высокая температура вызывает [c.207]

    Одностадийной поликонденсацией в ПФК успешно осуществлен синтез гомо- и сополи-1,3,4-оксадиазолов с Ы-фенил-2-фталимидиновыми кардовыми группировками [293]. В этом случае получение оксадиазолов осуществлялось взаимодействием солей гидразина или дигидразидов дикарбоновых кислот и 3,3 -бис(4-карбо-ксифенил)-Ы-фенил-2-фталимидина. Наличие М-фенил-2-фталимидной группировки в исходном мономере (в противоположность фталидной) исключает протекание нежелательных побочных реакций в процессе синтеза. При синтезе полимеров из гидразинсульфата образуются полимерные аддукты с серной кислотой, обладающие высокой тепло- и термостойкостью и хорошей растворимостью даже в таких растворителях, как ацетон и ТГФ, метилэтилкетон, диоксан, циклогексанон. [c.143]


Смотреть страницы где упоминается термин МетилэтилКетон растворимость: [c.221]    [c.141]    [c.113]    [c.114]    [c.114]    [c.105]    [c.41]    [c.102]    [c.374]    [c.192]    [c.89]    [c.259]   
Систематический качественный анализ органических соединений (1950) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Метилэтилкетон



© 2025 chem21.info Реклама на сайте