Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Точка неорганических веществ

    Предположение о существовании этой новой силы является вредным для прогресса науки, поскольку оно, по-видимому, удовлетворяет человеческий дух и тем самым тормозит дальнейшие поиски... Так называемый каталитический агент, будь то неорганическое вещество или фермент, является неустойчивым... в процессе разложения этот агент заставляет вещества, не реагирующие в других условиях, претерпевать химическое изменение . [c.9]


    Химиков не переставало удивлять, что органические вещества при нагревании или каком-либо другом жестком воздействии легко превращаются в неорганические вещества. (Возможность обратного превращения, т. е. превращения неорганического вещества в органическое, была установлена несколько позднее.) То время было временем господства витализма — учения, рассматривающего жизнь [c.69]

    Поэтому Берцелиус и назвал вещества, которые можно добыть из живых организмов, органическими, а все остальные— неорганическими. Первые — продукт жизни, а вторые — нет. Если вы знаете детскую игру про животное, растительное и минеральное царства, то органические вещества вы отнесете к царству животных или [c.9]

    Органические вещества во многом отличаются от неорганических. Например, они гораздо менее прочны и менее долговечны, чем неорганические. Воду (а это неорганическое вещество) можно вскипятить, а получившийся пар нагреть до тысячи градусов без всякого для него вреда. Если вы охладите пар, из него снова получится вода. А если нагревать растительное масло (это — органическое вещество), то оно начнет дымить и гореть и перестанет быть растительным маслом. Соль (неорганическое вещество) вы можете нагревать до тех пор, пока она не расплавится и не раскалится докрасна. Охладите ее — и она останется той же солью. Если же нагревать сахар (органическое вещество), начнут выделяться газы, а потом сахар обуглится и почернеет. После охлаждения уже никогда не удастся снова получить сахар. [c.10]

    В то время как в. лабораториях ставились опыты по получению нефтеподобных продуктов из неорганических веществ, научная мысль под влиянием фактов геологического порядка стремилась разрешить проблему происхождения нефти другим путем — по ли- [c.310]

    Состав и свойства отложений зависят от многих эксплуатационных условий. Органическая часть отложений составляет обычно 70—90%, остальное — неорганические вещества, попадающие во впускной трубопровод с воздухом и бензином. Отложения во впускном трубопроводе содержат меньше неорганических примесей, чем отложения на впускных клапанах. Вообще состав отложений по ходу впускного тракта непостоянен. В органической части отложений по мере удаления от карбюратора уменьшается содержание асфальтенов и возрастает содержание карбенов и карбоидов. Так, если органическая часть отложений, образующихся непосредственно за карбюратором, на /з состоит из асфальтенов, то в отложениях на тарелке впускного клапана асфальтенов всего 3—5%, а /3 отложений составляют карбены и карбоиды. [c.281]

    Номенклатура неорганических веществ представляет собой важную область современной химической терминологии. В настоящее время многие химические издания широко используют номенклатуру, основанную на рекомендациях Международного союза теоретической и прикладной химии (ШРАС). Разработка номенклатуры — процесс непрерывный, он не может быть остановлен раз и навсегда каким-то сводом правил, усовершенствование номенклатуры должно происходить постоянно. [c.10]


    Точки плавления (°С) и мольные теплоты плавления (ккал/моль) некоторых неорганических веществ [c.150]

    Граница между этими двумя категориями очень не ясная. Например, минеральные вещества, которые отложились в торфяных болотах одновременно с растительным материалом, могли вступить в контакт с органическими веществами во время метаморфизма и включиться, таким образом, в состав минеральных компонентов материнского вещества угля. На практике при решении проблемы обогащения породы разделяются на два класса согласно их податливости к разделению породу, которую невозможно отделить, включающую компоненты — неорганические вещества растений, связанные, как полагают, с органическим веществом, и породу, которая весьма тонко распределена. [c.41]

    Соляровое масло более стабильно, однако по мере работы в нем сосредоточиваются взвешенные частицы (шлам). Как показано в работе [20], шлам состоит из неорганических веществ и, в первую очередь, роданида аммония. С помощью регенерации можно восстановить свойства масла. В целом соляровое масло предпочтительнее каменноугольного. Последнее применяется чаще только потому, что оно является продуктом коксохимического производства, хотя с народнохозяйственной точки зрения было бы оправданным централизованное производство нефтяного масла оптимального качества. [c.153]

    Но с другой стороны, в 1866 году французский химик М. Бертло высказал предположение, что нефть образовалась в недрах Земли из минеральных веществ. В подтверждение своей точки зрения он провел несколько экспериментов, искусственно синтезировав углеводороды из неорганических веществ. [c.22]

    Очень сильное влияние на упорядочивающее воздействие поверхности глинистых минералов на воду оказывает состав обменных катионов. Это объясняется прежде всего прочностью связи катионов с поверхностью глинистой частицы, т. е. способностью их к диссоциации и участию в катионообменных реакциях. Степень поверхностной диссоциации (т. е. поверхностного растворения) глинистых минералов, замещенных одновалентными катионами, на один-два порядка выше степени диссоциации глин, обменный комплекс которых насыщен двухвалентными катионами. При прочих равных обстоятельствах степень поверхностной диссоциации зависит не только от плотности заряда обменного катиона, но и от взаимного влияния силовых полей поверхности частицы и катиона друг на друга при взаимодействии с водой. По мере увлажнения поверхности глин вокруг обменных катионов развиваются области с упорядоченными молекулами воды. Часть слабо связанных с поверхностью катионов удаляется от нее и может участвовать в трансляционном движении вместе с молекулами воды и растворенными в ней органическими и неорганическими веществами. Если в дисперсионной среде находятся крупные гидратированные катионы (Ма+, Mg2+), то они, вытеснив с поверхности глинистого минерала менее гидратированные катионы (К+, Са ), могут привести к увеличению гидратной оболочки глинистых частиц. В натриевом бентоните по мере возрастания содержания воды и уменьшения концентрацни суспензии отдельные слои глинистых частичек полностью диссоциируют. В бентоните, обменный комплекс которого насыщен магнием или кальцием, этого не произойдет, хотя ионный радиус этих катионов в гидратированном состоянии почти в два раза превышает радиус гидратированного натрия. Это, видимо, является следствием как изменения структуры воды и размеров гидратированных катионов вблизи поверхности в зависимости от их химического сродства, так и сжатия диффузной части двойного электрического слоя. [c.70]

    По опыту применения катионные флокулянты наиболее эффективно действуют на органические соединения, в то время как анионные предпочтительны для неорганических веществ. В связи с разнообразием свойств шламов подбор эффективных флокулянтов в каждом отдельном случае необходимо проводить при лабораторных и опытно-промышленных испытаниях. [c.228]

    В коллоидах неорганических веществ возможна и кинетическая (нетермодинамическая) стабилизация диспергированных частиц за счет, например, электростатического заряжения частиц в ходе гидролитических процессов и образования ионной шубы из электрических зарядов вокруг частиц. Наличие такой шубы препятствует столкновению и, следовательно, коагуляции частиц. Так, экспериментально известно, что искусственно приготовленные золи (коллоиды) сильно диспергированного золота могут оставаться стабильными в течение сотен лет. В то же время удаление с коллоидов ионной шубы путем, например, добавления в жидкую фазу [c.280]

    На температурной зависимости интенсивности РТЛ могут возникнуть один или несколько максимумов, что указывает на наличие одного или нескольких типов ловушек в данном облученном веществе. Для неорганических веществ эти максимумы в общем случае не связаны с их молекулярной подвижностью. Характерной особенностью РТЛ органических веществ, в первую очередь полимеров, является то, что максимумы свечения на кривой РТЛ находятся в тех интервалах температур, где имеют место различные кинетические и структурные переходы, обусловленные размораживанием подвижности отдельных звеньев и сегментов макромолекул, а также молекулярным движением в некристаллических и кристаллических областях полимера. Интенсивность РТЛ существенно увеличивается, когда возникает подвижность отдельных частей макромолекул. При этом характер температурной зависимости интенсивности РТЛ связан с особенностями структуры полимеров и термомеханической предыстории образцов [9.1]. Для некристаллических полимеров на графиках зависимости интенсивности I излучения от температуры появляются максимумы в областях кинетических переходов. В случае кристаллических полимеров соответствующие максимумы на кривых 1 = 1(Т) появляются в областях кинетических и фазовых переходов, а также и полиморфных превращений. [c.235]


    Огромное количество химических реакций происходит в растворах. Свойства вещества в растворе отличаются от свойств индивидуального вещества и подчиняются особым законам. В этой главе произойдет наше знакомство с законами, которые действуют в водных растворах. Мы рассмотрим теорию электролитической диссоциации, объясняющую механизм процесса растворения и явления, сопровождающие растворение. С точки зрения теории электролитической диссоциации будет обсуждено поведение представителей различных классов неорганических веществ в водных растворах. [c.101]

    Пример. Если мы нальем в стакан водопроводную воду, то в этой системе будут следующие компоненты вода и растворенные в ней газы (кислород, углекислый газ и др.), неорганические вещества (как правило, соли) и органические соединения. Границы раздела данной системы вода-стекло и вода-воздух. Через первую границу не могут проходить никакие частицы (если, конечно, в стакане нет трещин), т. е. граница непроницаема. Вторая граница проницаема. Через нее проходят в одну сторону, испаряясь, молекулы воды, а в другую молекулы газов, составляющих воздух. [c.102]

    Составляющие энтропии плавления. Подразделение энтропии на отдельные составляющие обусловлено различными физическими явлениями и подразделением движения атомов и молекул на составляющие. Если говорить о неорганических веществах, то энтропию плавления можно представить в виде суммы трех составляющих—позиционной, вибрационной и электронной  [c.126]

    Для особо чистых веществ, в которых контролируются только примеси органических веществ, марка обозначается буквами оп (органические примеси) с числом (через тире), которое соответствует отрицательному десятичному логарифму суммарного процентного содержания определяемых примесей органических веществ, и индексом ос. ч . Так, марка вещества, в котором суммарное содержание примесей органических веществ составляет 2-10 %, обозначается оп —3 ос. ч . Если же в веществе контролируются примеси неорганических и органических веществ, то при установлении его чистоты необходимо учитывать содержание и тех, и других примесей. Например, марка особо чистого вещества, в котором суммарное содержание определяемых примесей органических веществ равно 4-10 , а суммарное содержание восьми лимитируемых примесей неорганических веществ равно б-Ю- % (или округленно 10 %), обозначается оп — 3 ос. ч 8—4 . [c.8]

    Тем не менее, теория радикалов должна была пасть, и она пала, уступив место унитарным взглядам и теории типов Жерара, Дело в том, что теория радикалов основывалась на дуалистическом принципе, согласно которому органические соединения всегда состоят из кислорода (а также его аналогов или иной кислородсодержащей группы неорганической природы) и бескислородного углеродистого остатка. Этот принцип явно выдает свое происхождение, поскольку в начале-прошлого века частичное или полное, прямое или косвенное окисление было почти единственной формой преобразования органической материи. Дуалистическая концепция поддерживалась и фактами из неорганической природы, где известные в то время вещества (окислы, соли и т. п.) можно было рассматривать как бинарные, т. е. построенные из положительно и отрицательно заряженных частиц. Отмеченные факты объясняют позицию Берцелиуса, который был убежден, что, вычленяя в органической молекуле радикал и электроотрицательный кислородсодержащий остаток, химики познают ее истинную конституцию. [c.7]

    С теоретической точки зрения в ходе этого исследования я постепенно составил о катализе представление, завладевшее моими мыслями. Здесь следует упомянуть замечательные имена Берцелиус, Либих, Оствальд и Сабатье. Весь накопленный мною опыт побудил меня согласиться с утверждением Либиха о том, что так называемый каталитический агент, будь то неорганическое вещество или фермент, является неустойчивым и что в процессе разложения этот агент заставляет вещества, не реагирующие в других условиях, претерпевать химическое изменение . Через несколько лет Либих отказался от этих представлений и, по-видимому, сделал ошибку, ибо весь накопленный мною опыт заставил меня принять как закон гипотезу Сабатье, который повторил первоначальное утверждение Либиха, и я не могу удержаться, чтобы не процитировать Сабатье Теория катализа, основанная на образовании промежуточных продуктов реакции, содержит еще много неясностей и имеет тот недостаток, что весьма часто она опирается на рассмотрение гипотетических продуктов, которые мы еще не научились выде лять. Однако она является единственной теорией, которая могла бы объяснить явления катализа в гомогенной системе, и имеет то преимущество, что ее можно применить во всех слу чаях. [c.564]

    Молекула угольной кислоты может лишиться как одного, так и обоих атомов водорода. Если отделить от нее один из них, останется ион бикарбоната. А второй атом водорода отделяется от молекулы в тысячу раз труднее, чё и первый. Если все-таки отде.шть и его, то останется ион карбоната. У человека в крови и тканях всегда ес ь сама угольная кислота, ион бикарбоната и растворенная двуокись углерода, а карбонатного иона в них нет. Оба этих иона легко соединяются с ионами различных металлов. Получающиеся соединения, хотя и содержат углерод, во многом подобны неорганическим веществам. Например, карбонат кальция, или углекислый кальций, есть не что иное, как минерал известняк. Иногда он встречается в природе и в виде другого минерала, покраси- [c.162]

    Гранулированный носитель катализатора получают смешением тонко-измельченного порошка плавленного неорганического вещества (А12О3, 2гОг, 51С) или их смеси, со связующим или агломерирующим соединением (глина) и с органическими веществами, образующими газы при повышенной температуре (древесные опилки с размером частиц 0,04— 0,15 1им). Носитель обжигают при температуре 1000—1400° С [c.90]

    И. м. Губкин назвал этот раздел Органический синтез нефти . В настоящее время под органическим синтезом обычно нонимается искусственное образование органических (в химическом смысле) веществ из более простых химических соединений, а также пз элементов. Например, органическим синтезом является получение органических веществ из СО и Oj из солей угольной кислоты и других соединений, обычно причисляемых к неорганическим веществам ВСЭ, т. 39, 1956, стр. 111). Так как в действительности И. М. Губкин, говоря об органическом синтезе (некоторые неортаники допускают образование нефтп именно за счет такого рода органического синтеза из газов, в том числе и ювенильного водорода), имел в виду нечто совсем другое, то было решено изменить название этого раздела. [c.310]

    Если в ходе приготовления катализатора меняется его фазовый состав, то имеем дело с топохимическимп процессами, которые подчиняются законам топохимической кинетики. Соответственно с этим, научными основами получения катализаторов являются закономерности топохпмических превращений неорганических веществ, сравнительно хорошо разработанные в области технологии силикатов. К сожалению, вследствие широкой номенклатуры катализаторов, ее изменчивости и относительно малой мощности прш1зв0дств катализаторов топохимические основы этих производств разработаны пока недостаточно. [c.194]

    В TexHOJjofHH неорганических веществ-большое, значение имеет конверсия метана, лежащая в основе процесса промышленного получения водорода. При температуре около 0°С и более низкой СН4 образует гидрат со льдом, являющийся клатратом. Содержание СН4 в нем близко к СН4-5,75 Н2О [(СН4)8(Н20)4в]. Возможность образования данного соединения следует учитывать при эксплуатации газопроводов—если газ содержит влагу, то при низкой температуре происходит закупорка газопровода гидратом. [c.357]

    Атомарные теплзты образования уже давно привлекали внимание еще и потому, что они должны равняться сумме энергии связи между атомами в молекуле. Определение же энергий связи представляет большой и разносторонний интерес для химии. Еще в 20-х годах Фаянс произвел такие расчеты для некоторых органических соединений в газообразном состоянии и получил интересные результаты в отношении энергий связи. В 30-х годах Б. Ф. Ормонт -2 рассматривал энергию атомизации неорганических веществ в кристаллическом состоянии. Но все эти работы не получили в то время дальнейшего развития вследствие отсутствия достаточно надежных значений вспомогательных величин, необходимых для таких расчетов. [c.160]

    У.2.23) Среднеквадратичное отклонение экспериментальных данных от (1У.2.23) дпя 110 точек составляет 4,7%, что характериауеЧ- не столько неточность самой формулы, сколько погрешность использованных данных. Формула проверена для нормальных углеводородов и их изомеров, дпя алканов, циклических и ароматических углеводородов, для галовдопроизводных ряда метана, простых и сложных эфиров, неорганических веществ, таких кгж азот, углекислый газ, сжиженные инертные газы. [c.70]

    В течение короткого промежутка времени, частично епде до Велера, в основу разделения химии на органическую и неорганическую пытались положить допущение о том, что неорганическне вещества представляют собой соединения простых радикалов, а органические ве-шества — соединения сложных радикалов (Дюма, Либих, 1837 г.). При этом исходили из того, что молекулы известных в то время неорганических веществ были построены, по-видимому, более просто, чем молекулы органических веществ. Однако и это представление было вскоре признано неприемлемым, так как, с одной стороны, само понятие [c.3]

    Нам осталось еще выяснить вопрос о том, следует ли отделять соединения одного элемента — углерода — от всех остальных химических соединений и какова цель такого отделения. Химико-методические основания для разграничения химических веществ на органические и неорганические отсутствуют, так как способы работы, применяемые при синтезе и расщеплении как тех, так и других веществ чрезвычайно сходны и во всяком случае не имеют ничего противоположного друг другу. То положение, что для точного обозначения углеродного соединения обычно бывает недостаточно одной лишь его эмпирической формулы, так как часто встречаются органические соединения, имеющие одинаковый состав, но различающиеся по строению молекул или по пространственному расположению атомов, также не может считаться теперь характерной особенностью органической материи, поскольку для многих неорганических веществ найдены подобные же соотношения. Единственным основанием для выделения органических соединений в отдельную группу является то, что число известных в настоящее время соединений углерода чрезвычайно велико и во много раз превышаеч-число всех неорганических в с щ с с I в. Следовательно, [c.3]

    Уже в течение первых десятилетий XIX в. число известных органических веществ начало возрастать с каждым годом. Было установлено, что многие органические соединения обладают значительно более сложным строением, чем неорганические вещества, и открыто явление изомерии (см. стр. 27). Это поставило перед исследователями, казалось бы, неразрешимую задачу объяснить и систематизировать все многочисленные новые явления. Великие ученые того времени — Берцелиус, Дюма и Либих ясно видели все значение стремительно развивающейся органической химии и пытались вместе с другими исследователями постепенно систематизировать все вновь открытые соединения и рассмотреть их с какой-нибудь определенной точки зрения. Это стремление нашло свое выражение в теории радикалов и ее предшественнице — этериновой теории. Первоначально термином радикал обозначали атом или группу атомов в кислородных соединениях, а именно остаток , не содержащий кислорода. Позднее это понятие было расширено, и название радикал стали применять также для групп атомов в соединениях, не содержащих кислорода, при условии, если эти группы атомов отвечали некоторым определенным условиям. По определению Либиха, радикал представляет собой не-изменяющуюся составную часть ряда соединений и может быть замещен в этих соединениях какими-нибудь другими простыми телами из соединений радикала с каким-либо простым телом это последнее может быть выделено и замещено эквивалентным количеством других простых тел . [c.18]

    Химические соединения, обладающие способностью отклонять плоскость поляризованного света, могут быть подразделены на две группы. Одна из них включает лищь небольшое число неорганических веществ— кварц, хлорат калия, бромат калия, перйодат натрия и др. Общим для этих веществ является то, что их оптическая активность тесно связана с кристаллическим строением и исчезает при их растворении в жидкости, т. е. при распаде кристаллов на отдельные молекулы. Таким образо.м, способность этих соединений отклонять поляризованный свет обусловлена особым строением не молекул, а кристаллов, и поэтому исследование этого вопроса является задачей кристаллографии. Впрочем, известны и органические соединения, например бензил, которые обнаруживают оптическую активность лишь в кристаллической форме. [c.130]

    В 1828 г. Роберт Броун, наблюдая в микроскоп цветочную пыльцу, суспендированную в воде, заметил, что частицы пыльцы находятся в постоянном движении. Это явление, названное позже броуновским движением, долгое время не находило объяснения. Предположение о том, что движение частиц связано с их жизненными функциями, должно было быть отвергнуто, поскольку такое же явление наблюдалось и для суспензий неорганических веществ. Это движение нельзя было объяснить и предположением о микроскопических конвективных токах, обусловленных, например, колебаниями температуры в системе. Действительно, если бы движение частиц было вызвано конвекцией, то наблюдалось бы одновременное перемещение соседних частиц, находящихся в одном потоке, с одинаковой скоростью. На самом же деле соседние частицы движутся с различными скоростями и по траекториям, пересекающимся под разными углами. Следовательно, причина броуновского движения более микроскопическая , чем микроконвекции. [c.49]

    При электролизе (электрохимическом разложении) растворов органических и особенно неорганических веществ нередки случаи, когда на электроде электрохимической ячейки протекает только одна реакция. Если электролиз проводят в условиях, когда смешение катодных и анодных продуктов исключено, то все количество электричества, прошедшее через раствор в процессе электролиза, расходуется только на окисление (анодная реакция) или восстановление (катодная реакция) единственного вещества. Измерив количество электричества, израсходованного за время протекания реакции до полного раз-ложения реатрующего вещества, можно определить сод )жа-ние этого вещества, основываясь на известных заишах эяек- [c.251]

    Остов оксидов металлов. Обменное взаимодействие анионов играет структуроформирующую роль не только в строении гало-генидов, но и многих других неорганических веществ. Это относится, например, к таким важным классам вещества, как твердые оксиды, сульфиды, вообще халькогениды, а также силикаты, алюмосиликаты и др. Остов оксидов образуется благодаря обменному взаимодействию оксоионов. При этом он определяет тип их структуры, природу соединений. Это видно на примере довольно странных на первый взгляд соединений вроде СаТ10з —не то солей, не то оксидов. В составе соединений такого рода находится два (или больше) вида катионов, размещающихся в соответствии с их размерами в октаэдрических или тетраэдрических пустотах кислород- [c.75]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    Позже человек овладел процессами мыловарения и крашения тканей и т. д. Но в то время люди еще не умели выделять органические вещества в чистом виде, а пользовались обычно их природными смесями. Только в конце XVIII в. были получены такие вещества, как мочевина, винная, лимонная и яблочная кислоты и многие другие. Одновременно выяснилось и своеобразие органических соединений, их отличие от неорганических веществ. Это дало повод Я. Берцелиусу — знаменитому шведскому химику XIX столетия, высказать ошибочную мысль, что в живой природе элементы повинуются иным законам, чем в безжизненной , и что органические вещества могут получаться только под воздействием особой жизненной силы . Так возникла идеалистическая теория, получившая название виталистической (от лат. vita — жизнь). [c.6]

    Исторически для лолучения информации о качественном и количественном составе вещества прежде всего использовали химические методы, т. е. методы, основанные на получении в результате химической реакции того или иного соединения, обладающего определенными аналитическими свойствами. Эта ситуация закреплена в самом названии аналитическая химия . Поэтому классические методы аналитической химии, особенно в той части, которая касается анализа неорганических веществ, опираются прежде всего на неорганическую химию как более общую дисциплину. Кроме того, нужно есть следующее. Преподавание аналитической химии в высшей щколе имеет помимо конечной главной цели — обучение основам аналитической химии — также задачу научить химическо му мышлению. Распространено мнение (и оно вполне оправедливо), что аналитическая химия представляет собой идеальное средство для достижения этой, второй цели, иначе говоря, аналитическая химия естественно входит в структуру общехимических дисциплин вуза. Поэтому, как правило, курс классической аналитической химии, представляющий по существу неорганическую аналитическую химию, излагается В1 вузах сразу же после неорганической химии, а иногда совмещается с ней в единый курс. Именно для, такого вузовского курса и написан двухтомный учебник Анорганикум , изданный в ГДР. [c.5]

    Прежде чем перейти к номенклатуре неорганических веществ, напомним, что состав вещества отображается с помощью химической формулы. Химическая формула отображает атомы каких видов и в каких количественных соотношениях составляют вещество. Соотношение количеств атомов каждого вида обозначается индексом (вообще, химическая формула - это более общее понятие, включающее брутто-формулу, струетурную, графическую и т. д., но об этом будет сказано позже, в разделе, посвященном химической связи). Так, химическая формула Н 80з отображает, что вещество содержит атомы трех химических элементов - водорода Н, серы 8, кислорода О. На один аггом серы приходится 2 атома водорода и 3 атома кислорода. Если вещество имеет молекулярное строение, то формула должна отображать количество атомов каждого вида в молекуле. Например, химическая формула показывает, что молекула кислорода состоит из двух атомов. По составу все вещества делятся на простые и сложные. [c.9]

    Одним из самых распространенных растворителей в нашей повседневной жпани является вода. Все химические процессы в живых организмах происходят в водной среде, потому что в воде растворяются и многие минеральные соли и газы. Множество реакций между неорганическими веществами проходит в воде, поэтому в дальнейшем, если мы < ем говорить о растворе, то будем иметь в виду именно водные растворы. [c.103]

    Закон Гесса и следствия (1,2) позволяют вычислять тепловые эф-< )екты различных реакций на основе сравнительно небольшого количества табличных данных о теплотах образования неорганических веществ и теплотах сгорания органических соединений при стандартных условиях (р= 01 325 Па, 1 = 2о°С или 298 К). Поскольку расчеты в химии и химической технологии чаще всего приходится производить для изобарных процессов, то можно использовать табличные значения Аг гэа Согласно (11.30) [c.43]


Библиография для Точка неорганических веществ: [c.231]   
Смотреть страницы где упоминается термин Точка неорганических веществ: [c.70]    [c.70]    [c.192]    [c.132]    [c.348]    [c.37]    [c.407]    [c.68]    [c.9]   
Краткий курс физической химии Издание 3 (1963) -- [ c.140 ]




ПОИСК





Смотрите так же термины и статьи:

неорганических веществ



© 2025 chem21.info Реклама на сайте