Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогены электроотрицательность

    При образовании связей с менее электроотрицательными атомами (для фтора это - все элементы, для хлора - все, кроме фтора и кислорода) валентность всех галогенов равна . Степень окисления -1 и заряд иона 1-. Положительные степени окисления невозможны для фтора. Хлор же проявляет различные положительные степени окисления вплоть до +7 (номер группы). Примеры соединений приведены в Справочной части. [c.75]


    Соединения брома (I), иода (I) и астата (I). Степень окисления + 1 у брома и его аналогов проявляется в соединениях с более электроотрицательными галогенами и кислородом, например  [c.303]

    Атомы всех элементов имеют по одному неспаренному электрону, что определяет их свойства типичных неметаллов. Будучи самым электроотрицательным элементом, фтор в соединениях всегда имеет степень окисления —1. Остальные галогены также имеют степень окисления —1, но для них возможны и положительные степени окисления +], +3, +5, +7. Этим они существенно отличаются от фтора. Астат может существовать во всех указанных степенях окисления — от —1 до +7, являясь типичным аналогом иода. В ряду F—С1—Вг—I—At значение сродства к электрону уменьшается. У фтора, как элемента второго периода, в электронной структуре атома нет d-орбитален. Некоторые свойства галогенов представлены в табл. 17.1. [c.337]

    Наиболее заметны различия галогенов между собой в соединениях, где они проявляют положительные степени окисления. В основном это соединения галогенов с наиболее электроотрицательными элементами — фтором и кислородом, которые [c.502]

    Важнейшие бинарные соединения — это соединения элементов с кислородом (оксиды), с галогенами (галогениды), азотом (нитриды), серой (сульфиды), углеродом (карбиды) и соединения металлов с водородом (гидриды). Их названия по правилам МН образуются из латинского корня названия более электроотрицательного элемента и русского названия менее электроотрицательного элемента в родительном падеже. Например СаО — оксид кальция, КС1 — хлорид калия, BN — нитрид бора, uS—сульфид меди, АЦСз — карбид алюминия, NaH — [c.31]

    Кислотные свойства в наибольшей степени выражены у оксидов хлора, так как разность электроотрицательностей хлора и кислорода наименьшая (разд. 35.2.1). В соответствии с общими закономерностями С /) дает наиболее сильную кислоту (табл. В.26). Следует учитывать также свойства воды как растворителя. В таблице В.26 указаны продукты, образующиеся при взаимодействии оксидов галогенов с водой. Свойство оксидов, а следовательно, и кислородных кислот образовывать соединения полимерного типа в соответствии с общими правилами (разд. 35.2.1) наиболее типично для иода. Перечень извест- [c.503]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Атом серы 5, как и атом кислорода, имеет шесть валентных электронов (35 3/) ). Сера — типичный неметаллический элемент. По электроотрицательности (ЭО = 2,5) она уступает только галогенам, кислороду, азоту. Наиболее устойчивы четные степени окисления серы (—2, +2, -j-4 и +6), что объясняется участием в образовании химических связей двух непарных электронов, а также одной или двух электронных пар  [c.322]

    По мере увеличения атомной массы галогенов электроотрицательный характер их ослабевает и, следовательно, уменьшается и окислительная способность галогена. Исходя из этого-самым сильным окислителем является фтор. Хлор и бром проявляют окислительные свойства в меньшей степени. Иод — наиболее слабый окислитель. [c.63]

    Возможно, что большая, по сравнению с галогеном, электроотрицательность ацетиленовой связи является причиной своеобразного химического поведения соединений, содержащих галоген при углероде "с тройной связью [c.220]

    Потенциал ионизации водорода в несколько раз больше, чем у щелочных металлов, и приблизительно равен потенциалу ионизации кислорода. Сродство к электрону составляет около одной пятой сродства к электрону галогенов. Электроотрицательность водорода [c.167]

    Галогениды фосфора не являются протонными кислотами, однако на входящем в них атоме фосфора имеется значительный дефицит электронной плотности, поскольку электроотрицательность фосфора (2,1) существенно меньше, чем электроотрицательность галогенов. [c.142]

    В отличие от принятых ранее представлений, опытные данные приводят в настоящее время к заключению, что устойчивая конфигурация электронной оболочки может достигаться не только при полном присоединении электрона (типично ионная связь), но и при связывании его путем образования соответствующей полярной связи. Типично ионная связь образуется только между щелочными металлами и галогенами (и то главным образом между элементами, которые наиболее сильно различаются по своей электроотрицательности). При переходе же к более центральным группам периодической системы это различие постепенно уменьшается. [c.59]

    Что же касается галогенов, то скорость реакции присоединения тем выше, чем электроотрицательнее галоген и чем более поляризована исходная молекула галогена. Относительные скорости реакции различных галогенирующих агентов при проведении реакции в уксусной кислоте приведены ниже  [c.18]

    По-видимому, реакция начинается с переноса одного электрона от атома магния к наиболее электроотрицательному атому галогена. Это должно сопровождаться гомолитическим разрывом связи углерод—галоген. Реакция завершается образованием ковалентной связи Мд—С  [c.257]

    По-видимому, такая закономерность связана с большей электроотрицательностью атома фтора по сравнению с другими галогенидами, а также большей легкостью образования хлоридом алюминия комплексного аниона за счет р-электронов фтора, чем за счет находящихся на более высоких энергетических уровнях р-электронов других галогенов. [c.382]

    При этом электрофильная частица галогена (С1) образует с л-электронным облаком двойной связи неустойчивую систему — л-комплекс (I), за счет перекачки я-злектронной плотности на галоген, несущий частичный положительный заряд. Легкость протекания этой реакции возрастает с электроотрицательностью катиона На1+ в такой последовательности  [c.68]

    Степень окисления +1 у брома и его аналогов проявляется в соединениях с более электроотрицательными галогенами и кислородом, например  [c.319]

    Сера — типичный неметаллический элемент. По электроотрицательности (ОЭО=2,5) она уступает только галогенам, кислороду и азоту. В соединениях она проявляет степени окисления —2, О, -(-2, +4 и +6. Для серы наиболее характерны низшая и высшая степени окисления. [c.349]

    Все атомы галогенов имеют сходную электронную конфигурацию— семь электронов во внешнем слое (s p5). Эти элементы—наиболее электроотрицательные члены соответствующих периодов. Атомы и ионы галогенов характеризуются также довольно высокой компактностью расположения орбиталей. [c.494]

    Окислительно-восстановительные свойства галогенов зависят от электроотрицательности, энтальпии диссоциации и других факторов. С увеличением радиуса атомов окислительные свойства галогенов ослабевают. Поэтому легче всего окисляется ио-дид-ион, тогда как фторид-ион не может быть окислен обычными окислителями. [c.497]

    Больщая часть перечисленных в табл. 21.4 свойств закономерно изменяется в зависимости от атомного номера элемента. В пределах каждого периода соответствующий галоген имеет почти самую высокую энергию ионизации, уступая только следующему за ним благородному газу. Точно так же каждый галоген в пределах своего периода имеет самую больщую электроотрицательность. В группе галогенов атомные и ионные радиусы увеличиваются с возрастанием атомного номера. Соответственно энергия ионизации и электроотрицательность уменьшаются в направлении от легких к тяжелым галогенам. При обычных условиях галогены существуют, как уже сказано выще, в виде двухатомных молекул. При комнатной температуре и давлении I атм 12 представляет собой твердое вещество, Вг2-жвдкость, а С12 и Р -газы. Высокая реакционная способность р2 очень затрудняет обращение с ним. Хранить Р2 можно в металлических сосудах, например медных или никелевых, так как на их поверхности образуется защитное покрытие из фторида соответствующего металла. Обращение с хлором тоже требует особой осторожности. Поскольку хлор путем сжатия при комнатной температуре можно превратить в жидкость, обычно его хранят и транспортируют в жидкой форме в стальных емкостях. Хлор и более тяжелые галогены обладают большой реакционной способностью, хотя и не такой высокой, как фтор. Они непосредственно соединяются с большинством элементов, за исключением благородных газов. [c.290]


    Интересно сопоставить данные, приведенные в табл. 21.8, с соответствующими данными для галогенов, помещенными в табл. 21.4. Обращает на себя внимание тот факт, что энергии ионизации и сродство к электрону у галогенов, как правило, выше. Соответственно атомные радиусы галогенов меньше, а их электроотрицательности выше. Потенциалы восстановления свободных элементов до устойчивого отрицательного состояния окисления больше для галогенов, как и следовало ожидать. Энергии простых связей X—X для элементов обеих групп в каждом периоде отличаются не очень сильно. Например, энергия связи 8—5 в равна 226 кДж/моль, а энергия связи С1—С1 в С12 равна 243 кДж/моль. Интересно, что в обеих группах энергия связи X—X для первого элемента каждой группы аномально низка. Учитывая все сказанное, рассмотрим отдельно физические и химические свойства кислорода, а затем сразу всех остальных элементов группы 6А. [c.301]

    Мы уже обсуждали в других местах учебника электронное и геометрическое строение молекул галогенидов фосфора (см. разд. 7.5 и 7.6, ч. 1). Дипольные моменты (см. разд. 8.2, ч. 1) этих соединений, указанные в табл. 21.10, находятся в соответствии с их геометрическим строением. Соединения РХ3 обладают пирамидальной формой (см. рис. 21.4), и полный дипольный момент этих молекул зависит от полярности связей Р—X. Можно заключить, что полярность связей Р—X уменьщается в ряду Р—Р > > Р—С1 > Р—Вг > Р—I. Этот ряд согласуется с разностью электроотрицательностей между фосфором и галогенами. Молекулы рр5 обладают тригонально-бипира-мидальной структурой (см. рис. 21.4), причем центральный атом фосфора обобществляет пять электронных пар с пятью атомами X. Дипольные моменты пяти связей Р—X взаимно компенсируются, и полный молекулярный дипольный момент во всех случаях оказывается равным нулю. [c.322]

    По шкале электроотрицательности элементов Полинга углерод— более электроотрицательный элемент, чем магний (2,5 и 1,2 соответственно). По этой причине связь углерод—магний в магнийорганических соединениях поляризована так, что на атоме углерода появляется избыточная электронная плотность. Поэтому в соединениях RMgX радикал R имеет анионоидный характер. По разности электроотрицательностей углерода и магния вычислено, что степень ионности связи углерод—магний в реактивах Гриньяра составляет 35%. Связь магний—галоген из-за большей электроотрицательности галогена по сравнению с углеродом приближается к ионной. Таким образом, на атоме магния имеется значительный дефицит электронной плотности, что обусловливает, с одной стороны, способность молекулы реактива Гриньяра координироваться атомом магния с молекулами растворителей, обладающих нуклеофильными свойствами, а с другой — образрвыватгз димеры. [c.259]

    В отличие от других галогенов, фтор в своих соединениях всегда находится в степени окисления —1, поскольку среди всех элементов он обладает самой высокой электроотрицательностью. Остальные галогены проявляют различные степени окисления от-1 до-Ь 7. [c.476]

    Соответствует ли это электроотрицательности галогенов  [c.45]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Химическая связь в соединениях алюминия более ионная, чем в соединениях бора, что проявляется в свойствах соединений. Так, ВРз — газ, галогенангидрид, А1Рз — твердое соединение с высокой температурой плавления, его вполне можно назвать солью. Вследствие меньшей, чем у фтора, электроотрицательности других галогенов Al la, А1Вгз и АПз — соединения, промежуточные по свойствам между галогенидами неметаллов и солями. [c.338]

    Говоря о селективности радикалов, помимо соображений о прочности связи следует учитывать полярный эффект, который может играть важную роль при рассмотрении замещенных углеводородных молекул и радикалов. Например, электроотрицательный атом галогена является в одно и то же время радикальным и электрофиль-ным реагентом, вследствие чего он будет преимущественно атаковать углеводород по месту повышенной электронной плотности. Поэтому, если в молекуле субстрата присутствуют электроноакцепторные атомь или группы, будет происходить некоторое замедление радикального галогенирования. Так, вторичное галогениро-вание по углеродному атому, уже имеющему заместитель — галоген, протекает хуже, чем первичное 12291. [c.147]

    Будучи химически связанным, водород сохраняет способность Притягиваться другими электроотрицательными атомами с образо-Еанием присущей только ему водородной связи. Атом водорода может также и присоединять электрон, превращаясь в отрицательный ион — анион Н . Электронная оболочка этого иона такая же, как у атомх гелия Не. В этом отношении он сходен с галогенами (с. 102), аииот г которых имеют оболочки типа соседних благородных газов. Поэтому водор-од иногда относят не к I, а к VII группе таблицы Д. И. Мен д е л е е в а. [c.98]

    Сушественные различия в химии галогенов обусловлены различиями в строении предпоследнего электронного слоя их атомов (скачок электроотрицательности, кислородные соединения). В предвнешнем слое у атома хлора содержится 8, а у атомов брома и иода—18 электронов. Для образования связей атомы этих элементов могут использовать также свободные -орбитали. [c.494]

    Элементы семейства галогенов в свободном состоянии существуют в виде двухатомных молекул. Эти элементы, каждый в своем периоде, обладают наиболее высокой электроотрицательностью. Степени окисления всех галогенов, за исключением фтора, изменяются от — 1 до + 7. Фтор, будучи самым электроотрицательным среди всех элементов периодической системы, ограничен степенями окисления О и — 1. В семействе галогенов способность свободного элемента переходить в состояние окисления-1 (другими словами, окислительная способность элемента) уменьщается с возрастанием атомного номера. Галогены образуют друг с другом так называемые интергалогенные соединения. У высших интергалогенных соединений ХХ в качестве элемента X могут выступать С1, Вг или I, а в качестве X -почти всегда только Р индекс и может принимать значения 3, 5 или 7. [c.329]

    Группа элементов 6А начинается с очень распространенного и типично неметаллического элемента кислорода, а завершается мало распространенным и довольно металлическим по характеру элементом теллуром. Для элементов группы 6А в целом характерны более низкие электроотрицательности, чем для соседних с ними по периоду элементов группы галогенов. За исключением кислорода, для элементов группы 6А известны степени окисления от — 2 до +6. Кислород обычно проявляет в своих соединениях степень окисления — 2, но в пероксидах, содержащих связь О—О, он обнаруживает степень окисления —1. Кислород-наиболее распространенный и щироко используемый окислитель. Его аллотрогшая форма озон (Оз) обладает еще более сильными окисли- [c.329]

    Атомы элементов главной подгруппы IV группы содержат во внешней электронной оболочке четыре электрона. Тенденция к отдаче электронов у свободных атомов углерода и его аналогов ныражена слабее, чем у соседей слева по периоду, а тенденция к приему электронов — слабее, чем у соседей справа. Вместе с тем обе эти тенденции выражены приблизительно в равной степени. Поэтому, если можно говорить о том, что атомам галогенов, кислорода или азота присущи электроотрицательные свойства, а атоллам щелочных и щелочноземельных ме- [c.92]

    Водород В аммиаке может замещаться также галогенами. Так, при действии хлора на концентрированный раствор хлорида аммония получается бинарное соединение N I3, которое трудно классифицировать, так как электроотрицательности азота и хлора близки Хлорид азота (III) или нитрид хлора (I) получается в виде тяжелой маслянистой взрьтчатой жидкости  [c.430]

    Что произойдет с иодом при действии на neio избытка бромной воды и с бромом - при действии избытка хлорной воды Свяжите взаимное поведение галогенов с энергией их сродства к электрону и значениями их электроотрицательностей. [c.132]

    Особенно важно применение графопроектора при изучении систематики химических элементов и их соединений. Возможность демонстрировать таблицы, показывающие закономерное изменение свойств элементов и их соединений по группам и периодам, позволяет использовать метод сопоставления и сравнения. Так, при изучении галогенов, халькогенов, элементов V группы весьма эффективны обобщающие таблицы по характеристике свойств одиночных атомов (радиус, электроотрицательность, энергия ионизации и пр.), свойств простых веществ (плотность, температуры кипения, плавления, агрегатное состояние, цвет, масса [c.132]


Смотреть страницы где упоминается термин Галогены электроотрицательность: [c.152]    [c.106]    [c.295]    [c.500]    [c.30]    [c.184]    [c.170]    [c.69]    [c.617]    [c.289]    [c.116]    [c.28]    [c.118]   
Новые воззрения в органической химии (1960) -- [ c.136 ]




ПОИСК





Смотрите так же термины и статьи:

Электроотрицательность



© 2025 chem21.info Реклама на сайте