Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства полиамидных волокон прочность

    Полиамидные волокна обладают комплексом ценных свойств, определяющих целесообразность, а в ряде случаев необходимость их широкого использования для изготовления разнообразных изделий. Остановимся на показателях, характеризующих основные свойства полиамидных волокон, — прочность при разрыве, эластичность, истираемость, гигроскопичность, плотность, термо-, светостойкость, однородность структуры и др. [c.91]

    Полиамиды растворимы при комнатной температуре в фенолах, концентрированных минеральных кислотах, моно- и трихлор-уксусной кислоте, фторированных спиртах и некоторых других специфических растворителях. При нагревании они растворяются в ледяной уксусной кислоте, формалине, бензиловом спирте и этиленхлоргидрине, а при действии разбавленных минеральных кислот гидролизуются. Полиамиды устойчивы к холодным растворам слабых органических кислот, минеральным маслам, жи-, рам, щелочам, а также к воздействию микроорганизмов, плесени и моющих средств (например, мыла и щелочных препаратов). По прочности и стойкости к истиранию полиамидные волокна превосходят другие виды синтетических волокон, искусственные и натуральные волокна, но в мокром состоянии их прочность несколько уменьшается. Эластичность полиамидов исключительно высока полиамидные волокна и пленки могут без разрыва растягиваться на 400—600%. Полиамиды морозостойки (сохраняют эластичность при —50°С), обладают весьма высокими диэлектрическими и антифрикционными свойствами. [c.229]


    Свойства. Полиамидные волокна—термопластичные полимеры. Характеризуются легкостью, высокой прочностью, выдерживают очень высокое растяжение, сжатие или изгиб. Воспламеняются с трудом. Имеют малую гигроскопичность максимальная температура глажения 150°С. Атмосферостойкие, но (без специальных присадок) чувствительны к действию света. [c.588]

    При окончательном кручении полиамидного шелка, особенно высоких номеров, крутильные машины работают на высоких скоростях, что объясняется свойствами полиамидного волокна, обладающего наряду с высокой прочностью и удлинением также очень высокой устойчивостью к истиранию. [c.399]

    Изменение свойств полиамидного волокна в результате вытягивания схематически показано па рис. 18. Как видно из этих данных, при вытягивании повышается прочность, модуль эластичности и теплостойкость волокна, снижается удлинение, набухание и гигроскопичность. [c.77]

    Вытягивание полиамидного волокна — одна из вал<нейших операций технологического процесса производства. Как уже указывалось выше, характерной особенностью полиамидных волокон является их способность вытягиваться при нормальной температуре на 300—400%. В результате происходит значительное повышение степени ориентации макромолекул или их агрегатов в волокне, что приводит к соответствующему изменению механических свойств. Получить высококачественное полиамидное волокно, обладающее ценными механическими, а следовательно, и эксплуатационными свойствами, без вытягивания не представляется возможным. Изменение свойств полиамидного волокна после вытягивания показано на рис. 2.13. Как видно из этих данных, при вытягивании повышается прочность, модуль эластичности и теплостойкость волокна, а удлинение снижается. [c.75]

    Синтетические полиамидные волокна по свойствам приближаются к природному шелку. Они обладают исключительной прочностью и используются для изготовления чулок, трикотажа, шнуров, канатов, рыболовных сетей, щетины для щеток и т. д. [c.480]

    С целью получения более высоких показателей прочности и износостойкости резин проведено исследование влияния армирования их волокнистыми наполнителями. В результате аналитического и экспериментального изучения свойств были выбраны полиамидные волокна. Проведены стендовые испытания резин с волокнистым наполнителем на стойкость к гидроабразивному износу, определена массовая доля волокнистого наполнителя в составе резиновой смеси - 2,5%. Износ резины при этом снижается на 22,5%, а суммарный износ деталей пары трения резина - сталь - на 25%. [c.23]


    Полиамиды, как правило, перерабатываются на полиамидное волокно непосредственно прядением из расплава, например из полиамида-6 так получают дедерон (капрон). Поскольку линейные молекулы таких полимеров связаны водородными связями, полиамидное волокно имеет высокую прочность на разрыв и растяжение. Неприятными свойствами таких волокон является, однако, легкость появления электростатических зарядов (электризация) и относительно высокая растяжимость при небольших нагрузках. [c.727]

    Сформованное полиамидное волокно имеет очень низкую прочность (10—12 ркм) и большое пластическое удлинение (300— 500%), так как в процессе формования из расплава макромолекулы полимера почти совсем не ориентируются вдоль оси волокна. Для придания волокну требуемых физико-механических свойств его после предварительного кручения подвергают холодной вытяжке (при комнатной температуре) до 3—5-кратного увеличения длины, при этом происходит значительное повышение степени ориентации макромолекул, а прочность волокна возрастает в 4—7 раз, остаточное удлинение уменьшается до 12—25%, и волокно перестает быть пластичным. [c.472]

    Для обеспечения бесперебойности процесса формования на описанной в предыдущем разделе прядильной машине с плавильной решеткой необходимо соблюдать ряд условий, которые будут подробно изложены в следующих разделах. Кроме этих общих правил проведения технологического процесса, обусловленных свойствами полиамидов, особенностями процесса формования из расплава при применении одинаковой в принципе конструкции прядильных машин, в ряде случаев возможны некоторые отклонения, связанные с особенностями конструкции отдельных частей машины, выбранной схемой проведения процесса формования (простые, двойные или счетверенные прядильные места) или с предварительной подготовкой полиамидной крошки, используемой для формования волокна. Некоторые различия в свойствах, качестве и прочности получаемого полиамидного шелка требуют применения при формовании особых приспособлений и приемов. Мнения о целесообразности того или другого приема при формовании волокна расходятся. Это не удивительно, если учесть, что метод формования из расплава применятся сравнительно недавно. Однако и в этом случае справедливо основное положение, относящееся к формованию всех видов химических волокон и заключающееся в том, что все многообразие свойств волокна — его достоинства и недостатки — определяются в известной степени правильным или неправильным проведением процесса формования. [c.310]

    Высокая кристалличность обусловливает хорошие физикомеханические свойства полиамидных волокон высокую прочность, эластичность, устойчивость к истиранию и многократным деформациям изгиба. Вместе с этим повышение кристалличности отрицательно сказывается на гигроскопичности полиамидных волокон и их способности набухать в воде. Кондиционная влажность полиамидных волокон не превышает 3—4%. Набухание в воде приводит к увеличению диаметра волокна всего на 3%. [c.27]

    Полиамидные волокна обладают выдающимися техническими свойствами по прочности на разрыв уступают лишь природному волокну, по эластичности превосходят хлопковое волокно, по устойчивости к стиранию занимают первое место среди всех химических и природных волокон. Термо- и светостойкость полиамидных волокон невысоки (табл. 41). [c.284]

    Они весьма морозостойки (при — 50° С сохраняют еще эластичность) и характеризуются высокой степенью кристалличности, что благоприятно сказывается на механических свойствах. По механической прочности и прочности на истирание полиамиды превосходят другие виды искусственных и естественных волокон, но в мокром состоянии их прочность несколько уменьшается. Эластичность полиамидов исключительно высока полиамидные волокна могут без разрыва растягиваться на значительную длину. Негорючи и обладают весьма высокими электроизоляционными свойствами. [c.323]

    Осуществляя те или иные мероприятия, как, например, проводя вытягивание при повышенной температуре для достижения очень высокой прочности при малом удлинении, можно изменить свойства нити. Однако никакие воздействия при вытяжке не приводят к принципиальным изменениям свойств полиамидных волокон. В процессе вытяжки первоначальный диаметр нитей уменьшается почти наполовину, в зависимости от степени вытяжки. Если невытянутые волокна обладают удлинением в 400%, то при холодной вытяжке удлинение обычно составляет 20—30%. Удлинение порядка 15% и ниже достигается, как уже было отмечено, при кратковременном вытягивании при повышенной температуре верхняя температурная граница находится на 30—40° ниже температуры плавления , хотя, конечно, сами нити не нагреваются до этой температуры, являющейся температурой теплоносителя. Кордный шелк, который требует самых малых удлинений (около 10—15%), подвергается горячей вытяжке, или вытянутый на холоду корд повторно вытягивают при высоких температурах. [c.302]


    Исключительно быстрое и эффективное внедрение полиамидных волокон в производство чулок в первую очередь свидетельствовало об их высокой прочности к истиранию. Понятно поэтому, что потребители дали прекрасную оценку этому выдающемуся свойству. При смешении с другими волокнами потребительская ценность изделий также значительно возрастает. В лабораториях прежнего концерна И. Г. Фарбениндустри в 1939 году было изучено влияние соотношения компонентов при смешении волокон. Небольшая часть этих результатов была собрана и опубликована . Из этих практических данных можно заключить, что уже при малых добавках полиамидных волокон уменьшается износ изделий, а введение 20% полиамидного волокна чаще всего приводит к двукратному и даже большему увеличению продолжительности носки. Предпосылкой более широкого применения смешанных волокон является создание оптимальных конструкций пряжи и ткани и условий переработки, причем необходимо учитывать свойства отдельных компонентов . [c.352]

    В отличие от вискозного оно обладает более высокой эластичностью, меньщей потерей прочности в мокром состоянии и меньшим удельным весом. Триацетатное волокно устойчиво к действию микроорганизмов, при специальной тепловой обработке оно незначительно теряет прочность при сравнительно продолжительном воздействии высокой температуры. По электроизоляционным свойствам триацетатное волокно можно сравнить с полиамидными и полиэфирными волокнами в технике его применяют для электроизоляции проводов. [c.121]

    Волокно капрон, так же как и анид, относится к полиамидным волокнам. До сего времени из всех синтетических волокон только полиамидные с одинаковым успехом используются для производства товаров широкого потребления и специальных технических изделий корда, рыболовных сетей, канатов, приводных ремней, конвейерных лент и т. п. В плане развития производства синтетических волокон основное место принадлежит капрону. Это в значительной мере объясняется освоением производства основного сырья для получения капрона, а также ценными свойствами капронового волокна высокой. механической прочностью, химической стойкостью, устойчивостью к действию микроорганизмов, низкой гигроскопичностью и др. [c.136]

    Красители для последующего хромирования и металлсодержащие красители. Для повышения прочностных свойств окрасок краситель закрепляется на полиамидных волокнах в виде хромового комплекса. Наличие хрома в молекуле красителя значительно повышает светопрочность, в то время как образование координационных связей между хромом и полиамидным волокном улучшает прочность к мокрым обработкам. [c.66]

    Производство искусственных волокон имело уже почти полувековую историю, когда в 1938 г. в США, а в конце 1939 г. в Германии было начато производство новых синтетических волокон — найлона и перлона. В то время как искусственные волокна получают исключительно на основе природного растительного сырья (целлюлозы), полиамидные волокна, так же как и полиэфирные, разработка методов получения которых началась в Англии с 1941 г., представляют собой пример текстильного волокна, получаемого методами химического синтеза из сырья нерастительного происхождения. Эти волокна могут быть использованы почти во всех областях текстильной промышленности. По сочетанию свойств — высокой прочности на разрыв и эластичности, устойчивости при кипячении, исключительной устойчивости к истиранию — полиамидные и полиэфирные волокна превосходят все известные ранее и применяемые для изготовления одежды типы природных и искусственных волокон. Не удивительно поэтому, что полиамидные волокна вызывают с момента их появления большой интерес, необычный даже для новых отраслей быстро развивающейся химической промышленности. [c.11]

    Благодаря ценным эксплуатационным свойствам полиамидные волокна находят широкое применение и для других технических целей. Устойчивость найлона к действию воды, особенно морской, в сочетании с высокой прочностью и износоустойчивостью дает возможность изготавливать из моноволокна негниющие рыболовные сети и канаты 1 кг-найлона заменяет 4—9 кг манильской яеныки. Найлоновое моноволокно различной толщины применяется в производстве све рхгибких рукавов, приводных ремней, коррозионноустойчивых сит, различных щеток и малярных кистей. Штапельное волокно идет на изготовление фильтровальных и других технических тканей, от которых требуется высокая прочность. Перспективно использование найлона для армирования бетона. Включение в бетон волокон длиной 2,5—7,6 см увеличивает его ударопрочность в 20—27 раз, а сопротивление деформации возрастает на 83% на единицу веса или на 36% на единицу объема 57]. [c.342]

    Из физических свойств полиамидного шелка наибольший интерес представляют разрывная прочность и разрывное удлинение волокна, хотя необходимо подчеркнуть, что разрывная прочность определяет потребительские свойства волокна или получаемых из него текстильных изделий лишь постольку, поскольку ее величина не должна быть ниже определенного минимального значения. [c.442]

    Если не учитывать уменьшения диаметра волокна и рассматривать только изменение разрывной длины, то при увеличении фильерной вытяжки происходит сравнительно небольшое увеличение разрывной длины. Волокно, намотанное на бобину на прядильной машине, обладает сравнительно низкой прочностью. Именно в изменении этого показателя проявляется характерное свойство полиамидных волокон — возможность резкого повышения всего комплекса физико-механических свойств в результате последующего процесса вытягивания (ориентации) волокна при нормальной температуре (направо от вертикальной пунктирной линии). [c.444]

    Недостатком всех перечисленных методов является легкость повреждения волокна. При нагревании при сравнительно невысокой температуре (100—130°) в отсутствие веществ, вызывающих набухание волокна, эффект термообработки оказывается не очень заметным. При сильном нагреве (до температуры, близкой к температуре размягчения) появляется возможность применить воду в качестве вещества, вызывающего набухание. Однако в этих условиях наблюдается сильный разброс экспериментально определенных значений некоторых показателей свойств волокна имеет также место повреждение волокна (снижение прочности). Насколько велика опасность ухудшения свойств волокна, показывают исследования процесса фиксации трикотажных изделий из полиамидного волокна [c.539]

    Полиамиды используются главным образом для переработки их в волокно. Полиамидные волокна обладают высокой прочностью, обусловленной высокой степенью их кристалличности, молекулярной ориентацией и сильными межмолекулярпыми связями, а наличие аморфных областей придает волокнам гибкость и обратимость вытяжки. Подробный обзор свойств н применения волокон из синтетических полимеров, в том числе полиамидных, и других изделий из этих смол приведен в монографиях [20, 30, 16], в обзорах [17, 18] и других работах [4, 15, 66, 71, 75]. [c.670]

    Производство синтетических волокон. Синтетические волокна обладают многими ценными свойствами — высокой механической прочностью и химической стойкостью, малой горючестью, низкой гигроскопичностью, устойчивостью к действию микроорганизмов и т. д. производство и потребление синтетических волокон неуклонно растет. Наибольшее значение получили полиамидные (капрон, найлон) и полиэфирные волокна (лавсан). Формование этих волокон производят из расплава полимера. [c.256]

    Свойства готового волокна (прочность, удлинение и др.) зависят от многих факторов. Требования к волокну опреде ляются областью его п р и м е н е н и я. Как правило, во локна высоких номеров, предназначенные для изделий народ ного потребления, должны обладать большим удлинением (25—35%), чем волокна низких номеров технического назна чения (12—16%). Поэтому последние подвергают более силь ному вытягиванию. Благодаря способности полиамидных волокон, и в частности капроновых, вытягиванию имеются широкие возможности для получения волокон с заданными свойствами и удовлетворения потребностей различных потребителей. Капроновая нить одного и того же номера может быть получена [c.419]

    Полиамиды растворимы при комнатной температуре в фенолах концентрированных минеральных кислотах. При нагревании растворяются в ледяной уксусной кислоте, формалине, бензилоЕом спирте. Они устойчивы к холодным щелочам и органическим растворителям. По механической прочности и прочности на истирание полиамидные волокна превосходят другие волокна, но в мокром состоянии их прочность снижается. Qhh эластичны, негорючи, морозостойки (до —50 °С) и обладают высокими электроизоляционными свойствами. Энант превосходит капроновое волокно по устойчивости к многократным деформациям и к истиранию. [c.341]

    Для получения искусственных волокон, пленок, лаков, некоторых пластических масс применяются растворы и расплавы полимеров. Как правило, в растворах и расплавах полимеров макромолекулы или их агрегаты расположены недостаточно упорядоченно, и а потому без специаль-ного процесса их ориентации путем вытягивания материала в пластическом состоянии (при формовании или последующей обработке) получаются нити и пленки с плохими механическими свойствами. В результате ориентации макромолекулы располагаются более упорядоченно, одновременно возрастает интенсивность межмолекулярного взаимодействия. Поэтому, чем более ориентированы макромолекулы или их агрегаты в пленках и нитях, тем выше прочность, теплостойкость и некоторые другие свойства получаемых изделий. Так, например, прочность обычного сравнительно малоориентированного вискозного волокна в 2—2 /2 раза ниже прочности такого же волокна с высокой степенью ориентации агрегатов макромолекул. Путем ориентации макромолекул полиамидного волокна прочность его может быть повышена в 4—6 раз. [c.629]

    Преимуш,ествами полиамидных волокон являются их высокая прочность, устойчивость к истиранию, действию бактерий (гниение), сохранение прочности во влажном состоянии. Полиамидные волокна широко применяются для изготовления чулок и других трикотажных изделий, тканей, ш,етины, шинного корда, парашютов, рыболовных снастей, искусственной кожи и т. и. Опп труднее загрязняются и легче моются, чем хлопковые волокна. В связи с этими ценными свойствами и доступностью сырья для полиамидов мировое производство наплоиового волокна неуклонно растет. Оно составляло в 1953 г. 77 тыс. т, 1954 г. — 79 тыс. т, 1955 г. — 113 тыс. т, 1956 г. — 114 тыс. т [19] и в 1957 г. превышало 200 тыс. т [10]. [c.670]

    Коллоидный кремнезем находит применение в качестве связующего при получении материалов из высокожаростойких алюмосиликатных волокон [496]. Для того чтобы поддерживать равномерное распределение связующего, используется такой загуститель, как акриловый полимер [497]. Моор [498] смешивал коллоидный кремнезем с различными видами латекса, коагулировавшего после того, как связующее взаимодействовало с волокнами. Придавать прочность и жесткость органическим листовым волокнистым материалам, а также листам бумаги можно добавлением коллоидн-ого кремнезема [499—502]. При изготовлении форзацной бумаги, используемой для рифления, ее жесткость улучшается за счет пропитки коллоидным кремнеземом [503]. Добавление от 1 до 5 % коллоидного кремнезема в определенного вида бумажные массы придает бумаге прочность, жесткость и т. п. [504]. Нежелательное свойство полиамидных волокон расщепляться и расслаиваться в значительной мере устраняется путем пропиткп коллоидным кремнеземом. Кожа способна разбухать и уплотняться после поглощения коллоидного кремнезема [505]. [c.584]

    Полиамидные волокна (капрон и др.) широко применяют для изготовления спецодежды, поскольку они обладают ценными свойствами высокой устойчивостью к истиранию, высокой прочностью на разрыв, эластичностью, хорошо окрашиваются, легко стираются и чистятся. Разбавленные растворы кислот при нормальной температуре не оказывают влияния на полиамидные волокна. В концентрированных растворах кислот (муравьиной, уксусной) при повышенной температуре они растворяются. Полиамидные волокна устойчивы к щелочам. Так, 10%-ный горячий раствор щелочи не оказывает на них заметного влияния. Термостойкость полиамидных волокон недостаточно высока.- При 140— 160 °С прочность их снижается в значительной мере. Полиамидные волокна устойчивы к органическим растворителям. Недостатком лолиамидных волокон является их низкая гигроскопичность. Действие солнечного света [c.9]

    Полиэфирное волокно появилось значительно позже найлона. Однако оно уже получило признание и пользуется большим спросом во многих от1раслях промышленности, особенно в легкой. Благодаря хорошим эксплуатационным качествам, превосходящим в некоторых случаях свойства полиамидных волокон (размерная стабильность, высокая усталостная прочность, химическая стойкость), а также наличию дешевого и доступного сырья (я-ксилол или толуол), полиэфирные волокна в настоящее время являются серьезными конкурентами полиамидных волокон. [c.343]

    В результате вытягивания нити при нормальной температуре получается полиамидная нить с комплексом механических свойств, удовлетворяющ,их требования.м большинства потребителей. Однако для производства кордной нити требуется волокно еще более высокой прочности и, что особенно существенно, пониженного удлинения, не превышающего 13—15%. Для обеспечения этих требований вытянутая полиамидная нить, как уже указывалось, подвергается дополнительному вытягиванию на 15—20% при повышенной температуре (150—200° С). Прочность нити при этом повышается дополнительно на 5—10 ркм, а удлинение снижается до 15—20%. Одновременно заметно повышается теплостойкость и модуль эластичности нпти. Если, например у нити найлон 6,6, не подвергнутой вытягиванию при повышенной температуре, пос.ле при.ложения определенной нагрузки остаточное удлинение составляет 7,4%, то у той же нити, подвергнутой горячей вытяжке, оно снижается до 4,5%. Благодаря этому улучшаются эксплуатационные свойства полиамидного корда, что приводит к уменьшению разнашиваемости шпн. [c.83]

    Прочность. Полиамидные волокна имеют высокую прочность при разрыве — 40—50 ркм в сухом состоянии. Путем увеличения степени вытягивания волокна до 400—420% прочность можно повысить до 70—75 ркм. Если нить подвергнуть дополнительному вытягиванию нри повышенной температуре (100—110° С) или повысить молекулярный вес полиамида, прочность нити может быть доведена до 80—85 ркм. Однако такое повышение прочности целесообразно только при получении кордной нити, строп, канатов и других аналогичных изделий, при эксплуатации которых высокая разрывная прочность имеет основное значение. При изготовлении предметов народного потребления применение таких высокопрочных полиамидных волокон нецелесообразно, так как изде.иия из них имеют более низкие эксплуатационные свойства, чем из волокон нормальной прочности. [c.91]

    Нельзя пренебрегать и тем фактом, что полиамидные волокна отличаются необычной прочностью на истирание. Известно, что лучшее—враг хорошего , и текстильная промышленность отсюда должна сделать соответствующий вывод. Ко кз зтой пос. о-вицы отнюдь ке надо делать вывод, что полиамидные волокна вообще являются самыми лучшими. Это замечание относится только к прочности на истирание и некоторым другим показателям, которые особенно важны для ряда специальных областей. Необходимо помнить, что до сего времени ни одни волокна не является и, вероятно, никогда не будет универсальным, т. е. обладак -щим суммой всех хороших свойств отдельных натуральных Г1 искусственных волокон и лпшеины.м всяких нежелательных свойств. Это положение относится ко все.м известным в настоящее время текстильным материалам, и в том числе к полиалшдным волокнам. [c.271]

    Применение более высоких то.тератур приводит к уже упомянутому разрыхлению связей, что ведет к большей гибкости цепей, благодаря чему достигается л в личение степен ориентации. При этом нул но следить, чтобы материал в дальнейшем не подвергался иикаки.м возде11 ствиям, которые могут частично изменить эту высокую степень ориентации это происходит, например, при температурах, более высоких, чем максимальная температура вытяжки. С увеличением прочности выше нормального значения связано уменьшение удлинения, которое для полиамидного волокна не так значительно, как для сильно вытянутых целлюлозных волокон, поскольку в них еще сохраняются эластические свойства. [c.347]

    Корд из полиамидного волокна (капрона) отличается высокой прочностью единичной нити при малой ее толщине, что поаволяет, при одинаковой слойности пластыря, значительно уменьшить его толщину и массу. Применение такого пластыря снижает дисбаланс покрышки, улучшает условия теплоотвода в зоне ремонта и, следовательно, повышает работоспособность отремонтированной шины. К числу положительных свойств капронового корда относятся высокое упругое удлинение, доходящее до 90% общего удлинения, и высокая теплостойкость (до 200 °С). Капрон мало увлажняется, а при увлажнении лишь незначительно теряет прочность. [c.68]

    Развитие авиационной и космической техники привело к необходимости создания ароматических полиамидов с еще более высокими эксплуатационными свойствами. В 1970 г. фирма Ои РоЩ на основе полиамида, полученного низкотемпературной конденсацией дихлорангидрида терефталевой кислоты с п-фенилендиамином, разработала полиамидное волокно кевлар (Кеу1аг), а в 1973 г. в США было организовано первое производство его мощностью 2700 т в год [16]. Отличительными особенностями этого волокна являются очень высокая прочность и значительно более высокий начальный модуль, чем у стали и стекловолокна. Благодаря более низкой плотности по сравнению со стальной проволокой и большей прочности (почти в пять раз превышающей прочность стального корда) удалось значительно уменьшить массу автомобильных и авиационных шин, армированных волокном кевлар (по сравнению с металлокордом). По термостойкости это волокно аналогично волокну номекс. Оно начинает разлагаться при температурах выше 300 °С, в то время как максимальная температура эксплуатации автомобильных и авиационных шин не превышает 200-250 °С. Волокно кевлар применяется также для производства армированных пластических масс, парашютных строп для космических кораблей, прочных якорных канатов, нефтяных шлангов и др. [17]. [c.11]

    Оно совершенно не деформируется даже при длительном нагреве (при 200° С), не теряет прочности при нагреведо 120° в течение пяти недель, в то время как полиамидное волокно резко снижает прочность при нагреве до 120° в течение нескольких дней. Сравнение некоторых свойств волокнистых материалов приведено в табл. 4.17. [c.190]

    При температуре йышё 300°С полибензимидазольные вояокяа по стабильности при длительной экспозиции на воздухе уступают волокнам из других ароматических гетероциклических полимеров и лишь незначительно превосходят ароматические полиамидные волокна. Интересным свойством полибензимидазольных волокон является сохранение прочности при повышенных температурах. В некоторых случаях, например в устройствах для торможения, это свойство может иметь большое значение 21.22, [c.275]

    В табл. 7.18 приведены данные о свойствах полиамидоимидного волокна Кермел. Волокно разлагается на воздухе при температуре выше 380 °С. Потеря массы через 2 ч при 350 °С на воздухе составляет 5% и при 380" С — 8—10 % Полиамидные волокна с имидными циклами в цепи имеют длительную температуру эксплуатации при 260 °С. Остаточная прочность после 1000 ч работы при этой температуре составляет 80 % Для Кермел 201 и 40 % Для Кермел 203. [c.810]

    Наполнитель, как правило, обеслечивает необходимые прочностные свойства, а также сообщает композиции ряд специфических свойств резистивные, электропроводящие, ферромагнитные, антифрикционные и т. д. Для ферромагнитных композиций наполнителями могут служить карбонильное железо, пермаллой, альсифер в виде порошков для электропроводящих композиций — порошки и волокна меди, графита, серебра для антифрикционных — тальк, двусернистый молибден, графит, волокна фторопласта-4, полиамидные волокна и т. д. для композиций с повышенной прочностью — асбест, стекловолокно, химические и металлические волокна, бумаги, ткани и т. д. [c.39]

    Шерсть и полиамидные волокна. Если у активных красителей субстантивность по отношению к хлопку значительно ниже, чем у пря-мых, то сродство к шерсти и полиамидам у анионных активных кра-стелей такое же, как у кислотных, и поэтому незафиксированный химически на волокне краситель не может быть смыт с него простым полосканием. Кроме того, неустойчивость шерсти к щелочам не позволяет проводить щелочную мы-ловку при кипении как в случае хлопка. Основой задачей активного крашения шерсти, кроме равномерной окраски, является максимальная степень фиксации, так как рна сводит к минимуму проблему смывания красителя. Поэтому прочностные свойства активных красителей для шерсти характеризует не прочность связи с волокном, а степень фиксации, которая может быть достигнута для данного красителя (см. стр. 252). Наиболее важными прочностными показателями, с помощью которых можно определить, какое количество красителя не связано с волокном химической связью, являются прочность к поту и к влажной декатировке, а также к проведению однованного крашения изделий из смешанных волокон. Солеподобная связь выдерживает тест на водостойкость лри 40 °С в отличие от адсорбционной связи (за счет yб тaнtивнo тиy. [c.294]

    Волокна, формуемые по мокрому методу, вытягиваются непосредственно сразу же после осадительной ванны в присутствии пластификатора [31]. Полиамидные волокна, получаемые по сухому способу, предварительно отмываются от солей и остатков растворителя, высушиваются и затем вытягиваются при повышенных температурах в одну или две стадии [32]. Для волокон, формуемых из растворов гибкоцепных ароматических полиамидов, фильерная вытяжка мало влияет на механические свойства, [26, с. 124]. Вытягивание в среде пластификатора, приводя при правильно подобранном режиме к переходу от изотропного состояния к ориентированному, решаюш,им образом сказывается как на прочности волокон, так и на их структурных особенностях (рис. 3.9). Метод подбора условий пластификационного вытягивания свежесформованных волокон ПМФИА, основанный на оценке подвижности структурных элементов гелеобразного волокна, рассмотрен в работе [33]. Следует отметить, что при пластификационной вытяжке ПА волокон степень кристалличности практически не изменяется. [c.99]

    Ниже приводится электротехническая характеристика свойств новых пластиков, электротехнические свойства которых ранее не были охарактеризованы. Электрические свойства полиамидных смол, широко применяемых для низкочастотной изоляции, приведены в табл. 46. f Важное значение для электрической изоляции имеет лавсан (терилен)— полиэфир на основе терефталевой кис- л0ты"й этиленгликоля. Лавсан имеет температуру плавления +220—240°, прочность на разрыв 400—500 кг см , прочность на разрыв ориентированных волокон и пленки 3500—4500 кг см . Электрические свойства лавсана высокие, например, тангенс угла диэлектрических потерь у пленки лавсана при частоте 50 гц и 20° составляет 0,005 и мало изменяется до температуры 100°, а также при действии влаги удельное объемное сопротивление 10 —10 ом-см, диэлектрическая проницаемость 3—4. Лавсан легко перерабатывается в волокна, пленки, пластины. Волокна лавсана представляют большой интерес для изоляции проводов, а его пленки, вследствие высокой механической и электрической прочности (100 кв мм при толщине пленки 0,11 мм), можно использовать для изоляции пазов электрических машин вместо лакотканей и миканита. [c.155]


Смотреть страницы где упоминается термин Свойства полиамидных волокон прочность: [c.336]    [c.56]   
Полиамидные волокна (1976) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Полиамидные волокна

Прочность полиамидных



© 2025 chem21.info Реклама на сайте