Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристалл графита, структура

    Графит как вещество представляет собой аллотропное видоизменение углерода с определенной структурой кристаллов. Эта структура и обусловливает свойства графитного вещества. [c.39]

    При повышении давления равновесия смещаются в сторону образования веществ, обладающих меньшим объемом, т. е. в состояние с большей плотностью, что большей частью сопровождается увеличением их твердости. Повышение давления вызывает эффекты, в некоторых отношениях обратные тем, которые наблюдаются при повышении температуры. Так, при повышении температуры увеличивается объем, а при повышении давления он уменьшается при повышении температуры возрастает энтропия, а при повышении давления обычно она уменьшается. Часто наблюдается, что переход в форму устойчивую при более высоком давлении повышает металличность и степень симметрии кристалла. В области высоких давлений часто наблюдается переход веществ в такие кристаллические формы, которые не устойчивы или даже не существуют при обычных давлениях. Так, лед при высоком давлении, начиная примерно с 2000 атм, может существовать (в зависимости от сочетания температуры и давления) в нескольких различных кристаллических формах, не существующих при обычных давлениях. Все эти формы обладают большей плотностью, чем обычный лед. Например, плотность льда VI почти в полтора раза больше плотности обычного льда. Подобно этому желтый фосфор, обладающий в обычных условиях плотностью 1,82 г/сл1 , переходит- при высоких давлениях в черный фосфор с плотностью 2,70 г/сж серое олово (а = 8п, структура алмаза, плотность 5,75 з/с ), являющееся неметаллическим веществом, переходит в белое металлическое олово (Р=8п, тетрагональная структура, плотность 7,28 г/слг ) желтый мышьяк (плотность 2,0 г/см ) переходит в металлическую модификацию с плотностью 5,73 г/б .и . При высоких давлениях алмаз ( = 3,51 г/см ) становится более устойчивой формой, чем графит ( = 2,25 г/см ), хотя при обычных давлениях эти соотношения обратны. [c.241]


    Появление дополнительных видов связи в ковалентных кристаллах может привести к резкому изменению их основных характеристик. Ярким примером кристаллов со смешанными связями служит одна из форм углерода — графит, структура которого приведена на [c.80]

    Оз) или разной структурой кристаллов (графит и алмаз). [c.6]

    Речь пойдет о химических соединениях на поверхности кристаллов графя -та. Структура кристалла внутри при этом почти не меняется в отличие от тех случаев, когда образуются соединения графита. [c.672]

    Не вдаваясь в описания других свойств графита, отметим только, что графиты имеют большое количество разновидностей, наличие которых зависит от величины связей между плоскостями и, следовательно, от размера кристалла и количества плоскостей, входящих в структуру кристалла. Графит, полученный из различных материалов, имеет различное значение этих связей, [c.287]

    В технике графит применяется в качестве смазочного материала уже более 120 лет. Он диамагнитен, имеет гексагональную решетчатую структуру и анизотропную электропроводность, которая в направлении гексагональной оси в 25 раз больше, чем в основной плоскости решетки кристалла. Графит имеет очень высокую химическую стабильность и практически инертен к радиоактивному излучению. При нагреве на воздухе до температуры выше [c.167]

    Графит. Около 90% графита состоит из кристаллов гексагональной структуры (см. рис. 19) слоистого строения с расстоянием между слоями 3,44 А, а между атомами С в слое—1,42 А. Важнейшим показателем пригодности к применению графита (а также других твердых смазочных материалов) и его антифрикционных свойств является степень дисперсности частиц. От размеров частиц зависит их способность адсорбировать пары и газы, а последняя во многом определяет смазывающие свойства материала. Чем мельче частицы, тем больше удельная поверхность и тем выше адсорбционная способность материала. [c.236]

    Структура и механические свойства наполнителя в значительной мере определяют эксплуатационные свойства смазки [16]. Можно выделить слоистые кристаллы (графит и большинство остальных антифрикционных наполнителей), изотропные кристаллы (например, оксид бора или оксиды металлов), атомарные кристаллы (металлы), аморфные твердые тела (например, некоторые силикаты) и полимеры (порошкообразный фторопласт или целлюлозы). Существенное влияние на активность оказывают состав смазочного материала и условия его применения, концентрация и степень дисперсности, а также способ предварительной обработки (модифицирования поверхности) наполнителя. Знак и величина заряда частиц, по которым их относят к доно- [c.123]


    Появление дополнительных видов связи в ковалентных кристаллах может привести к резкому изменению их основных характеристик. Ярким примером кристаллов со смешанными связями служит одна из форм углерода — графит, структура которого приведена на рис. III.4. В графите атомы углерода связаны друг с другом так, что они образуют плоские двухмерные слои, в пределах которых атомы углерода связаны друг с другом за счет sp -гибридных орбиталей (длина связи 0,142 нм). При этом в каждом таком слое, состоящем из N атомов углерода, имеются N нелокализованных электронов, участвующих в образовании л-связей и способных переносить ток. Связь между рассмотренными двухмерными слоями графита осуществляется лишь за счет слабых сил Ван-дер-Ваальса (расстояние между слоями составляет 0,35 нм). Поэтому в направлении этой оси кристалл графита имеет низкую твердость и относится к типичным изоля- [c.71]

    Структура (С2Г)п имеет принципиально отличающуюся от (СГ)п модель строения [6-169]. Углеродные слои в этом соединении остаются плоскими. Атомы фтора внедряются в каждый второй слой углеродной матрицы [6-170]. На рис. 6-60,а показано взаимное расположение атомов фтора и углерода в (С2Г)п. Атомы фтора ковалентно связаны с атомами углерода в направлении, перпендикулярном углеродным плоскостям. Две трети атомов фтора имеют в ближайшем окружении 2 атома углерода и одна треть — 3 атома углерода, как и у (СГ) . Длина С—Г связи равна 0,138 нм а С—С связи — среднеарифметическому значению длин связей в графите и алмазе (0,147 нм). Атомы фтора образуют в упаковке (СгГ)п гребни. Последние входят во впадины последующего слоя (рис. 6-60, б). В результате обеспечивается плотный контакт между слоями. Такое упорядоченное состояние упаковки соответствует отдельным фрагментам кристалла, имеющим свой центр кристаллизации, которые в совокупности образуют мозаику. [c.391]

    Одним из самых удивительных молекулярных кристаллов является графит (Сб)п, структура которого представляет собой плоские конденсированные ароматические макромолекулы. Расстоя- [c.23]

    Действие разных структурообразующих факторов направленности связи, энергии связи, размера и мерности структурных единиц, энергии теплового движения — приводит к тому, что малые нульмерные структурные единицы такие, как атомы углерода, несмотря на направленность и высокую энергию связи, при определенных условиях, а именно при таких условиях, когда энергия теплового движения почти точно равна, энергии связи, образуют прекрасные кристаллы графита или алмаза. Однако действие основного структурообразующего фактора — направленности связи — достаточно резко проявляется и в подобных случаях атомы в кристаллах графита и алмаза упакованы крайне неплотно. В графите каждый из них имеет только трех, а в алмазе — четырех соседей, в то время как плотнейшие упаковки отличаются значительно более высокими координационными числами. Например, в структуре металлов координационное число достигает 12. Вообще, направленность связи действует в сторону разуплотнения структуры, что вполне понятно. [c.159]

    И1. Различие между плоскими и пространственными сетчатыми полимерами следует уже из названия. И те, и другие могут различаться а) густотой, б) правильностью сетки (статистические и упорядоченные сетчатые полимеры). Предельным вариантом упорядоченных сетчатых полимеров являются уже упоминавшиеся ковалентные кристаллы неорганических полимеров графит (плоская, или паркетная , структура двухмерный аналог лестничного полимера), алмаз, кварц и т. д. [c.23]

    На рис. 11 приведены схемы строения атомных решеток алмаза и графита. В силу своеобразия структуры графит имеет очень малую прочность связи по плоскостям спайности кристалла, тогда как алмаз обладает огромной твердостью, поскольку все атомы углерода в его кристаллической решетке расположены друг от друга на одинаковом расстоянии. [c.32]

    Своеобразная структура кристаллов графита обусловливает его мягкость, на которой основано его применение в качестве смазочного материала. Между трущимися деталями машин графит измельчается в тончайшие чешуйки, устилающие неровности и облегчающие скольжение трущихся поверхностей. От смазочных масел графит выгодно отличается относительной термической и химической стойкостью. [c.199]

    Полиморфное превращение атомных кристаллов можно осуществить лишь при больших энергетических затратах на разрыв химических связей, что необходимо для перестройки структуры веществ. Так, графит, имеющий слоистое строение, в котором атомы углерода в слое имеют к. ч. = 3, может быть превращен в алмаз, в котором к. ч. = 4, при температурах не ниже 1500 °С и высоких давлениях. [c.124]

    Сдвиг атомов каждого последующего параллельного слоя происходит по осям X п Y таким образом, что атомы каждого третьего слоя находятся под атомами каждого первого. Таким образом, если первый слой решетки обозначить А, второй В, то распределение слоев в кристалле описывается как АВ АВ. ....Вектор переноса атомов углерода равен 0,1418 нм и соответствует трансляции решетки, обозначаемой знаками V - Весь кристалл графита описывается в виде уЛ у Д- Расстояние между совпадающими по расположению атомов слоями равно 0,6708 нм. В натуральном и искусственном графитах обнаруживается другая кристаллическая модификация — ромбоэдрическая (рис. 1-5, б) [1-2]. Параметры ее решетки а = 0,246 нм и с = 0,335 X 3 = 1,005 нм. В этой модификации, обозначаемой как AB AB . ... или S7 S/AAA, величина трансляции Л и V равна 0,4118 нм. Ромбоэдрическая модификация появляется в хорошо кристаллизованном натуральном графите, подвергнутом механическим воздействиям, например помолу. Его образование связано с относительно большими деформациями сдвига [1-3]. При таких деформациях в гексагональном графите могут наблюдаться фазовые вкрапления ромбоэдрического гра( )ита на протяжении примерно десяти последовательно располагающихся слоев. Его содержание в зависимости от ряда условий находится в пределах 5-22% (объем). В монокристаллах гексагонального графита методом микродифракции электронов обнаруживается около 5% ромбоэдрического графита. В кристаллах мозаичной структуры также можно предполагать присутствие его небольших количеств, неразрешаемых рентгеноструктурным анализом. Указанная модификация соответствует метастабильному состоянию и полностью исчезает при нагреве до 3000 С. [c.23]


    Фазовые переходы М. к.-плавление, возгонка, полиморфные переходы (см. Полиморфизм)-ироясхоаят, как правило, без разрушения отдельных молекул. М. к. являются частным случаем ван-дер-ваальсовых кристаллов, к к-рым относятся также цепочечные и слоистые кристаллы, где посредством ван-дер-ваальсовых сил соединены бесконечные цепи (напр., орг. полимеры) или слои (напр., графит). Структуру М. к., как и др. кристаллич. в-в, устанавливают с помощью рентгеновского структурного анализа, для изучения динамики молекул в М. к. используют колебат. спектроскопию и неупругое рассеяние нейтронов. [c.117]

    Для фундаментальных исследований адсорбции нужны однородные адсорбенты с одним типом поверхности или пористости. Для подобных адсорбентов с однородной поверхностью энергия адсорбции и изотерма адсорбции — своеобразные физико-химические константы. Из таких адсорбентов можно назвать порошки кристаллов кубической сингонии, слоистые кристаллы (графит, нитрид бора), некоторые аморфные адсорбенты, подвергнутые термической обработке. Исключительно однородными микропористыми адсорбентами являются пористые кристаллы — цеолиты, обладающие регулярной микропористой структурой. Прежде чем приступить к рассмотрению некоторых феноменологических признаков проявления однородности поверхности и пористости, остановимся вкратце на эффективных практических методах получения адсорбентов с однородными поверхностью и мезопористостью. [c.42]

    Алмаз в чистом виде представляет собой бесцветные, прозрачные кристаллы кубической структуры. В кристаллической решетке каждый атом углерода окружен тетраэдрически расположенными четырьмя атомами. Связи между атомами чисто ковалентные, непо лярные, равноценные и очень прочные. Графит — проводник электрического тока. Атомы углерода в плоскости расположены ближе друг к другу, чем в решет-Рис. 63. Структура карбина ке алмаза возникающая структу-(Х40 000) химически прочная. Запас сво- [c.214]

    Согласно имеюшимся данным, плавление алмаза при атмосферном давлении не было осушествлено. Не известны также случаи непосредственного испарения алмаза при высоких температурах или осаждение углерода со структурой алмазной решетки, а также алмазных слоев или алмазных ячеек, хотя в принципе это следует считать возможным. Напротив, при атмосферном давлении и температурах выше 1000° С алмаз начинает самопроизвольно преврашаться в графит, причем при температуре порядка 1750°С этот процесс протекает очень быстро [794, 1031]. Полученный графит был подвергнут тщательному изучению с помощью рентгеновских лучей [360]. При нагревании до 2000° алмаз полностью превращается в графит, но при нагреве до температуры порядка 1600° образуется, по-видимому, промежуточная структура углерода [931]. Это может быть кристаллический гибрид из кубической (алмаз) и гексагональной (графит) структур (ср. [1056—1061] для других приглеров гибридов кристаллов). Облучение алмаза нейтронами вызывает нарушение в распределении углеродных атомов в алмазной решетке вследствие их смещения. Если такие неупорядоченные кристаллы прокалить, ТО атомы в местах дефектов рекристаллизируются в графитовую структуру. Это указывает на то, что даже в таких маленьких объемах графит представляет собой более устойчивую структуру углерода при обычных давлениях и температурах [175]. [c.81]

    Особый случай, с точки зрения строения поверхности, представляют два специфических класса твердых тел слоистые кристаллы и цеолиты. Слоистые кристаллы (графит, дихалькогениды ряда переходных металлов и др.) представляют собой напластование слабо связанных между собой атомных плоскостей. При адсорбции из жидкой или газовой фаз, а также в каталитических процессах, молекулы субстрата могут диффундировать между слоями так, что каждый из атомов кристалла оказывается доступным для контакта с ними. В этом смысле каждый атом слоистого твердого тела можно считать поверхностным. Той же особенностью обладают и цеолиты, решетки которых образуют каркасы, пронизанные регулярно расположенными каналами и полостями. По ним могут перемещаться не слишком большие молекулы, проникая в глубину каркаса. Подробно структура этого, а также других важных для катализа классов кристаллов обсуждается в [83, 107]. [c.12]

    Графит — аллотропная форма углерода, образующая кристаллы слоистой структуры [18]. Атомы углерода размещены в иравильных шестиугольниках и связаны прочными ковалентными связями. Между слоями кристаллов действуют слабые силы Ван-дер-Ваальса, что обусловливает низкое сопротивление сдвигу в плоскости слоев кристаллической решетки. Предлагались и другие объяснения высокой смазочной способности графита [16, 25]. Присутствие легконодвижных электронов способствует тому, что графит обладает электро- и теплопроводностью, близкой по значению к металлам. [c.126]

    Графит — это последний член всех генетических рядов химической молекулярной ассоциации органического вещества. Графит как вещество есть аллотронная форма углерода, которая характеризуется определенной структурой кристаллов. Эта структура и обус.човливает свойства графитового вещества. [c.122]

    Вторым методом, предложенным Берналом для решения фазовой проблемы рентгеноструктурного анализа белков, был метод изоморфного замещения [180]. В той форме, в какой он применялся кристалло-графами-органиками, его нельзя было использовать для белков из-за трудности получения гомогеннозамещенных молекул. Дж. Бернал исходил не из валентного связывания тяжелого атома с молекулой, как это делали Дж. Робертсон и И. Вудворд [173], а из специфического невалентного взаимодействия тяжелого атома с белком, определяемого характером профиля его потенциальной поверхности. Строго говоря, речь шла не о замещении тяжелым атомом, а о его присоединении. Оказалось возможным связать тяжелый атом с поверхностью белка без нарушения его молекулярной кристаллической структуры. Это удалось сделать Брэггу и Перутцу, которые получили изоморфные производные кристаллов нативного гемоглобина путем диффузии тяжелых атомов [194]. [c.44]

    Алмаз и графит называют ковалентными каркасными кристаллами, потому что они состоят из бесконечных цепочек атомов, связанных друг с другом ковалентными связями, и в них нельзя различить дискретных молекул. В сущности, любой кусок ковалентного каркасного кристалла можно рассматривать как гигантскую молекулу, атомы которой связаны между собой ковалентными связями. Каркасные ковалентные кристаллы, как правило, плохие проводники тепла и электрического тока. Сильные ковалентные связи между соседними атомами, пронизывающие, как каркас, всю структуру кристалла, придают таким твердым веществам большую прочность и обусловливают высокую температуру плавления. Алмаз сублимирует (не плавится, а сразу возгоняется в паровую фазу) при температурах выше 3500""С. Некоторые из самых твердых известных нам веществ относятся к ковалентым каркасным кристаллам. [c.604]

    Графит. Графит — темно-серое непрозрачное вещество, со слабым металлическим блеском, мягкое, слабо проводящее электрический ток. Графит тугоплавок, мало летуч и при обычной пемпературе химически инертен. Структура кристаллической решетки графита покапана на рис. 53. Кристаллы графита построены нз параллельных друг другу плоскостей, в которых расположены атомы углерода по углам правильных плестиугольпиков. Расстояние между соседними атомами углерода (сторона каждого шестиугольника) 143 пм, между соседними плоск о-стями 340 им. Каждая промежуточная [c.350]

    Химически графит довольно стоек. Однако в атмосфере кислорода ои сравнительно легко сгорает с образованием диоксида углерода. При этом, естественно, происходит полное разрушение ТИПИЧНОЙ графитовой структуры. При действии же на графит фтора и таких окислителей, как азотная кислота, нитраты, хлораты и т. п., при сравнительно невысоких температурах происходит окисление углерода отнятием четвертого металлического-- электрона. Таким образом, слои графита, состояшие [1з плоских шестиугольников, остаются неразрушенными, а атомы фтора, кнслорода и других окислительных элементов размещаются между плоскостями, несколько раздвигая их. В таких соединениях элементарная ячейка кристалла графита ведет себя подобно атомам металлов. Иногда получаются даже солеобразные соединения, в когорых роль одновалентного катиона играет атом углерода. С некоторь1ми [c.351]

    Для удаления из кокса гетероэлементов требуются более жесткие условия его обработки. Так, температура обессеривания сер- 1истых коксов находится в пределах 1400—1600 °С. Коксы с высокомолекулярной упорядоченной структурой и специального качества получают с помощью графитации при 2200—2800 °С — превращением кристаллитов двумерной упорядоченности в кристаллы трехмерной упорядоченности (графит). Поверхностную энергию и другие свойства сажи регулируют в процессе ее получения изменением температуры (1200—1500°С) и длительности прокаливания. [c.187]

    Структура твердого тела в зависимости от порядка расположения структурных единиц может представлять собой правильную пространственную структуру в кристаллических телах. Прн бесиорядочном расположении ССЕ образуется изотропная структура, характерная для гелей, студне] или стеклообразных тел. Анизотропное или изотропное состояние веществ имеют важное значение. В анизотропных веществах проявляется зависимость физико-химических свойств (механических, оптических, магнитных и т. д.) от выбранного направления. Например, графит легко расщепляется на слои вдоль определенной плоскости (параллельно этой плоскости силы сцепления между кристалла МП графита наименьшие). Поэтому на практике определяют свойства анизотропных тел вдоль главной оси симметрии (И) п перпендикулярно ей (I). Изотропное (аморфное) состояние характеризуется отсутствием строгой периодичности, присущей кристаллам изотропное вещество не имеет точки плавления. При иовышенип температуры аморфное вещество размягчается II переходит в л<идкое состояние постепеино. [c.129]

    Характер распределения ССЕ в твердых телах позволяет разделить их по степени симметрии на кристаллические п аморфные нефтяные дисперсные структуры. Твердые нефтяные тела, в которых расположение соединений имеет дальний порядок, соответствующий периодическому повторению определенной архитектуры в трех измерениях, называют кристаллическими, а расположение соединений в них — кристаллической структурой. Порядок, свойственный расположению соединений внутри твердого тела, часто приводит к симметрии его внешне] ) формы. Например, кристаллы графита имеют гексагональную форму, в базисных плоскостях атомы расположены в углах шестиугольников, на расстоянии 0,142 нм, т. е. на таком же расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находящихся на расстоянии 0,3345 нм. Кристаллы графита имеют высокую симметрию. Аналогично другая форма кристалла углерода — алмаз — образует куб. В узлах кристаллическо 1 решетки алмаза а-связи каждого атома углерода направлены к четырем соседним атомам. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим осуществляется переход при нагреве алмаза в графит в термодинамически более устойчивое состояние, в результате чего формируется новая симметрия. Симметрия также свойственна таким твердым нефтяным телам, как парафины. Известны нефтяные твердые тела с ближним порядком расположения соединений, они являются не кристаллами, а крайне вязкими жидкостями. К ним относятся, например, битумы, пеки, остаточные крекинг-остатки и др. [c.165]

    Коксы с высокомолекулярной упорядоченной структурой и специального качества получают с помощью графитации при 2200— 2800 °С — превраш,ент1и кристаллитов двумерной унорядочеиности в кристаллы трехмерной упорядоченности (графит). [c.195]

    Дисперсная фаза структурированных НДС в ядерной части на определенном этапе представлена газопаровыми пузырьками, капельками изотропной и анизотропной жидкости, кристаллами, ассоциатами и комплексами асфальтосмолистых веществ и других ВМС, кристаллитами углерода. Во многих случаях эти виды ДФ могут находиться в структурированных НДС одновременно. При этом следу ст подчеркнуть, что частицы ДФ данного вида, находящиеся в конденсированном состоянии, могут бьггь представлены органическими соединениями различных классов или относящимися только к одному классу, гомологическому ряду или группе. Так, кристаллическое ядро ДФ может быть образовано парафиновыми, ароматическими или смешанными углеводородами в таких системах как нефть, дистиллятные и остаточные продукты переработки нефти и газа, битумы и пеки, находящиеся при температурах, более низких, чем температура их застывания или стеклования, или сетчатыми ароматическими макромолекулами в графите. Состав, структура, размеры, объемные и поверхностные свойства ядерной части частиц ДФ, конкретный набор и концентрация различных видов ДФ в данной структурированной НДС в процессах получения нефтяного углерода определяются многими факторами природа сырья, температурно-временной режим и давление карбонизации, среда, степень превращения сырья, технологические и аппаратурные особенности процесса, тип и интенсивность внешних энергетических воздействий и т.д. [c.108]

    Другой пример молекулы с делокализованными электронами — кристалл графита. Его атомы углерода также могут быть рассмотрены как находящиеся в ар--гибридизацпи и располагающиеся в одной плоскости. Каждый из атомов углерода связан с тремя ближайшими соседями а-связя.ми, а оставшиеся р-АО располагаются перпендикулярно плоскости и образуют гг-систему с делокализацией электронов по всей плоскости. По сравнению с бутадиеном графит уже можно рассматривать не как делокализацию э.лектронов в одном направлении (по цепочке), а как делокализацию сразу в плоскости. В силу большого числа взаимодействующих р-орбита лей, количество образуемых ими МО также велико. Энергетическое различие между ближайшими из таких МО невелико. Это объясняет непрозрачность и хорошую электропроводность графита. Среди неорганических соединений весьма часто встречаются плоские структуры, в которых также существуют тг-делокализованные связи. К ним, например, относятся трифторид бора, карбонат-ион, нитрат-ион, озон, триоксид серы и др.  [c.148]

    При классификации по типам связей следует учитывать, что число кристаллов, в которых все связи чисто ионные или чисто ковалентные, Не слишком велико гораздо чаще связи имеют либо промежуточный характер, либо одновременно относятся к различным типам. Таковы, например, слоистые или цепочечные структуры, в которых связи в одной плоскости и направлении осуществляются по ковалентному или ионному типу, а между плоскостями или цепями существуют слабые ван-дер-ваальсовы взаимодействия. Так, в графите слоистая структура с ковалентными связями, в иодиде кадмия слоистая структура с ионными связями. Хлорид палладия образует бесконечные цепи с помощью мостиковых атомов хлора и четырехкоординационных атомов палладия  [c.238]

    Представленная на рис. 3.17 кристаАпическая решетка фафита отвечает идеальному кристаллу в зависимости от условий получения образуются угле-фафитовые материалы с более или менее искаженной структурой. В частности, получены и широко используются стекловидная форма фафита (стекло-графит), пирофафит - материал с сильно выраженной анизотропией тепл<ь и [c.364]

    Следствием своеобразия структуры кристаллической решетки графита является сравнительно малая прочность его вдоль слоев (т. е. по плоскостям спайности кристалла) при значительной прочности самих слоев — графит легко расчленяется на чешуйки по направлению АБ. Этим и объясняется мягкость графита (используется в карандашном производстве), а также хорошая смазочная способность (при графитной смазке один его сло11 легко скользит вдоль другого, тем самым уменьшая трение, например между металлическими поверхностями). Повышенное расстояние между слоями в кристаллической структуре графита приводит к пониженной плотности его по сравнению с алмазом. Так, у графита эта плотность составляет 2,3 г см , а у алмаза 3,51 г/смК  [c.119]

    Графит — темно-серое, непрозрачное, со слабым металлическим блеском, мягкое, слабо проводящее электрический ток вещество. Он также тугоплавок, мало летуч и при обычной температуре химически инертен. Кристаллическая решетка графита, структура которой показана на рис. 45, существенно отличается от решетки алмаза. Кристаллы графита построены из параллельных друг другу плоскостей, в которых расположены атомы углерода по углам правильных шестиугольников. Расстояние между соседними атомами углерода (сторона каждого шестиугольника) 1,43 А, между соседними плоскостями 3,4 А. Каждая промежуточная плоскость несколько смещена по отношению к соседним плоскостям, как это видно на рисунке. Каждый атом углерода связан с тремя соседними в плоскостях атомами неполярными ковалентными связями. Четвертые валентные электроны каждого атома располагаются между плоскостями и ведут себя подобно электронам металла, чем и объясняется электропроводность графита в направлении плоскостей. Связь между атомами углерода, расположенными в соседних плоскостях, очень слабая (межмолекулярная, или ван-дер-ваальсова). В связи с этим кристаллы графита легко расслаиваются даже при малых нагрузках ка отдельные чешуйки. Этим [c.191]


Смотреть страницы где упоминается термин Кристалл графита, структура: [c.65]    [c.50]    [c.50]    [c.89]    [c.21]    [c.17]    [c.640]   
Краткий курс физической химии Издание 3 (1963) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы

Графы и структура кристаллов

Кристалл структура

Структура графита



© 2025 chem21.info Реклама на сайте