Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спирты высшие этерификация

    Получение этиленгликоля из формальдегида организовано в США фирмой Е. I. du Pont de Nemours and o. По этому способу смесь паров формальдегида и воды (объемное соотношение 1 1) абсорбируется водным раствором гликолевой кислоты (мольное соотношение 1 2) с примесью каталитических количеств серной кислоты и затем пропускается через реактор вместе с избытком окиси углерода при 200 "С и 70 МПа (время контакта 5 мин). В результате образуется гликолевая кислота (выход 90—95%), выделяемая перегонкой прн пониженном давлении. После этерификации гликолевой кислоты метиловым спиртом и очистки зфира перегонкой, проводится гидрирование метилового эфира гликолевой кислоты при 200 °С и 3 МПа в присутствии катализатора медь—хромат бария. На стадии восстановления получают этиленгликоль с выходом 90%. Данный метод не получил широкого распространения вследствие многостаднйности и высокой коррозионности среды, но может быть перспективным при снижении стоимости и расщирении производства синтез-газа. [c.274]


    В дизельных топливах в условиях хранения и эксплуатации при действии растворенного кислорода накапливаются низкомолекулярные продукты окисления (гидропероксиды, спирты, карбоновые кислоты и др.), которые вступают в реакции уплотнения (этерификации, конденсации, полимеризации) с образованием высокомолекулярных соединений, вызывающих осадко- и смолообразование в системе. Осадки загрязняют топливные фильтры и отрицательно влияют на работу топливных насосов высокого давления. При работе двигателя смолы отлагаются на горячих поверхностях распылителей форсунок и впускных клапанов, что приводит к неравномерной подаче топлива и вследствие этого к увеличению дымности и токсичности отработавших газов при повышенном расходе топлива. [c.6]

    Этиловый эфир стеариновой кислоты, применявшийся при проверке синтеза, был получен этерификацией продажной стеариновой кислоты восемью эквивалентами безводного этилового спирта, содержащего 10% (всс.) концентрированной серной кислоты. Полученный препарат после промывания и высушивания был перегнан с применением елочного дефлегматора высотой 60 см, снабженного рубашкой для обогрева и головкой для частичной конденсации паров. Выход вещества с т. кип, 186,5— 189° (3,5 мм) н т. пл. 32,2—34.2° (исправл.) составлял 80%. Можно применять также продажный этиловый эфир стеариновой кислоты высокого качества. [c.91]

    Через борные эфиры удается получить спирты высокой чистоты (до 95%) повторная очистка улучшает эти результаты. Такой метод удобен тем, что в обычных условиях этерификации в виде борных эфиров связываются лишь спирты и не связываются фенолы. Возможно, что в будущем этот метод окажется одним из наиболее удобных для промышленного получения ароматических спиртов с боковой ненасыщенной цепью из кислородных соединений углеводородных смесей. [c.138]

    Интенсивно разрабатываются методы этерификации в присутствии амфо-терных каталитических систем, представляющих собой осажденные на носитель гидраты окислов алюминия, титана и олова, соли титана, олова, циркония и карбоновых кислот или органические соединения титана. Наибольшую каталитическую активность обнаруживают тетраалкилтитанаты и тетраалкилцирконаты. Амфотерные катализаторы частично или полностью растворимы в реакционной массе и легко удаляются из нее осаждением, гидролизом, обработкой сорбента ш или простой фильтрацией. Этернфикация в их присутствии протекает при более высокой температуре (160—200 °С) и требует большего избытка спирта (40% и выше), чем при использовании кислотного катализатора. [c.238]


    В таких же условиях реагируют и н-бутилены, однако выход эфиров [24] не настолько высок, чтобы этот метод можно было предпочесть обычному методу получения сложных эфиров из олефинов, который состоит в гидратации бутиленов в спирты и этерификации последних уксусной кислотой (см. гл. ХУП). Следует отметить как недостаток, что при этом способе приходится применять в качестве катализатора слишком большое количество серной кислоты, а именно 10—20% от веса реагирующих веществ. [c.187]

    Спирты с меньшей длиной цепи не обеспечивают достаточной растворимости. Спирты же с большей длиной цепи придают смолам более высокую растворимость и лучшую совместимость, чем бутиловый спирт, однако этерификация высшими спиртами протекает очень медленно. Практически эфиры высших спиртов могут быть получены лишь путем переэтерификации продуктов, предварительно этерифици-рованных низшими спиртами. [c.85]

    Хотя рассмотренные выше неионогенные деэмульгаторы обладают сравнительно высокой деэмульгирующей активностью, но даже лучшие из них менее эффективны, чем ОЖК. Кроме того, синтез ОЖК значительно проще, так как он протекает без стадии этерификации. Поэтому деэмульгатору ОЖК следует отдать предпочтение перед описанными выше деэмульгаторами на основе сложных эфиров многоатомных спиртов. [c.110]

    Нормальные жирные кислоты с длинной цепью получают из сырья нефтяного происхождения, а именно из твердого парафина окислением воздухом (гл. 4, стр. 74). Такие кислоты можно использовать для производства высших жирных спиртов нормального строения при этом либо каталитически гидрируют сложные эфиры, либо соли тяжелых металлов этих кислот подвергают действию водорода при высоких температуре и давлении [19]. Этерификацией синтетических высших кислот с глицерином, полученным из пропилена (гл. 10, стр. 179), можно изготовить жир полностью искусственного происхождения. В Германии, исходя из синтетических Си—С12-кислот, производили этим способом синтетическое масло. Последнее в некоторых отношениях имеет преимущество перед натуральным маслом, например синтетическое масло рекомендуют в пищу диабетикам [20]. [c.341]

    Достоинством этого метода является использование на всех стадиях процесса гомогенного катализатора, высокая степень чистоты изобутилена и полнота его извлечения. Процесс осуществляется с использованием оборудования из обычной нержавеющей стали. Технологическая схема процесса состоит из стадий этерификации и гидратации изобутилена и последующего гидролиза эфира и дегидратации спирта. Сложность схемы определяется наличием азеотропных смесей в этом процессе. [c.225]

    Существуют определенные методы синтеза органических соединений, в которых отдельные атомы являются изотопно-обогащенными (т. е. обладают более высокиМ содержанием редкого изотопа, чем при природном обогащении) (разд. 1.1). При исследовании превращений таких меченых веществ и анализе продуктов превращений часто удается определить точную судьбу отдельного атома или группы во время реакции. Этерификация изучалась с использованием тяжелого нерадиоактивного изотопа 0. Установлено, что при этерификации карбоновой кислоты спиртом, в котором гидроксильная группа обогащена 1 0 ( меченая ), все тяжелые изотопы находятся в эфирном атоме кислорода (но не в карбонильном кислородном атоме) и ни одного — в образовавшейся воде  [c.157]

    Лишь небольшая часть присутствующего сложного эфира получается при этерификации кислот спиртами, образующимися при реакции. Баланс показывает, что одно предположение о протекании реакции Байера—Виллигера ие в состояиии объяснить отноштельно высокое содержание эфира в смеси. [c.467]

    Средневзвешенное содержание спиртов во всех неомыляемых составляет 15—18%. Основная масса высших жирных спиртов концентрируется в неомыляемых-И. Так, если в нулевых и первых неомыляемых содержится 10—15% спиртов, то во вторых неомыляемых их концентрация достигает 30% и выше. Высокое содержа-, ние спиртов в пеомыляемых-П послужило основанием для разработки промышленных методов их извлечения. В результате проведенных исследований были предложены следующие варианты извлечения высших спиртов из неомыляемых-П 1) этерификация борной кислотой с последующей отгонкой борнокислых эфиров  [c.169]

    Выбор метода извлечения зависит от двух основных факторов Ьт уровня технико-экономических показателей и от качественной характеристики получаемых спиртов. Метод метанольной экстракции обеспечивает более высокий процент извлечения спиртов из неомыляемых-П. В то же время в экстрагируемых спиртах содержание первичных спиртов значительно ниже, чем в случае применения метода этерификации борной киелото , и составляет 50— 55%. Это обстоятельство объясняется тем, что в процессе извлечения спиртов из вторых неомыляемых через борнокислые эфиры происходит обогащение смеси первичными спиртами за счет повышенных потерь вторичных спиртов. При экстракции спиртов из неомыляемых-П относительные потери вторичных спиртов составляют меньшую величину, что и обусловливает их более высокое содержание в конечном продукте. Кроме того, в спиртах, полученных экстракционным методом, содержится несколько больше углеводородов. В свою очередь спирты, выделенные с помощью борнокислых эфиров, характеризуются более высокими кислотными, карбонильными и эфирными числами [93]. [c.171]


    Реакция во многом сходна с этернфикацией. Она также обратима, но, по сравнению с этернфикацией, ее равновесие сильнее смещено вправо. Строение кислоты оказывает такое же влияние на термодинамику и скорость амидирования, как при этерификации (разветвление и удлинение углеродной цепи кислоты повышает константу равновесия, но снижает скорость процесса). Аммиак и особенно амины являются более сильными нуклеофильными реагентами, чем спирты, поэтому амидирование может протекать в отсутс вие катализаторов путем нагревания реагентов при 200— 300 °С в жидкой фазе. Удаление воды при использовании избытка аммиа<а (или амина) способствует достижению высокой степени конверсии. В отдельных случаях рекомендовано применять катализаторы кислотного типа, например AI2O3. [c.221]

    Обе реакции сильно экзотермичны и практически необратимы, Этерификацию изоцианатов проводят при 60—80 °С, постепенно и при перемешивании добавляя изоцианат в избыток спирта. При 1еакции с кристаллическими фенолами можно применять растворители (четыреххлористый углерод и др.). Процесс амидирования л лоругольпых эфиров аналогичен рассмотренному ранее синтезу г.ложных эфиров или ампдов из хлораигидридов кислот. Оба метода дают высокий выход уретана (более 95%) и близки но эко- юмичсским показателям. [c.232]

    Добавление щелочи к смеси сульфохлорида и спирта значительно ускоряет этерификацию и при температурах между О и 15° получаются высокие выходы алкилсульфоната [150]. В некоторых случаях более удовлетворительные результаты получены при проведении реакции в эфирном растворе, причем добавлялась щелочь к безводной реакционной смеси [151] или вносился сульфохлорид в эфирный раствор алкоголята натрия [130 г, 152]. В качестве растворителя для этой реакции применялся также бензол [153]. Реакцию можно провести и с помощью третичного амина. Из бензолсульфохлорида получен в присутствии триметиламина этилсульфонат [154]. Многие другие алкилеульфонаты синтезированы с применением пиридина в качестве акцептора хлористого водорода [153, 155]. Тосилирование [156] углеводов удобнее [c.336]

    Реакционная масса сливается в промежуточный сборник 3, откуда насосом 4 высокого давления непрерывно подается на этерификацию в верхнюю часть эфирнзатора 7. Эфиризатор имеет колпачковые тарелки, и жидкость стекает по ним сверху вниз. Противотоком к ней движутся пары метилового спирта, перегретые в подогревателе 6. За счет их тепла этерификация идет при 250°С и 2,5 МПа. При этом пары спирта, подаваемого в избытке, уносят образующуюся воду, способствуя более полному завершению равновесного процесса этерификации. Выходящие из аппарата 7 пары метанола и воды полностью конденсируются в [c.400]

    Синтонами многих низкомолекулярных биорегуляторов являются различные оптически активные спирты. Наиболее эффективными способами получения таких соединений в современном органическом синтезе считается кинетическое разделение их рацемических смесей с помощью препаратов липаз и карбоксилэстераз. Такие ферменты не требуют кофактора и могут быть использованы для катализа этери-фикации спиртов в органических растворителях, проявляя при этом в ряде случаев высокую стереоселективность. В настоящее время применение в органическом синтезе нашли лишь некоторые коммерческие препараты липаз и карбоксилэстераз, которые не всегда удовлетворяют требованиям, предъявляемым к промышленным биокатализаторам. В связи с этим является актуальной разработка новых биокатализаторов, способных катализировать стереоселективную этерификацию рацемических спиртов. [c.58]

    Слокные эфиры неопентидовых спиртов и, в частности, сложные эфиры, полученные этерификацией пентаэритрита синтетическими жирными кислотами, используются в качестве смазочных масел. Перспективность их применения объясняется низкими температурами застывания и испаряемостью, высоким индексом вязкости, хорошими сиаэывающши свойствами [1]. [c.66]

    Брукс [25] утверждает, что выходы при этом процессе недостаточно высоки, чтобы он мог конкурировать с обычным методом получения сложных эфиров из олефинов, который состоит в гидратации олефина и этерификации полученного спирта уксусной кислотой, проводимой обычным способом (гл. 18, стр. 345). Другой недостаток заключается в том, что при этом способе приходится применять в качестве катализатора очень значительное количество серной кислоты, обычно около 10—20% от веса реагирующих веществ. Изобутилен реагирует с уксусной кислотой гораздо легче, чем н-бутилены, однако сложные эфиры третичных спиртов легко гидролизуются и поэтому, как правило, имеют ограниченное промышленное применение в качестве р 1створителей. [c.200]

    Этерификацию можно вести и в парах над твердыми катализаторами. Было испытано большое число различных контактов, причем самыми активными для этерификации оказались TiiO и ТЮ . Пары спирта и кислоты при 280—300° пропускают через трубку с катализатором, в результате чего получаются такие же выходы сложных эфиров, как и при реакции в гомогенной фазе. Избыток одного из компонентов повышает выход сложного эфира 1 г-мол изомасляной кислоты с 1, 2 и 4 г-мол этилового спирта дает соответственно 71,0, 83,5 и 91,0% иэомасляноэтилового эфира. По этому способу получают с высокими выходами разнообразные сложные эфиры. [c.470]

    При этерификации этн.х кислот высокомолеку.тярнымп спиртами можно получить воски высоких качеств. [c.41]

    Переэтврификация винилацетатом II-—2] требует низких температур и кислой среды, нередко сопровождаясь интенсивным с.молообразоваиием. Удобнее брать источником виниловых групп какой-либо легкодоступный простой виниловый эфир (например, винилбутиловый) и вести реакци ю с катализатором — ацетатом ртути. Эним методом, дающим довольно высокие выходы без полимеризации мономеров,, были провинилированы многие спирты [3—41, синтез виниловых эфиров которых прямой этерификацией ацетиленом по ряду причин часто невозможен. [c.26]

    В каком порядке следует расположить кислоты ио легкости их этерификации с этиловым спиртом, если даны 1) масляная, 2) триметилуксусная, 3) муравьиная Объясните, почему высокая концентрация минеральной кислоты производит антикаталитнческий эффект (скорость этерификации резко снижается). [c.70]

    ХОТЯ некоторые эфиры бензилового спирта [1] и муравьиной кислоты [2] можно получить в отсутствие катализатора. Если спирт или кислота изменяются под действием кислот, следует предпочесть-эфират трехфтористого бора [3]. Для этерификации ароматических, кислот лучше брать 2 экв трехфтористого бора [4]. Если при прове-. дении реакции нежелательно присутствие кислоты в реакционнойЕ среде, в качестве катализатора можно использовать сильнокислые ионообменные смолы [5]. Скорость образования эфира зависит от площади поверхности ионообменной смолы, а в случае кислот высокого молекулярного веса площадь поверхности может быть еще-больше ограничена плохой диффузией кислоты внутрь смолы. Нижег приведен пример этерификации при помощи кислой ионообменной смолы фурилоЕОго спирта, который при наличии кислоты в реакционной среде полимеризуется (пример а). [c.283]

    Этот метод синтеза находит широкое применение, поскольку зта реакция необратима в отличие от реакции этерификации. Выделяющийся при реакции хлористый водород можно уводить из сферы реакции или поглощать его каким-нибудь основанием, например едким натром, диметиланилином или пнридиром, или магнием. Иногда желательно применение алкоголята натрия. Диметиланилин [40] и магний [41] применяют для. получения эфиров третичных спиртов, имеющих тенденцию в отсутствие вещества, способного поглощать выделяющийся хлористый водород, образовывать галогенпроизводные. При этерификации фенолов часто применяют магний [42] эта реакция исследована количественно [43]. Наиболее высокие выходы фениловых эфиров получают из таллиевых солей фенолов и хлорангидрида соответствующей кислоты (пример г.б). [c.288]

    I Температура реакции. Реакция этерификации при комнатной температуре протекает чрезвычайно медленно. Например, при ЕСмешенин эквимолярных количеств этилового спирта и уксусной кислоты для достижения равновесных концентраций требуется при этих условиях почти 16 лет, а при 155 С процесс заканчива- ется через несколько часов. Для сдвига равновесия в сторону образования сложного эфира прибегают к отгонке последнего, если его температура кипения не очень высока. В противном случае удобнее в процессе реакции отгонять воду. [c.165]

    НОЙ НгЗО с изобутиленом с послед. гидроли )ом трем бутилсерной к-ты прямая гидратация изобутилеиа па ионообменных смолах. Примен. в пропл-ве изобутилена высокой степени чистоты из газов нефтепереработки алкн-лирующий агент р-ритель антисептик душистое н-во в парфюмерии (камфорный запах) для денатур и рова[И1я этилового спирта-сырца. ПДК 100 мг/м- (рекомендуемая). БУТИЛОЛЕАТ С Н,7СН=СН(СН2)7СООС4Нз, —10°С, (кип 357—370 °С й " 0,865—0,888, я ," 1,4 >5, 11 75мПа-с не раств. в воде, раств. в орг. р рителях, растит, и минер, маслах аси 180 °С. Получ. этерификацией олеиновой к-ты н-бутанолом. Пластификатор гомо- и сополимеров винилхлорида. [c.88]

    Известно несколько способов этерификации IV нагревание IV со спиртами в присутствии серной кислоты, реакция тех же компонентов с азеотропной отгонкой воды, превращение IV в хлорангидрид V, который со спиртами дает соответствующие эфиры изоникотиновой кислоты [16, 17]. Два последних метода обеспечивают более высокие выходы. — [c.183]

    Гидрирование эфиров синтетич. жирных к-т (см. Высшие жирные кислоты), получаемых этерификацией к-т метанолом (или бутанолом). Спирты Сц,— jg получают при гидрировании на суспендированном меднохромовом или на стационарном алюмоцинкхромовом катализаторе (280-340°С, 20-30 МПа), спирты С,—С,-на стационарном меднохромовом катализаторе (200-240 °С, 20-30 МПа). Достоинство процесса высокий выход спиртов (более 95% от теоретического) недостатки многостадийность, применение высокого давления. [c.445]

    Первой стадией производства является получение полимера. Если мономером является диметилтерефталат, то его переэтерифицируют этиленгликолем, при этом выделяется метиловый спирт. При применении терефталевой кислоты проводят ее прямую этерификацию этиленгликолем с выделением воды или окисью этилена без выделения воды. Во всех случаях получают дигликолевый эфир терефталевой кислоты, который подвергают поликонденсации в условиях высокой температуры при остаточном давлении порядка 0,133 кПа (1 мм рт. ст.). Из расплава полимера формуют нити, подвергаемые далее ориентационному вытягиванию. Готовое волокно направляют на текстильные фабрики, где его перерабатывают в ткани и изделия. [c.12]

    В настоящее время механизм переэтерификации и поликонденсации нельзя считать полностью раскрытым. Не до конца выясненным остается механизм при кислотном и основном типах катализа и при вполне вероятном гетерогенном катализе. Такая каталитическая универсальность этих реакций указывает на возможность протеканий их по многим различным механизмам. Ьыла даже сделана попытка рассмотреть поликонденсацию дигликольтерефталата с позиций классической конденсационной схемы прямой этерификации кислот спиртами [9]. Авторы наблюдали, что только при добавке воды в исходный чистый дигликольтерефталат может быть без катализатора получен полиэфир достаточно высокой молекулярной массы. Но процесс изучали [c.59]

    Имеются указания на то, что монометиловый эфир нонанди-карбоновой кислоты является побочным продуктом, получаемым при озонировании метилового эфира 1-децендикарбоновой кислоты однако единственным препаративным методом является описанный выше . Обычно моноэфиры дикарбоновых кислот получались частичной этерификацией и непосредственной фракционной перегонкой всех трех продуктов реакции, однако при применении описанного метода для получения более высоко кипящих моноэфиров требуется некоторое изменение методики . Изложенный выше метод требует значительно меньшей затраты труда, чем процесс частичной этерификации, и имеет особые преимущества при получении более высоко кипящих эфиров, когда продолжительная фракционная перегонка при высоких температурах приводит к диспропорционированию моноэфира. Этот метод неудовлетворителен для получения моноэфиров более низкого молекулярного веса, так как соли таких эфиров слишком хорошо растворимы в метиловом спирте. Себа-циновая кислота дает удовлетворительные результаты при применении к ней этого метода, азелаиновая кислота, наоборот,— плохие результаты двухосновные кислоты еще более низкого молекулярного веса не дают сколько-нибудь значительных выходов полуэфира. [c.58]


Смотреть страницы где упоминается термин Спирты высшие этерификация: [c.136]    [c.650]    [c.650]    [c.75]    [c.316]    [c.434]    [c.551]    [c.618]    [c.79]    [c.335]    [c.345]    [c.320]    [c.462]    [c.306]    [c.168]    [c.669]   
Синтетические моющие и очищающие средства (1960) -- [ c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Спирты высшие

Этерификация

Этерификация спиртов



© 2025 chem21.info Реклама на сайте