Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соли нейтральные, определение

    При повышении концентрации нейтральных солей до определенных значений обычно увеличивается и скорость коррозии вследствие повышения электропроводности раствора, а в случае хлоридов — также из-за активирующего влияния ионов хлора. При дальнейшем увеличении концентрации растворимость кислорода, участвующего в катодной реакции, падает и скорость коррозии уменьшается. [c.25]


    Им дано также новое определение солей Нейтральные соли — такие соединения того же класса, в которых водород замещен эквивалентным количеством металла. Тела, которые теперь называются безводными кислотами [подразумеваются окислы металлоидов], обладают способностью образовывать соли с окисями металлов, по большей части лишь при добавлении воды, или же это соединения, разлагающие окиси при высоких температурах . [c.42]

    Для титрования нейтральных растворов солей цинка гексацианоферратом (II) при 60° предлагали также в качестве индикатора метилкрасный . Аммонийные соли мешают определению, и поэтому метод имеет малую практическую ценность. Переход окраски с этим индикатором необратим. [c.376]

    Ход определения. В коническую колбу емкостью 150—250 мл, содержащую насыщенный раствор попаренной соли (нейтральный), прибавляют Ъ мл испытуемого хлористого бензила и 2 капли метил-оранжевого. После перемешивания к смеси прибавляют 1 каплю 0,1 раствора щелочи. При этом раствор не должен иметь красной окраски. [c.116]

    Рассмотренное здесь, таким образом, показывает, что тогда, когда мы имеем дело с системами солей или солей и окислов, между компонентами этих систем могут возникать взаимодействия, приводящие (в зависимости от силы такого взаимодействия) к образованию на диаграммах плавкости эвтектик или твердых растворов, или инконгруэнтно и конгруэнтно плавящихся химических соединений. Большая упорядоченность (неоднородность) расплава, обусловленная этими взаимодействиями, сохраняется в той или иной степени и выше кривой ликвидуса. Поэтому системы (смеси) расплавленных солей часто более сложны по своей структуре, чем индивидуальные расплавленные соли, причем в общем случае структурными составляющими смесей расплавленных солей одновременно могут быть простые ионы, комплексные ионы и даже нейтральные молекулы (в особенности тогда, когда в кристаллических решетках соответствующих солей имеется определенная доля молекулярной связи). [c.62]

    Под действием раствора нейтральной соли (при определении обменной кислотности) замещается на основания только небольшая часть Н-ионов, например Н1 и На, а остальные ионы водорода не вступают в обменные реакции. Под влиянием же щелочного раствора уксуснокислого натрия (при определении гидролитической кислотности), ионы водорода замещаются в почвенном поглощающем комплексе более полно. [c.124]

    Максимальное количество металлических катионов, которые данная почва может поглотить нз нейтрального раствора соли, величина, определенная и одинаковая для всех катионов (Са, К, NH4 и т. д.). К. К. Гедройц называет ее емкостью поглощения. Принимая во внимание правило эквивалентности при обмене катионов , мы можем себе представить емкость поглощения как общее число мест в почвенном комплексе, на которых могут сидеть поглощенные катионы. Общее число этих мест остается неизменным, изменяется лишь их распределение между различными катионами так, число стульев в театре остается неизменным при изменчивости распределения их между зрителями. Но в театре, однако, могут быть свободные места. Могут ли оставаться свободные места в поглощающем комплексе В соответствии с теорией К. К. Гедройца приходится ответить на этот вопрос отрицательно. [c.81]


    Нафтеновые кислоты, очищенные одним из вышеуказанных способов, содержат значительное количество примесей, среди которых преобладают неомыляемые вещества нейтрального характера. Количественное определение этих примесей позволяет судить о степени чистоты нафтеновых кислот и составляет поэтому одну из обычных задач нри анализе нафтеновых кислот ( асидол ) или их щелочных солей ( мылонафт ). Определение производится следующим образом. [c.217]

    Коррозия большинства металлов в нейтральных растворах (в воде и водных растворах солей) протекает с кислородной деполяризацией и ее скорость сильно зависит от скорости протекания катодной реакции ионизации кислорода и подвода кислорода к корродирующей поверхности металла, в то время как влияние рн растворов в нейтральной области (pH 4- -10) незначительно или даже отсутствует (например, для железа, цинка, свинца и меди 13 интервале pH = 4- -]0 7- -10 б- - В 5- И соответственно). Последнее обусловлено тем, что труднорастворимые продукты коррозии каждого из этих металлов устанавливают определенное значение pH раствора у поверхности корродирующего металла и коррозия происходит практически при одном и том же значении pH. [c.343]

    Применительно к преимущественно рассматриваемым в настоящей работе системам с нейтральными или координационными экстрагентами (лигандами) L, типичным примером которых являются соединения классов R,iXO (ТБФ, окиси аминов, фосфиноксиды, сульфоксиды и др.) и RnX (триалкил-фосфины, диалкилсульфиды и др.), задача исследования экстракционных равновесий, описывающих распределение соли МеЛ между водной и органической фазами, сводится к определению стехиометрии процессов типа [c.58]

    Дальнейшее развитие химии и использование неводных растворителей привело к необходимости объяснить процессы, протекающие в этих растворителях. Например, хлорид аммония, ведущий себя как соль в водном растворе, при растворении в жидком аммиаке проявляет свойства кислоты, растворяя металлы с выделением водорода. Мочевина С0(КНг)2, растворяясь в безводной уксусной кислоте, проявляет свойства основания, в жидком аммиаке — свойства кислоты, а ее водные растворы нейтральны. Все эти факты нельзя было объяснить на основании теории электролитической диссоциации Аррениуса. В связи с этим определение кислот и оснований были пересмотрены. [c.75]

    В нейтральном нли слабокислом растворе большинство фенолов дает окрашивание с хлорным железом, вследствие образования комплексных железных солей. В зависимости от природы фенола это окрашивание бывает различным (красным, синим, фиолетовым, зеленым или коричневым), поэтому цветная реакция с хлорным железом часто используется для качественного определения соответствующи.х соединений. [c.539]

    Анализируемый раствор пропускают через колонку с ионитом и затем промывают водой до нейтральной реакции элюата. Весь объем элюата титруют раствором щелочи. При определении Ыа+ в смеси солей и кислот лучше применять метод ионного обмена на сильноосновном анионите в ОН-форме  [c.249]

    В перманганатометрии применяют также растворы восстановителей— соли Ре(И), щавелевую кислоту и некоторые другие — для определения окислителей методом обратного титрования. Соединения Ре(II) на воздухе медленно окисляются, особенно в нейтральном растворе. Подкисление замедляет процесс окисления, однако обычно рекомендуется перед применением раствора Ре(II) в анализе проверить его титр. Оксалаты и щавелевая кислота в растворе медленно разлагаются  [c.273]

    Работа IV.4. Определение смещения изоэлектрической точки полиамфолита в присутствии нейтральных солей [c.133]

    Смещение равновесия в реакции гидролиза обнаруживается с помощью индикаторов — веществ, приобретающих определенную окраску в определенной среде. По окраске индикатора делается вывод о характере среды. Если среда нейтральная, значит, в растворе данной соли равновесие диссоциации воды не смещено, т. е. соль гидролизу-не подвергается. Если среда кислая, значит, в растворе соли образуется избыток ионов водорода, т. е. протекает гидролиз по катиону. Катион связывает гидроксид-ионы воды, а ионы Н+ накапливаются в растворе, придавая среде кислый характер. [c.78]

    Этот метод дал возможность найти взаимно эквивалентные части соляной, азотной, серной и уксусной кислот (необходимые для образования нейтральной калийной соли из определенного количества карбоната калия) и открыл путь для определения химическо- [c.104]

    Для этого к свободному, по возможности, от кислот раствору хлорида галлия добавляют винную кислоту (для предотвращения гидролиза галлия), раствор гуммиарабика (для повышения стабильности колл.оидного раствора), ацетатный буферный раствор (pH 3—4), раствор реагента и воду. Затем в те ние НС более 30 мин. после прибавления реагента производят измерение на колориметре с применением синего светофильтра. Для чистых растворов, содержащих от 10 до 132 мкг галлия, получаются удовлепворительные результаты. Алюминий не мешает до концентрации его 30 мг/ 0 мл. Большие количества алюминия и нейтральных солей мешают определению, так как вследствие солевого эффекта увеличивается растворимость частиц, либо происходит изменение их величины. В этом случае необходимо предварительно отделять галлий соосаждением с А1(0Н)з, либо экстракцией эфиром. Определению мешает также лимонная кислота. [c.153]


    Известно 11 , что скорость коррозии многих металлов увеличивается с иовьпнением концентрации нейтральных солей до определенных [c.21]

    На рис. 28 по опытам Ферстера показана диаграмма изменения концентраций и выходов по току во времени, при электролизе нейтрального 5,1 н раствора хлористого натрия без разделения электродных продуктов с анодами из платинированной платины. В начале электролиза быстро растет концентрация хлорноватистокислой соли и образование хлорноватокислого натрия незначительно когда концентрация хлорноватистой соли достигает определенного значег1ия, она больп1е не растет и дальше идет только образование хлорноватокислой соли с одно- [c.58]

    Катиониты по химической природе — полимерные кислоты или их соли. На определенных участках матрицы у них расположены активные полярные группы, содержащие подвижные катионы водорода, натрия и др. Катиониты, содержащие в качестве активной группы сульфогруппу ЗОзН, являются сильнокислотными. Сульфо-группа обладает высокой степенью диссоциации и поэтому обмен катионов возможен у сильнокислотных катионитов в щелочной, нейтральной и кислой средах (при pH до 1,5). Звено сульфокатнонита КУ-2 имеет строение [c.81]

    Продукт присоединения, получающийся при взаимодействии сернокислого серебра с ацетобромглюкозой или обработкой смеси кислого сульфата-1-тетраацетилглюкозы и ацетобромглю-козы в пиридине углекислым серебром, содержит одну молекулу пиридина в виде четвертичного аммониевого соединения как показывает формула, в это соединение входят две молекулы глюкозы [ЗОО]. Можно объяснить его образование, полагая, что средний сульфат тетраацетилглюкозы присоединяется к вири дину таким же образом, как присоединялся бы диметилсульфат в этих же условиях. Четвертичная аммониевая соль образует нейтральный водный раствор, в котором она полностью ионизирована кажущийся молекулярный вес соли при определении его в этом растворе равен 400, тогда как в уксусной кислоте о приблизительно вдвое больше. Реакция образования продуктов такого типа очень характерна и имеет место лишь в случае ацилиро-ванных 1-галоидзамещенных сахаров пираноидного типа. Галоид-производные глюкозы фураноидного типа дают сиропообразные [c.54]

    Скорость естественного отстаивания возрастает с повышением кислотности водной фазы при экстрагировании из растворов, близких к нейтральным (определение бора с кристаллическим фиолетовым), измерения можно проводить не ранее чем через 40—60 мин. после встряхивания, при извлечении из умереннокислых сред (определение золота, таллия) — через 20—30 мин., из сильнокислых (определение индия, галлия) — через 3—5 мин. С другой стороны, роль погрешностей, обусловленных неполным расслоением фаз, в общем балансе ошибок неодинакова в различных методах она велика там, где оптическая плотность холостых растворов близка к нулю, и уменьшается по мере возрастания аналитической составляющей порога чувствительности, обусловленной экстрагированием простой соли красителя или реактивных загрязнений. [c.163]

    Метод измерения сорбции щелочи и воды с помощью нейтральной соли был предложен Шварцкопфом [117, 118], который к раствору каустика добавлял хлористый натрий. По изменению концентрации соли (путем определения хлора) можно вычислить сорбцию воды целлюлозой, если считать, что соль не поглощается. Шварцкопф установил, что образуется соединение eHioOs-NaOH с 5—6 молями химически связанной воды, ассоциированной с этой щелочной целлюлозой. Нил [119, 120] изучал набухание листов целлофана и сорбцию ими щелочи. [c.266]

    Сорбционные свойства цеолита могут быть усилены путем введения в его состав определенных добавок, проявляющих склонность к химической ассоциации с извлекаемыми веществами. Так, например, в рецептуру цеолита, применяемого для выделения олефиновых углеводородов из их смесей с парафинами, целесообразно ввести соли металлов, образующих комплексы с олефинами — медь, никель, серебро и т. д. Иногда, наоборот, требуется подавить слишком интенсивное взаимодействие адсорбента и адсорбата, так как это может привести к необратимому поглощению части адсорбата и, как следствие, к потере активности цеолита. Примером такого явления может служить полимеризация непредельных углеводородов в порах цеолитов кислой природы. Для устранения этого нежелателыюго свойства цеолит приготовляют на основе нейтральных связующих (глин). [c.307]

    Б М. Рыбак и И. Е. Блюмин [366] предложили способ количествепногог определения серной кислоты, по которому бензольный раствор кислого гудрона промывают до нейтральной реакции теплым насыщенным раствором сульфата натрия и полученные вытяжки титруют раствором NaOH. Этот способ основан на том, что сульфокислоты и эфирокислоты не растворимы в водных растворах минеральных солей. [c.793]

    Многие реагенты способны вызывать осаждение или коагуляцию коллоидно-растворимых белков. Осаждение может быть обратимым и необратимым иными словами, выпавшее в осадок вещество может снова растворяться или же становится нерастворимым. Кипячение растворов белков, особенно при добавлении уксусной кислоты и хлористого натрия или других электролитов, приводит к необратимой коагуляции белка. Эта реакция является одной из наиболее часто применяемых для обнаружения растворенных белковых веществ (например, для открытия белка в моче). Необратимое осаждение вызывают также минеральные кислоты (азотная, платимохлористоводородная, фосфорновольфрамовая, фосфорномолибдеповая, метафосфорная, железосннеродистая), пикриновая кислота, таннин и соли тяжелых металлов. Белки сохраняют растворимость, если их осаждать из водных растворов спиртом и ацетоном кроме того, обратимое осаждение может быть вызвано различными нейтральными солями, например сульфатами аммония, натрия и магния. Для этого необходимы определенные концентрации солей, минимальная величина которых зависит от вида белка (ср. альбумины и глобулины). [c.397]

    Выше было указано, что в щелочных растворах йода образуется NaJO. Йодноватистокислый натрий окисляет Na S O, недо Ыа 8 0 , а до солей других политионовых кислот. Поэтому (а также в связи со свойствами крахмала) йодометрическпе определения ведут в кислой, нейтральной или, в крайнем случае, в слабощелочной среде (pH не выше 8 или 9). [c.404]

    Титрование хлоридов в нейтральной среде. Определение основано на образовании осадка хлористого серебра. В качестве индикатора берут хромовокислый калий КаСгО , который, после достижения точки эквивалентности, образует с избытком серебра кирпично-красный осадок А 2СгО . Хромовокислое серебро, как соль слабой кислоты, растворяется при увеличении концентрации водородных ионов. Поэтому метод, применяют главным образом для титрования нейтральных растворов хлоридов. Кислые растворы можно предварительно нейтрализовать щелочью по фенолфталеину, а затем прилить к ним разбавленной уксусной кислоты до обесцвечивания индикатора. [c.418]

    Определение хлоридов. К ЮО мл нейтрального раствора хлорида приливают 4 мл 0,2 н. азотной кислоты, 5 капель раствора индикатора и смесь титруют рабочим раствором соли ртути до появления фиолетовосинего окрашивания. [c.426]

    При определенных условиях можно превратить прямую эмульсию в обратную и наоборот, т. е. произвести обращение фаз в эмульсии. Это происходит либо при изменении характера стабилизатора (например, при химическом превращении щелочного мыла в щелочноземельное), либо при изменении взаимодействия среды со стабилизатором. Например, нейтральная соль ЫаС1, добавленная к прямой эмульсии, вызывает дегидратацию полярных групп молекул щелочного мыла в результате происходит их вы-130 [c.130]

    КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ — соединения, кристаллическая решетка которых состоит из комплексных ионов, способных существовать самостоятельно в растворах. Комплексным называется ион, состоящий из атома металла или неметалла в определенном валентном состоянии, связанного с одним или несколькими способными к самостоятельному существованию мoлeкyлa ш или ионами. К- с. образуются в результате присоединения к данному иону (или атому) нейтральных молекул или ионов. К- с., в отличие от двойных солей, в растворах диссоциируют слабо. К- с. могут содержать комплексный анион (напр., Fe ( N)e) ), комплексный катион Ag (NH3)2]+ или вообще К- с. могут не диссоциировать на ионы (напр., [Со (N0 )3 (ЫНз)з]). к. с. широко используются в аналитической химии, при получении золота, серебра, меди, металлов платиновой группы и др., для разделения лантаноидов и актиноидов. К К- с. относятся вещества, играющие важную роль в жизнедеятельности животных и. растений — гемоглобин, хлорофилл, энзимы и др. [c.132]

    ЛАКМУС (голл. 1актоез) — краситель растительного происхождения, добываемый из некоторых лишайников. Состав Л. окончательно не установлен. Красящее вещество Л.— слабая кислота, азолнтмин (индофенол) С,Н,ЫО фиолетового цвета, соли ее имеют синий цвет. Л. применяют в химии как индикатор для определения реакции среды в кислой среде наблюдается красная окраска Л., в щелочной — синяя, в нейтральной среде — фиолетовая. [c.143]

    Для определения ионообменной емкости сильнокислотные и сильноосновные иониты применяют в Н+ и ОН -форме. Иониты , обычно в виде Na-солей и хлоридов, требуют предварительной очистки от возможных загрязнений. Зерна ионита промывают раствором НС1 (1 1) в специальных колонках до удаления ионов железа (Ре +), затем водой до нейтральной среды и отсутствия ионов С1 (проба с AgNOa). Очищенный ионит в той же колонке переводят в Н+-фор-му (для катионитов) или в ОН -фор-му (для анионитов). Для перевода в Н+-форму катионит промывают [c.253]

    На равновесие реакций комплексообразования часто влияет концентрация ионов водорода. Кроме того, могут происходить конкурирующие реакции, когда в анализируемом растворе наряду с определяемым элементом присутствуют другие компоненты. В значительной степени подобные явления наблюдают в случае малоустойчивых и потому неудобных для аналитических целей комплексов, какими, например, являются тиоцианатный комплекс Ре(1 II), тетрамминат Си(П) и многие другие. Концентрация таких малоустойчивых комплексов заметно изменяется уже при добавлении нейтральных солей (КН4С1). Поэтому при разработке методик фотометрического определения металлов следует непременно оценивать возможное влияние подобных конкурирующих реакций (гл. 3.1). [c.248]

    Кулонометрическое определение кислот можно проводить непрерывно в потоке продукта и периодически в отдельной пробе. Следует более подробно остановиться на рассмотрении метода кулонометрического титрования с периодическим отбором анализируемой пробы по сравнению с упомянутым выше титрометром с периодическим отбором пробы анализируемого вещества и потенциометрической индикацией конца титрования. Если определяемое вещество неэлектроактивно, генерацию титранта можно осуществить непосредственно в испытуемом растворе. Однако чаще применяют внешнее генерирование титранта. В этом случае нейтральный раствор соли, например 5%-ный раствор сульфата натрия, пропускают через две стеклянные трубки с впаянными диафрагмами. Трубки соединяют солевым мостиком. При приложении соответствующего напряжения к электродам, находящимся в трубках с диафрагмами, в катодной камере образуются ОН-ионы в количестве, эквивалентном количеству электричества, прошедшего через раствор (по закону Фарадея). В результате из катодной камеры через диафрагму вытекает раствор соли известной концентрации, служащий титрантом. [c.430]


Смотреть страницы где упоминается термин Соли нейтральные, определение: [c.54]    [c.521]    [c.363]    [c.102]    [c.507]    [c.151]    [c.15]    [c.325]    [c.66]    [c.425]   
Количественный анализ Издание 5 (1955) -- [ c.323 ]




ПОИСК





Смотрите так же термины и статьи:

Нейтральности

Нейтральные соли

Определение валентности ионов нейтральной соли по ее коагулирующему действию

Определение нейтральных солей с применением катионитов

Определение смещения изоэлектрической точки полиамфолита в присутствии нейтральных солей

Практические работы Определение порога коагуляции золя гидрата окиси железа нейтральными солями



© 2025 chem21.info Реклама на сайте