Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

крекинга нефти синтеза аммиака

    Явление, благодаря которому возможна жизнь, это — катализ, действие определенных веществ, которые ускоряют в тысячи раз химические реакции, а сами при этом не изменяются. В химической промышленности катализаторы используются при крекинге нефти, синтезе аммиака и при многих других процессах. Организм с их помощью создает свои ткани и расщепляет пищевые продукты до более простых веществ так, как он это делает за четыре часа с белками. Катализаторы в живых существах называются биокатализаторами, или ферментами, и успехи биологии зависят от углубления наших знаний о том, что они собой представляют и как именно они действуют. [c.167]


    В результате действия ионизирующих излучений на некоторые, вещества и смеси веществ могут протекать реакции, ведущие к -образованию технически важных продуктов. В настоящее время исследованы такие процессы, как радиационно-химическая полимеризация, изменение свойств полимеров в результате сшивания, низкотемпературный крекинг нефти, синтез гидразина из аммиака, окислов азота из воздуха и ряд других процессов. Особый интерес представляют цепные реакции под действием ионизирующего излучения. К таким реакциям относятся окисление углеводородов, их галоидирование, сульфоокисление, сульфохлорирование, полимеризация и др. [c.597]

    Гетерогенная каталитическая реакция наблюдается всегда, когда скорость химической реакции возрастает благодаря присутствию поверхности раздела двух фаз. Поверхности твердых тел особенно важны как гетерогенные катализаторы для реакций между газами или между газом и жидкостью. Проблемы, возникшие при попытках использовать эти поверхности для получения химических продуктов с большей скоростью и с большей селективностью, оказались захватывающими с точки зрения химиков и физиков. Можно без преувеличения сказать, что большинство усовершенствований, внесенных при использовании этих катализаторов для получения продуктов в крупном масштабе, явилось результатом тщательно продуманных и широко поставленных опытов, а не следствием применения химической теории. Широта области, охватываемой гетерогенным катализом, показывает масштаб этих усилий как указано в табл. 9 (см. стр. 152), к этому типу катализа относятся синтез аммиака из элементов и его окисление в окись азота и азотную кислоту, окисление двуокиси серы в трехокись и углеводородов в полезные кислородсодержащие продукты, различные реакции перегруппировки, циклизации, разложения и полимеризации, которые имеют место при крекинге нефти, синтез углеводородов, спиртов и альдегидов [c.18]

    В результате действия ионизирующего излучения на некоторые вещества и смеси веществ может протекать синтез технически важных веществ. В настоящее время исследованы такие процессы, как радиационно-химическая полимеризация, изменение свойств полимеров, их сшивание, низкотемпературный крекинг нефти, синтез гидразина из аммиака, окисей азота из воздуха й ряд других процессов. Многие из этих процессов, очевидно, широко войдут в практику многотоннажного производства. [c.135]


    Одним из таких полупродуктов является водород, который образуется в процессе крекинга и пиролиза нефти и углеводородных газов. Водород в свою очередь служит исходным веществом для производства аммиака, в молекуле которого на один атом азота приходится три атома водорода. Из аммиака получают углекислый аммоний, сульфат аммония, азотную кислоту, аммиачную селитру и ряд других продуктов, широко используемых в качестве удобрений и в химической промышленности для производства ряда веществ. Кроме того, из аммиака получается мочевина, представляющая собой органическое вещество, содержащее азот. В последнее время мочевина стала широко применяться в качестве удобрения, добавок в корм скоту, а также для производства некоторых пластмасс. Водород, который является основой синтеза аммиака, может получаться разными путями — при крекинге и пиролизе нефти и газа, при обработке кокса и угля водой при высокой температуре, при электролизе воды и т. д. Наиболее выгодным оказалось получение водорода из углеводородного газа. [c.356]

    Такие важнейшие производственные процессы в области химической технологии, как синтез и окисление аммиака, контактное получение серной кислоты, производство этанола из природного газа, крекинг нефти, получение чугуна в доменных печах, производство алюминия и многие другие всецело основаны на результатах физико-химического исследования реакций, лежащих в основе этих процессов. [c.6]

    В настоящее время каталитические процессы широко используются в промышленности. Сейчас даже трудно назвать крупное производство химической промышленности, где бы не применялись катализаторы. Получение спиртов, альдегидов, аммиака, серной и азотной кислот, переработка каменного угля в жидкое топливо, процессы крекинга нефти при получении моторных топлив, синтез каучука, производство пластмасс, красителей, получение маргарина и других пищевых продуктов — вот далеко не полный перечень процессов, где широко используются катализаторы. В ряде случаев за счет применения катализаторов удается значительно снизить температуру проведения реакции, что позволяет уменьшать тепловые затраты и использовать менее жаростойкую аппаратуру, а также устранять нежелательные побочные реакции. [c.161]

    Катализаторы широко применяются в промышленности (синтез аммиака, производство серной кислоты, гидрирование жиров, крекинг нефти и пр.). Различают гомогенный катализ, при котором катализатор находится в одной фазе с реагирующими веществами, и гетерогенный, при котором реакции происходят на поверхности катализатора. [c.406]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дерева электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических соединений — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других органических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]

    Катализаторы нашли широкое применение в промышленности. В настоящее время около 90% новых производств в химической промышленности основаны на применении катализаторов. Наиболее крупнотоннажными каталитическими процессами являются синтез аммиака, производство серной и азотной кислот, крекинг нефти, конверсия природного газа. [c.274]


    Рассматривая установки каталитического риформинга с точки зрения доноров водорода, следует иметь в виду, что с увеличением содержания серы в нефти объем продуктов, подвергаемых гидроочистке, и потребность в водороде возрастают, в то же время выход его в процессе каталитического риформинга снижается. В связи с этим необходимо искать другие источники водорода или строить специальные установки по его производству. Другими источниками водорода могут быть попутный нефтяной газ, сухие и отдувочные газы различных термических и термокаталитических процессов (например, сухие газы термоконтактного крекинга и каталитического крекинга, отдувочные газы каталитического риформинга гидроочистки, гидрокрекинга и синтеза аммиака, газы от процессов дегидрирования бутанов и бутиленов, пентанов и амиленов, газ, образуемый при пиролизе нефтяного сырья для получения этилена и т. п. [c.100]

    К. широко примен. в технике. Крупнейшие каталитич. пром. процессы — синтез аммиака, получение серной и азотной к-т, крекинг и риформинг нефти. [c.248]

    За последние 15 лет разработаны и получили промышленное применение многочисленные способы газификации жидких топлив (мазуты и светлые нефтепродукты) для получения газов, необходимых при синтезе аммиака и спиртов. В соответствии с методами переработки нефти различают мазуты прямой перегонки и крекинг-мазуты. По содержанию серы мазуты подразделяются па малосернистые, сернистые и высокосернистые. В тяжелых нефтяных остатках, как и в твердых топливах, различают рабочую, сухую и горючую массу (стр. 171). Для обозначения элементарного состава применяют те же символы и формулы пересчета элементарного состава и теплоты сгорания из одной массы в другую, что и для твердых топлив (стр. 171). Теплоту сгорания можно также вычислить с достаточной степенью точности ио формуле Д. И. Менделеева. [c.185]

    Метод глубокого охлаждения дает возможность использовать для синтеза аммиака любые газовые смеси, содержащие достаточное количество водорода или относительно бедные водородом смеси, содержащие ценные компоненты для синтеза других продуктов. В последнем случае водород при разделении смеси является отходом. Например, при разделении коксового газа целевым продуктом является азото-водородная смесь, а побочными — этиленовая и метановая фракции. Наоборот, щ)и разделении газов крекинга нефти целевыми продуктами являются олефины, а побочными — парафины и метано-водородная фракция, которая может быть использована для получения аммиака. В промышленности низкие температуры для разделения газовых смесей применяются, как правило, при малых значениях коэффициентов разделения или в тех случаях, когда выделение из смеси ее отдельных компонентов в иных условиях невозможно или экономически нецелесообразно. [c.194]

    В настоящее время гетерогенный катализ применяется в промышленности в огромных масштабах, поэтому значительная часть добываемых платиновых металлов идет на производство катализаторов. Твердые катализаторы применяются при синтезе аммиака из азота и водорода, для крекинга и риформинга нефти, приводящих к повышению выхода высокооктанового бензина, в каталитических дожигателях, которые уменьшают токсичность выхлопных газов и т. д. Трудно перечислить даже важнейшие процессы многотоннажного неорганического и органического синтезов, которые основаны на гетерогенном катализе. [c.159]

    Помимо температуры, давления и объемной скорости, работу реакторов с неподвижным слоем характеризует еще целый ряд параметров. "Время контактирования", или "рабочий период", представляет промежуток времени, в течение которого катализатор непрерывно находится в реакторе в токе реакционной смеси без какой-либо регенерации. Насколько нам известно, активность катализаторов в процессе их использования снижается всегда. Одни катализаторы (при крекинге нефти) теряют активность быстро - за несколько минут, другие (катализаторы синтеза аммиака) работают без регенерации по нескольку лет. [c.13]

    В настоящее время катализ имеет огромное практическое значение. На применении его основано около 70% всех химических производств. Из новых химических процессов 90% являются каталитическими. Катализаторами является громадное количество веществ, в образовании их участвуют почти все элементы периодической системы. В качестве примеров можно назвать каталитические технологические процессы, имеющие громадное значение в жизни всего человечества производство серной кислоты — хлеба химии , позволяющей получать, в частности, фосфорные удобрения синтез аммиака с использованием азота воздуха и синтез азотной кислоты, дающие колоссальный запас азотистых веществ, в том числе также удобрений разнообразные процессы органического синтеза, в том числе гидрогенизация жиров, синтез искусственного каучука, различных мономеров, каталитический крекинг углеводородов нефти, связанный с получением множества ценных химических продуктов осуществление разнообраз- [c.20]

    Метод глубокого охлаждения позволяет использовать любые газовые смеси, содержащие достаточное количество водорода, для синтеза аммиака или относительно бедные водородом смеси, но содержащие ценные компоненты, для синтеза других продуктов. В последнем случае при разделении смеси водород будет отходом. Так, при разделении коксового газа целевым продуктом является азотоводородная смесь, а побочными — этиленовая и метановая фракции, или богатый газ. Наоборот, при разделении газов крекинга нефти целевыми продуктами являются олефины, а побочными — парафины и метано-водородная фракция, которая может быть использована для получения аммиака. Применение низких температур для разделения продувочных и танковых газов синтеза аммиака позволяет одновременно с выделением аргона как товарного продукта вернуть в цикл синтеза содержащийся в газах водород. [c.194]

    Гетерогенный катализ. Еще шире в технологии применяют гетерогенный катализ. Катализаторы на основе железа используют при фиксации азота, на основе никеля — при гидрировании органических соединений (в частности, растительных жиров), платины — при окислении аммиака, меди и золота — при синтезе смол и пластмасс, хрома и цинка — при производстве метанола, ванадия — при производстве серной кислоты. Гетерогенный катализ используется при крекинге нефти, получении многочисленных органических соединений. [c.157]

    В современной технике широко используется катализ, особенно положительный. Такие производства как синтез аммиака, получение серной, азотной кислот, искусственного моторного топлива, синтетического каучука, многих видов пластических масс, высокополимерных материалов основываются на различных каталитических процессах. Катализаторы применяются та.к-же при крекинге нефти, расщеплении и гидрогенизации жиров, гидролизе крахмала, при получении спирта, уксусной кислоты и других ценных веществ. [c.124]

    При расчете отдельных вариантов существенными являются ограничения на величины некоторых из переменных или иных величин, зависящих от варьируемых переменных. Характер ограничений может быть самым различным и связан с конкретными условиями работы аппарата. Так могут быть поставлены ограничения по скоростям теплоносителей, мощности нагнетательной установки, каким-либо конструктивным размерам, например по габаритам ТОА. Могут быть ограничения чисто теплового характера, например по допустимым температурам теплоносителей или стенок ТОА (процессы термического крекинга нефти, пиролиза углеводородов, синтеза аммиака, метанола и др.). В принципе, число ограничений может быть значительным, а их учет в процессе расчета заключается, как правило, в отбрасывании тех вариантов, которые не удовлетворяют первому по ходу расчета ограничению. [c.247]

    Любое жидкое топливо можно газифицировать с получением газов для синтеза аммиака и спиртов, применяя паро-кислородное дутье или паро-воздушное дутье, обогащенное кислородом. В настоящее время из жидких топлив наибольшее применение в производстве синтез-газов получили тяжелые нефтяные остатки (мазуты, стр. 18) кроме них применяются легкие нефтяные дистилляты. В соответствии с методами переработки нефти различают мазуты прямой гонки и крекинг-мазуты (или крекинг-остатки). [c.9]

    Новые идеи в технологии, связанные с созданием производства аммиака, сыграли огромную роль и в дальнейшем развитии химической промышленности. Такие процессы, как синтез метилового спирта и синтез высших спиртов, возникают целиком на этой основе. Гидрирование углей для получения жидкого топлива также в значительной мере основывается на принципах, установленных в связи с разработкой способов синтеза аммиака. Приобретенный опыт и обобщения в области высоких давлений и температур, в области гетерогенно-газовых каталитических реакций оказались чрезвычайно полезными при разработке современных методов переработки нефти каталитического крекинга, процессов дегидрогенизации, полимеризации, циклизации, алкилирования, посредством которых осуществляется производство авиационного топлива, бутадиена, толуола и других продуктов из нефти. [c.317]

    Ввиду того, что природные газы и газы крекинга нефти часто поступают под давлением, и исходя из условий процесса синтеза аммиака, процесс конверсии метана целесообразно также осуществлять под давлением. Обычно применяемое давление составляет 30—35 атм. Опыты ГИАП показали, что при этих давлениях и при температуре около 1400—1500° достигается высокая степень конверсии метана (99,6%) и в газе отсутствует сажистый углерод. Схема установки, работающей под давлением 35 атм, показана на рис. 45. [c.74]

    Создание азотной промышленности сыграло крупную роль в развитии химии и химической технологии. Исследования в области азота оказали влияние на развитие важнейших разделов теоретической химии термодинамики и кинетики каталитических процессов. Эти работы послужили толчком к исследованию свойств газов под высоким давлением. Ряд важнейших понятий о гетерогенно-газовых каталитических реакциях установлен или значительно развит благодаря изучению синтеза аммиака. Такие процессы, как синтез метилового спирта и синтез высших спиртов, целиком возникли на основе технологии синтеза аммиака. Опыт и обобщения в области высоких давлений и температур, в области гетерогенно-газовых каталитических реакций оказались чрезвычайно полезными при разработке способов гидрирования углей с целью получения жидкого топлива и современных способов переработки нефти каталитического крекинга, процессов дегидрогенизации, полимеризации, циклизации, алкилирования, посредством которых осуществляется производство из нефти авиационного топлива, бутадиена, толуола и других продуктов. [c.163]

    Смеси водорода и окиси углерода, полученные из нефти или каменного угля, не являются единственным источником водорода для синтеза аммиака. Там, где имеется дешевая электроэнергия, водород можно получать электролитическим методом. Используют также водород, образующийся в качестве побочного продукта при каталитическом риформинге или при крекинге метана до термакса (термоатомной сажи). В этих случаях необходимый азот обычно получают (за немногими исключениями) с установок жидкого воздуха. [c.52]

    Все крупнотоннажные процессы химической технологии — окисление SO2 в производстве серной кислоты, синтез аммиака из азота и водорода, окисление для производства азотной кислоты, крекинг нефти и другие — проводят гетерогенно-каталитически, на поверхности металлов и их оксидов. Гетерогенно-каталитическая реакция включает последовательные макростадии  [c.180]

    Третьим важным источником исходных продуктов для получения смол является синтез под высоким давлением аммиака и метилового спирта из водорода, который в первом случае реагирует с атмосферным азотом, а во втором — с окисью углерода аммиак применяется для получения, путем реакции с двуокисью углерода, мочевины, а метиловый спирт—для окисления его в формальдегид. Еще почти неиспользованными, но многообещающими в этой области материалами являются побочные продукты, получаемые при крекинге нефти. При соответствующем подборе сырья и условий крекинга можно получить хорошие выходы таких важных продуктов, как этилен, изобутилен, бутадиен и даже ацетилен. Хотя эти последние получаются в виде компонентов сложных систем и выделение их из смесей и очистка сопряжены сисп гхьзо-ванием сложной аппаратуры, но то обстоятельство, что эти ценные продукты пиролиза могут сильно удешевить производство смол, делает этот синтез весьма многообещающим. И действительно, уже-достигнуты большие успехи в области пиролиза нефти, при произ-. водстве светильного газа, в направлении получения значительных количеств таких ценных ненасыщенных углеводородов, как стирол. [c.479]

    Среди процессов каталитического окисления встречаются реакции большого промышленного значения, на которые имеются ссылки в таблицах, посвященных этим процессам. Отметим практическое использование некоторых про-дуктсв, полученных в процессах каталитического окисления. Окисление окиси углерода при обыкновенной температуре воздухом в двуокись углерода очень важно для производства противогазов. Большие количества метана получаются из природного газа, коксового газа, газа переработки нефти, крекинг-газа, а также из других источников. Этот метан — основной материал для получения водорода в химической промышленности (синтез аммиака, гидрогенизация нефтяных продуктов и угля). Известны два направления, в которых может лроисходить окисление метана 1) окисление углерода метана для получения водорода и 2) окисление метана с целью получения формальдегида. Водород можно получить непосредственным расщеплением метана на элементы или каталитическими превращениями в присутствии кислорода или водяного пара  [c.583]

    При помощи ионизирующего действия СВЧ-излучепия (СВЧ-разряда) возможно осуществить следующие химико-технологические процессы [1—3] синтез аммиака, получение окислов азота из воздуха (в производстве азотной кислоты) синтез соляной кислоты, синильной кислоты получение серы из сероводорода и дымовых газов крекинг нефти и нефтепродуктов получение ацетилена из метана производство спиртов реакции хлорирования, нитрования, гидроксилирования, карбоксилирования пт. п. синтез бензола, дифенилена, фенола полимеризацию этилена в полиэтилен получение ситалов получение сверхчистых пленок и металлов и т. д. [c.233]

    Производство карбамидных смол впервые было поставлено в 1918—1928 гг., т. е. значительно позднее йеноло-формаль-дегидных. Наибольшее развитие карбамидные смолы получили в Европе после первой мировой войны, т. е. после осуществления в промышленном масштабе синтеза мочевины из углекислоты и аммиака и синтеза метанола из окиси углерода и водорода. Производство феноло-альдегидных смол имеет основной сырьевой базой для фенола, главным образом, коксобензольную промышленность, поэтому масштаб производства фенола ограничен развитием коксования углей. Выход смолы и сырого бензола — сырья для получения фенола — не Повышает в общей слолгности 5% от коксуемого угля. Получение фенолов при полукоксовании углей, термическом разложении торфа и при крекинге нефти значения в балансе фенола пока не имеет. [c.194]

    Применение катализаторов в химии и промышленных процессах постоянно расширяется. К сожалению, большинство гетерогенных катализаторов в ходе эксплуатации теряют свою первоначальную активность. Время, в течение которого активность снижается до столь низкого уровня, что требуется замена катализатора или его регенерация ( время жизни катализатора ), зависит от типа процесса и условий его проведения. Так, при крекинге нефти время жизни катализатора составляет величину порядка нескольких секунд, а для катализаторов синтеза аммиака или платфор1Минга — не менее одного года. Столь широкие-различия продолжительности эффективного использования катализаторов влияют и на проектирование, и на способы эксплуатации промышленных реакторов. Если время, в течение которого катализатор полностью дезактивируется, мало, то требуется его непрерывная регенерация, что, в свою очередь, приводит к тому, что используется реактор либо с псевдоожиженным либо с движуш,имся слоями катализатора. С другой стороны если время жизни катализатора составляет год или более, то-целесообразно использовать реактор с неподвижным слоем катализатора. Если при этом катализатор недорог, его выгружают и заменяют на новый, в противном случае необходима его регенерация. [c.17]

    Вторым примером использования нефтехимического сырья для синтеза аммиака может служить фирма Хёхст . Являясь крупным производителем азотных и сложных удобрений, она не имела собственного производства аммиака, а получала его от других фирм. С организацией на заводе в Хёхсте нефтехимических производств, в частности этилена и пропилена путем крекинга нефти, а также этилена и ацетилена методом высокотемпературного пиролиза легких фракций нефти, появились остаточные газы, в которых в значительном количестве содержится водород и метан. На базе этих газов Хёхст организовала собственное аммиачное производство. В настоящее время фирма строит специальные установки, на которых из нефти будет получаться необходимый для синтеза аммиака водород. [c.120]


Смотреть страницы где упоминается термин крекинга нефти синтеза аммиака: [c.130]    [c.14]    [c.139]    [c.14]    [c.402]    [c.402]    [c.219]   
Общая химическая технология Том 1 (1953) -- [ c.322 , c.323 , c.325 , c.333 ]




ПОИСК





Смотрите так же термины и статьи:

Синтез аммиака

Синтез аммиака синтеза аммиака



© 2025 chem21.info Реклама на сайте