Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографический анализ растворители

    Промышленная технология.Тема I. Полярность. Тема II. Характеристика растворителей. Тема III. Хроматографический анализ растворителей в покрытиях. [c.191]

    В ходе хроматографического анализа растворители (носитель) прокачивают через колонку с помощью насоса с постоянной скоростью. Малый размер частиц набивки и небольшой диаметр ко- [c.169]

    Углеводородная часть, выделенная описанным выше методом, подвергалась дальше адсорбционно-хроматографическому анализу при помощи силикагеля марки АСК по стандартной, ранее описанной методике [61]. Навеска углеводородной смеси 10 г, количество силикагеля 100 г (около 200 мл), последовательность и количество вытеснителей петролейный эфир 200 мл, бензол 100 мл, спирто-бензольная смесь (отношение 1 1) 100 мл. При постоянной скорости вытекания жидкости с низа колонки отбирали равными порциями (15 мл) раствор углеводородов в вымывающих жидкостях. После отгонки растворителей определяли количество, свойства и элементарный состав углеводородных фракций и вычисляли по этим данным соотношение в исходной смеси различных групп углеводородов и их структурную характеристику. [c.204]


    При переработке коксохимического сырого бензола триметилбензолы концентрируются в сольвентах цехов ректификации и установок по производству инден-кумароновых смол из тяжелого бензола. Сольвенты, как правило, используют в качестве технических растворителей, и поэтому состав их может колебаться в широких пределах. По данным хроматографического анализа (табл. 44), в сольвентах в среднем содержится 7—19% мезитилена, 4,5— 18% псевдокумола и 0,5—3,0% гемимеллитола. Кроме того, в них присутствуют от 2 до 87о изомеров этилтолуола, ксилол, этилбензол, гидринден, некоторые углеводороды насыщенного характера. В сольвентах, полученных из тяжелого бензола, остается еще от 2 до 5% непредельных соединений. По отношению к сумме триметилбензолов содержание отдельных компонентов распределяется следующим образом 44—50% псевдокумола, 41—51% мезитилена и 5—9% гемимеллитола. Выход каменноугольного сольвента составляет 1—3% от сырого бензола. [c.264]

    Об окончании заполнения колонки можно судить по прекращению убыли сорбента в воронке. Точное количество сорбента в колонке определить по разности массы оставшегося в воронке сорбента и взятого для ее заполнения. После наполнения колонки другой конец ее также закрыть пробкой из стеклянной ваты или металлической сетки. Заполненную колонку для, уплотнения сорбента и удаления избытка летучего растворителя продуть сухим воздухом или азотом прн температуре на 20° выше той, при которой предполагается проводить на ней хроматографический анализ. [c.108]

    При полярографическом анализе неводные растворители могут улучшить условия анализа в связи с изменением растворимости веществ, силы электролитов, потенциалов восстановления. При хроматографическом анализе неводные растворители могут быть применены для изменения величины адсорбции, констант ионного обмена. Возможно применение неводных растворителей при анализе по комплексообразованию, при газовом анализе. [c.440]

    Основоположником хроматографического анализа является русский ботаник Михаил Семенович Цвет, изучавший состав хлорофилла. Он настойчиво искал эффективный метод разделения сложных смесей органических соединений, которые извлекал неводными растворителями из свежих и сухих листьев растений. Анализируя причины неполной экстракции, М. С. Цвет высказал предположение, что полному извлечению пигментов препятствует их адсорбция тканью листа. Опыты с различными порошкообразными сорбентами подтвердили это—при пропускании растворов сложных смесей через заполненную мелом колонку они разделялись на отдельные окрашенные зоны. [c.5]


    В этом виде хроматографического анализа роль колонки выполняет полоска фильтровальной бумаги для хроматографирования, на которую наносится небольшая порция анализируемого раствора, а затем промывается смесью воды с органическим растворителем или смесью двух (или нескольких) органических растворителей. Вода или орга нический растворитель, закрепляясь на волокнах бумаги  [c.113]

    Носители и растворители. Бумага для хроматографирования. В распределительной хроматографии к бумаге предъявляются определенные требования она должна быть химически чистой, химически и адсорбционно нейтральной, однородной по плотности, обеспечивать определенную скорость движения растворителя существенное значение имеет структура и ориентация волокон бумаги. Без соблюдения этих требований успех хроматографического анализа не может быть обеспечен. [c.120]

    В практике анализа применяются также жидкие катиониты— нерастворимые в воде, но хорошо растворимые в органических растворителях (бензоле, хлороформе) высокомолекулярные монокарбоновые кислоты типа масляной, валериановой и т. п. Эти вещества могут сорбироваться на твердом носителе и использоваться в колоночном варианте хроматографического анализа. [c.158]

    Анионообменное поглощение можно осуществлять также на жидких анионитах, представляющих собой нерастворимые в воде, но растворимые в органических растворителях высокомолекулярные амины (триоктиламин, додецил-амин и т. п.). Адсорбированные на твердых носителях жидкие иониты с успехом используются в колоночном варианте хроматографического анализа. [c.160]

    Исполнение I хроматографа Биохром I может быть легко модифицировано для хроматографического анализа с применением пустой капиллярной колонки и газо-паровой подвижной фазы. С этой целью в термостате хроматографической колонки дополнительно устанавливают барботер, заполненный легколетучим растворителем (Н О, СО4, СНаСООН и др.). [c.110]

    Как следует из данных газового хроматографического анализа [3], основной примесью в коммерческом ДМА является вода. Ее удаляют повторным испарением растворителя вместе с хлористым метиленом. [c.18]

    Подготовка растворов полимеров для эксклюзионно-хроматографического анализа имеет свои особенности. Полимер можно растворять только в растворителе, используемом в качестве подвижной фазы, желательно в той же его партии, которую [c.190]

    Распределительная хроматография на бумаге или ка колонках. По хроматографическому анализу углеводов существуют обширные исследования [25, 32, 33, 37]. Разработано несколько приемов разделения (хроматография нисходящая, восходящая, радиальная и др.). Предложено большое количество растворителей и приемов хроматографирования. Четкое разделение компонентов хроматографией на бумаге зависит от применяемой системы растворителей, марки бумаги, времени разделения, температурных условий и природы углеводного состава гидролизатов. Поэтому правильный выбор условий хроматографирования в каждом отдельном случае решает успех наилучшего разделения компонентов. [c.70]

    При экстракции всех полиамидов в воде или спирте циклические олигомеры растворяются в растворителе в основном — это циклические димеры. Доля циклических олигомеров при равновесном состоянии полимерной системы возрастает с повышением температуры и увеличением содержания воды в системе. На рис. 2.6 показана взаимосвязь между равновесным содержанием циклического олигомера и содержанием воды в системе вода — капролактам — поликапроамид [23]. Впоследствии в результате исследований, проведенных с помощью методов хроматографического анализа, были выделены из экстрактов ПА 6 и 66 низкомолекулярные продукты, которые, как было доказано, включают циклические олигомеры, содержащие вплоть до 9 атомов углерода в цикле. Такие соединения, а также димеры и тримеры были позднее выделены и из ПА 11. [c.63]

    Для того чтобы обеспечить получение хороших количественных данных при анализе оксикислот методом ГХ, эти кислоты обычно превращают в производные по полярным ОН- и СООН-группам. В обзоре Радина [26], посвященном выделению, определению структуры и количественному анализу жирных оксикислот, ГХ рассматривается как метод разделения смесей этих кислот с целью их количественного анализа. Жирные кислоты, не содержащие гидроксильных групп, первоначально разделяли экстракцией растворителями, осаждением или хроматографическим методом. Некоторые типичные методы химических превращений жирных оксикислот в хроматографическом анализе показаны в табл. 3.5. В основном эги методы совпадают с методами, используемыми для превращения в производные по каждой из этих групп в отдельности (разд. II, А — II, Г гл. 1 для ОН-группы и разд. II, А настоящей главы для СООН-группы). По различным причинам (стремление избежать помех, ускорить или облегчить анализ, добиться более полного прохождения реакции и т. п.) применение одних производных предпочитают другим. [c.135]


    Молекулы растворителя, адсорбируясь на поверхности адсорбента, уменьшают адсорбируемость растворенного вещества. Поэтому при выборе растворителя в хроматографическом анализе необходимо отдавать преимущество тому из них, который обладает наименьшей адсорбцией на данном адсорбенте. Кроме того, [c.14]

    Активированные угли. Для хроматографического анализа смесей веществ, принадлежащих к одному гомологическому ряду, наиболее подходящим адсорбентом являются активированные угли, выпускаемые под различными марками. Для повышения дисперсности адсорбирующей поверхности и освобождения пор адсорбента от смолистых веществ угли подвергаются специальной обработке, которая и называется активированием. Уголь прокаливается при температуре около 900° С, затем экстрагируются смолы органическими растворителями с" последующим удалением растворителей прокаливанием и окислением поверхности угля и органических веществ в его порах газообразными окислителями. [c.24]

    Кондуктометрические кюветы. В хроматографическом анализе неорганических соединений за изменением концентрации можно следить по изменению электропроводности раствора. Для этой цели применяются проточные кондуктометрические кюветы, представляющие собой небольшой стеклянный сосуд с впаянными платиновыми электродами. Такая кондуктометрическая ячейка включается в качестве одного из плеч мостовой схемы, в диагональ которой подключается гальванометр или самопишущий потенциометр. Мост настраивается на сопротивление ячейки при заполнении ее растворителем. Появление в растворителе хроматографируемых веществ, изменяющих его электропроводность, вызывает разбалансировку моста, что и фиксируется самописцем. Во избежание смешения двух разделенных в колонке веществ кювета должна иметь возможно малый объем. [c.38]

    К достоинствам разбавления растворителя водой, кроме снижения К, надо отнести уменьшение давления паров основного растворителя, что существенно облегчает, а в некоторых случаях и ускоряет проведение хроматографического анализа за счет значительного уменьшения или даже исключения пика растворителя. [c.68]

    При изучении биогенеза изофлавонов Гризбахом (16, 17] были успешно использованы слои силикагеля Г для очистки радиоактивно меченных флавоноидов. Растворителем служила смесь бензол — этанол (92 + 8). При аналогичных исследованиях Биллека [5] был использован метод хроматографического анализа (растворитель — бензол) кумарина, выделенного из пахучей смолки. [c.376]

    Разработан метод получения нормальных парафиновых углеводородов высокой чистоты при депарафинизации нефтепродуктов спирто-водным раствором карба мида. Высокая четкость гравитационного разделения фаз в разработанном процессе обеспечивает получение из такого сырья, как дизельное топливо ромашкинской нефти, парафинов с содержанием комплексообразующих углеводородов 93—93,5%, в том числе н-алканов (по хроматографическому анализу) 98%, ароматических — около 1%. При этом расход углеводородного растворителя на промывку суспензии комплекса составляет 75—100% (масс.) на исходное топливо, что в несколько раз меньше такового в других схемах карбамидной депарафинизации с рааделением фаз на фильтрах или центрифугах. В работах [32, 89] в том или ином варианте предлагается применять прессование (на лентах, между которыми заключен комплекс-сырец на конических роликах, расположенных ради- [c.247]

    Время удерживания соединений на данной неподвижной фазе зависит от условий хроматографического анализа скорости газа-носителя, количества растворителя в колонке. Для сравнения удерживания различных соедииепий иг одной и той же неподвижной фазе или одного и того же вещества на различных неподвил<ных фазах часто используют значения удельных удерживаемых объемов (Уц). Удельный удерживаемый объем — это объем газа-носителя, приведенный к нормальным условиям и отнесенный к 1 г растворителя в колонке, который надо ироиустить, чтобы элюировать данное вещество  [c.84]

    В общем виде методика хроматографического анализа заключается в следующем. В колонку высотой 2,5—3 м и диаметром 10—20 мм засыпают регенерированный или свежий силикагель марки АСК. Для полного смачивания силикагеля в колонку заливают растворитель — гептан, легкий бензин (к. к. 80 °С) или ал-килатную фракцию 60—80°С, а затем вводят раствор навески [c.69]

    Разделение компонентов смеси может происходить по различным признакам коэффищ1ентам адсорбции, распределения, растворимости, ро способности к ионному обмену или размерам молекул и т. д Хроматографический анализ можно проводить в колонках, кациллярах, в тонком слое сорбента. Компоненты смеси собирают по фракциям на выходе из колонки после элюции соответствующим растворителем или вытеснителем. [c.169]

    Некоторые свойства растворителей, применяемых в неводном титровании, экстрационном и хроматографическом анализе [c.49]

    Как метод анализа хроматография была предложена русским ботаником М. С. Цветом для решения частной задачи — определения компонентов хлорофилла. Метод оказался универсальным. Годом возрождения его является 1931 год, когда Кун, Виптерштейн и Леде-рер стали проводить широкие исследования различных растительных и животных пигментов, используя про-явительный вариант хроматографии, при котором анализируемые веш,ества разделяются, перемещаясь по слою сорбента в потоке растворителя. В 1940 г. шведский ученый А, Тизелиус разработал фронтальный и вытеснительный методы хроматографического анализа. Фронтальный метод заключается в том, что исследуемая смесь непрерывно подается под некоторым давлением на колонку с сорбентом. Компоненты смеси по-разному сорбируются и потому передвигаются по колонке с различными скоростями. Вытеснительный метод основан на том, что более сильно адсорбирующееся вещество вытесняет с поверхности адсорбента слабо адсорбирующееся и занимает его место. Поэтому после введения в колонку определенного количества исследуемой смеси начинают подавать вытеснитель — жидкость, адсорбирующуюся сильнее, чем все компоненты смеси. Тогда зоны веществ распределяются на слое по степени адсорбируемости и каждое последующее вещество, вытесняя предыдущее, подтолкнет его вперед. Этот метод позволяет сконцентрировать компоненты на слое адсорбента и удобен, в частности, для определения примесей. Дальнейшее развитие метода привело к появлению бумажной, тонкослойной и ионообменной хроматографии. Наиболее крупным скачком в развитии метода является создание английскимп химиками А. Мартином и Р. Сингом распределительной хроматографии, за что они были удостоены в 1952 г. Нобелевской премии. [c.326]

    Для ЯМР-спектроскопии доступен СВзСК, который дает лишь очень слабые спектры для остаточного протонированного вещества. Обычный ацетонитрил является подходящим растворителем для ЭПР-спектроскопии, так как в этом растворителе ион-радикалы более стабильны, чем в воде кроме того, благодаря более низкому значению диэлектрической постоянной этого растворителя конструирование соответствующей кюветы и работа с ней проще, чем в случае водных растворов. При газовом хроматографическом анализе реакционных смесей ацетонитрил может быть причиной многих трудностей. В силу своей полярности ацетонитрил дает трудные остатки ( хвосты ) на многих типах хроматографических колонок. При использовании колонок, предназначенных для полярных соединений, возникновение таких хвостов не является проблемой, однако растворитель уносится вместе с соединениями среднего молекулярного веса. [c.5]

    Давление в роторно-дисковом контакторе поддерживали на уровне, обеспечивавшем жидкофазное состояние всех компонентов системы. Сырье вводили в низ экстрактора, рабочая высота которого составляла 1,8 м, что эквивалентно примерно 9 единичным ступеням разделения. Колонна экстрактивной перегонки работала под повышенным давлением температуру в кипятильнике поддерживали в пределах 175— 190°С. Растворитель вместе с ароматическим концентратом подавался вблизи верха колонны при температуре, поддерживавшейся в экстракторе. Поток, отбираемый с верха колонны экстрактивной перегонки, конденсировали и возвращали в качестве циркулирующей промывной среды в экстрактор. Нижний продукт, содержащий растворитель и чистый ароматический углеводород, направляли в регенерационную колонну, работавшую под пониженным давлением при температуре в кипятильнике 165—180°С.. Давление поддерживали на уровне, обеспечивавшем легкую конденсацию отгоняющегося верхнего погона охлаждающей водой. Небольшой поток воды подводили в низ регенерационной колонны для отдувки остаточных углеводородов из растворителя. При заданных условиях в кипятильнике регенерированный растворитель содержал около 0,6% вес. воды. Материальный баланс для этого опыта приводится в табл. 4. Фактическая чистота ароматического экстракта была около 99,99% (по данным газожидкостного хроматографического анализа). Из экстракта, после очистки его отбеливающей глиной, простой ректификацией можно получать бензол, толуол и ксилолы, удовлетворяющие самым жестким требованиям спецификаций на аро-матику для нитрования, установленным стандартами ASTM и Национальной ассоциацией бензольной промышленности (Великобритания). [c.236]

    Подход с проточной ячейкой — наиболее простой вариант работы ЖХ-ФПИК. Хроматографический элюат проходит через проточную ячейку непосредственно после колонки, и интерферограмма непрерывно записывается в течение всего анализа. Использование алгоритма Грама—Шмидта, как в ГХ-ФПИК, для расчета отдельной хроматограммы поглощения в режиме реального времени неосуществимо, поскольку подвижная фаза сильно поглощает и небольшие изменения в поглощении при элюировании определяемых веществ с трудом детектируются. Поэтому обработка данных обычно проводится по окончании хроматографического анализа после вычитания спектра поглощения подвижной фазы. Чтобы предотвратить полное поглощение в полосе растворителя, необходимо использовать короткий оптический путь, обычно менее 0,2 мм для органических подвижных фаз и менее 0,03 мм для водных смесей. Вместе с тем обстоятельством, что коэффициенты поглощения в среднем ИК-диапазоне значительно меньше по сравнению с коэффициентами поглощения в УФ- и видимом диапазонах спектра, это приводит к сравнительно низкой чувствительности этого метода, порядка 0,1-1 мкг. Дополнительным недостатком этого интерфейса является то, что в области поглощения растворителя никакой информации о поглощении определяемого вещества не может быть получено, поскольку правильное вычитание затруднительно, особенно для обращенно-фазовых смесей растворителей. Более того, вычитание фонового сигнала не может быть проведено удовлетворительно, если необходимо градиентное элю- [c.630]

    Выбор подходящего растворителя для ЖХ-ЯМР очень важен, поскольку растворители, обычно используемые в экспериментах по ЯМР, либо дейтери-рованы и, следовательно (за исключением ВгО), слишком дороги, чтобы быть использованы для ВЭЖХ-разделения, либо они апротонные (СНС1з, фреоны) и поэтому не универсальны для использования в нормально-фазовом варианте. Использование протонированных растворителей требует подавления сигнала растворителя. Хотя в ЯМР для этого существует ряд методов, основанных на различиях в химических сдвигах (например, методы селективного насыщения, селективного возбуждения или композитный импульсный) или на различиях во временах релаксации (например, прогрессивное насыщение или спин-эховый метод), ни один из них полностью не подходит для ЖХ-ЯМР. Это подавление не столь важно при изократическом разделении, но весьма существенно при градиентном элюировании, когда частоты резонанса изменяются с изменением состава растворителя. В коммерчески доступных приборах проблема подавления растворителя решается при использовании адаптивных экстраполяционных методов, которые во время хроматографического анализа рассчитывают [c.634]

    Даэлькометрические кюветы. Если хроматографическому анализу подвергаются вещества, диэлектрическая постоянная которых значительно отличается от ее значения для растворителя, то имеет смысл применять диэлькометрические кюветы и измерять в анализируемом растворе изменение диэлектрической постоянной, Метод [c.38]

    Обычным испытанием чистоты растворителя является газо-хроматографический анализ. Однако часто эти результаты могут ввести в заблуждение, так как методики газохроматогра-физического разделения пе принимают во внимание присутствие некоторых типов нелетучих или высококипящих загрязнений (например, 1,4- бутанд1иола—продукта гидролиза пероксида, присутствующего в ТГФ). Стандарты Американского химического общества часто рекомендуют определять уровень кислотных или щелочных материалов, присутствующих в растворителе, с помощью титрования. Кислотно-основное титрование не является достаточно чувствительным, например, для контроля низкого уровня примеси аминов в метаноле (образующихся в одном из промышленных процессов, иопользуемом для получения метанола), которая, однако, легко детектируется по характерному запаху. В этом и других случаях важно то, что при использовании больших объемов растворителя в препаративной ЖХ загрязнения, присутствующие в небольших концентрациях, могут концентрироваться на неподвижной фазе и вследствие этого изменять характеристики удерживания и форму полосы различных растворенных веществ в процессе использования насадки колонки (см. также разд. 1.6.1.1). [c.95]

    Эти растворители имеют благоприятные величины коэффициентов распределения определяемых веществ, доступны в хроматографически чистом виде и могут быть полностью отделены от анализируемых соединений путем поглощения в форколонке, содержащей едкое кали [15]. Рис. 4.13 показывает хроматограммы одного и того же разбавленного раствора ароматических углеводородов в уксусной кислоте без поглощения основного растворителя (а) и с его поглощением в форколонке (б). Время, необходимое для хроматографического анализа бензола, толуола и л(-ксилола, не более 5 мин, в то времл как для элюирования I мкл растворителя в условиях, приведенных в подписи к рис. 4.13, требуется около 2 ч. Аналогичный эффект достигается и для водных растворов, с той лишь разницей, что насадка форколонки не полностью поглощает воду, а селективно удерживает ее, растягивая элюирование пика воды на довольно продолжительное время (рис. 4.14). За счет этого концентрация паров воды в газе-носителе на выходе из хроматографической колонки не превышает 10 7о, что практически не влияет на качество хроматограммы, регистрируемой ионизационно-пламенным детектором. [c.199]


Смотреть страницы где упоминается термин Хроматографический анализ растворители: [c.137]    [c.148]    [c.8]    [c.320]    [c.223]    [c.293]    [c.118]    [c.110]    [c.122]    [c.119]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.889 , c.890 , c.897 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.889 , c.890 , c.897 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ хроматографический



© 2025 chem21.info Реклама на сайте