Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цеолиты свойствам

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами они активны как в реакциях гидрирования-дегидрирования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных соединений нефтяного сырья [119, 136]. Однако каталитическая активность молибдена и вольфрама недостаточна для разрыва углерод-углеродных связей. Поэтому для осуществления реакций крекинга углеводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно-ситовые свойства. Если же кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учитывать и специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмосиликате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводородов сырья, в то время как на цеолите — реакции последующего более глубокого превращения с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отнести к поли-функциональным. [c.250]


    Способ введения металла оказывает влияние на свойства катализаторов изомеризации. При введении палладия в цеолит типа У из аммиачного [c.62]

    Для оценки катализаторов важны три фактора, относящиеся к активным центрам число центров в единице массы, соотношение числа центров В и L и кислотная сила катализатора. Теоретически число центров В связано с числом центров L в цеолите, но на практике имеется много факторов (степень кристалличности, уровень обмена, тип катиона), искажающие эту закономерность. Соотношение числа центров В kL зависит от условий предварительной обработки цеолита. Обычно нагрев катализаторов до температуры 700 С приводит к исчезновению центров В при одновременном увеличении числа центров L. Эти превращения сопровождаются отщеплением воды и, есг конечная температура не превышает предельной величины, то центры В можно регенерировать путем добавления воды при низкой температуре. На практике это означает, что соотношение числа центров В и L, так же как и все каталитические свойства, связанные с этим соотношением, зависят от условий проведения процесса в реакторе. [c.110]

    Например, при адсорбции бензола как стандартного вещества на полимерном угле САУ характеристическая энергия Е = = 27,4 кДж/моль, а на молекулярно-ситовом угле М5С-5А Е = = 30,5 кДж/моль. Следуя приведенному соотношению (2.1.8), определяем критическую температуру адсорбированной фазы бензола, которая при адсорбции на САУ будет равна 1063 К и прн адсорбции на угле М5С-5А составит 1120 К. Если же бензол адсорбируется на цеолите NaX, то характеристическая энергия равна 37 кДж/моль и, следовательно, Гкр= 1237 К. Так как значения теплот адсорбции определяются свойствами как адсорбента, так и поглощаемого вещества, то и критическая температура адсорбированной фазы существенно зависит от типа адсорбента. Существование критической температуры адсорбата, которая значительно превышает критическую температуру объемной фазы адсорбтива, подтверждает обнаруженный экспериментально во многих работах факт, что изостеры адсорбции в координатах 1п р — не имеют никакого излома при переходе через [c.31]

    Цеолиты — это порядок и регулярность структуры, а значит и свойств. В нефтепереработке быстро оценили новые возможности. Но так как цеолиты значительно дороже алюмосиликатов, то их в чистом виде решили не применять. Это оказалось не только дорого, но и излишне. Достаточно определенным образом нанести цеолит на алюмосиликат, как мы получим нужный эффект в катализе. Так появилось целое семейство цеолитсодержащих катализаторов крекинга, причем в зависимости от назначения, вида сырья, применяемой технологии количество цеолита менялось в широких пределах, но не превышало 15—20%. [c.83]


    По экспериментальным данным, приведенным в работе [11] была рассчитана характеристическая энергия адсорбции криптона на цеолите ЫаХ Е = 7740 Дж/моль и определена величина предельной адсорбции для различных температур. Теплота парообразования криптона ДЯо = 9018 Дж/моль. По формулам (2.1.8), (2.1.13) определяем критическую температуру адсорбированного криптона 7 р = 389 К и критическую плотность р р= 1240 кг/м . На рис. 2.4 приведена графическая иллюстрация, проведенных нами расчетов зависимости плотности адсорбированной фазы от температуры. Сравнение рассчитанной плотности адсорбированного криптона с экспериментальными результатами не оставляет сомнения в преимуществе разработанного метода. Адекватность описания экспериментальных данных связана, очевидно, с учетом при расчете не только основных физических свойств объемной фазы, но и характеристических характеристик адсорбции, а значит, и пористой структуры адсорбента. [c.33]

    На практике выделение -парафинов может проводиться как в результате сорбции измельченным твердым карбамидом, обычно применяемым в виде суспензии в растворителе, так и путем смешения нефтепродукта с гомогенны. раствором карбамида, в результате чего из смеси выделяется белый сметанообразный осадок, после фильтрования и сушки превращающийся в кристаллическое вещество. Кристаллы комплекса обладают гексагональной структурой, в которой молекулы карбамида располагаются спиралеобразно и связываются за счет водородных связей между атомами кислорода и азота смежных молекул, повернутых друг относительно друга на 120° и образующих круглый в сечении канал. Важнейшая особенность структуры комплексов — строго фиксированный диаметр этого канала, лежащий в пределах (5-=-6)-10" мкм. Внутри канала легко могут располагаться линейные молекулы парафина (эффективный диаметр молекулы (3,8- -4,2)-10 мкм] и практически не размещаются молекулы разветвленных парафинов, ароматических углеводородов (эффективный диаметр молекулы около 6- 10 мкм) и т. д. Этим свойством карбамидный комплекс напоминает цеолит. По другим признакам аддукт близок к химическим соединениям. Так, карбамид реагирует с углеводородами в постоянном для каждого вещества мольном соотношении, медленно возрастающем с увеличением длины цепочки, причем для различных гомологических рядов эти соотношения также несколько отличаются. Величины мольных соотношений, хотя и представляющие собой дробные числа (табл, 5.23), напоминают стехио-метрические коэффициенты в уравнении закона действующих масс. С возрастанием длины цепочки увеличивается и теплота образования аддукта. Эго, в частности, проявляется в том, что высшие гомологи вытесняют более низкие 1.3 -аддукта. [c.315]

    Сформулированные положения стимулировали постановку дальнейших работ с целью изучения возможности замены существующего промьппленного способа получения высокооктановых компонентов бензинов (изооктана) путем алкилировании изобутана бутиленами, в котором в качестве катализаторов используются серная и фтористоводородная кислоты. Совместно с К. И. Патриляком исследованы особенности процесса алкилирования изобутана бутиленами на поликатионно-декатионированном цеолите типа X. Установлено существование периода разработки катализатора, зависимости протекания процесса от условий активации катализатора, пульсирующего характера процесса в отдельных зонах катализатора по высоте слоя, неодинаковой алкилирующей способности бутиленов, изомеризации бутилена-1 в бутилен-2. Развиты теоретические представления о природе активных центров Льюиса и связанных с ними физико-химических свойствах поликатиопно-декатионированных цеолитов типа X и . Эти работы послужили научной основой получении ияооктана алкилированием изобутапа бутиленами в присутствии цеолитных катализаторов. Промышленная реализация процесса позволит перевести алкилирование в число процессов с безотходной технологией. [c.15]

    Б то же время существует грунна адсорбентов, называемых цеолитами, которые имеют однородные поры и не способны адсорбировать молекулы, размер которых больше диаметра пор. Исходя из этих свойств цеолиты часто называют молекулярными ситами. Название же цеолит , в переводе с греческого означаю- [c.72]

    Для того чтобы колонка с цеолитом вновь приобрела свойства молекулярного сита, необходимо регенерировать цеолит, что производится путем нагрева и откачки (вакуумирования) для удаления адсорбированного компонента. [c.312]

    Обратимыми ядами для алюмосиликатных катализаторов являются азотистые основания они прочно адсорбируются на кислотны х активных центрах и блокируют их. При одинаковых основных свойствах большее дезактивирующее воздействие на катали — затор оказывают азотистые соединения большей молекулярной массы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Цеолит — содер ясащие катализаторы, благодаря молекулярно — ситовым свой— ствам, отравляются азотом в значительно меньшей степени, чем аморфные алюмосиликатные. [c.105]


    Качественное исследование кинетики сорбции индивидуальных жидких углеводородов от н-пентана до н-гептадекана [212] на кристаллических цеолитах СаА при различных температурах показало, что несмотря на то, что рассматриваемые гомологи имеют один и тот же не критический диаметр молекул, наблюдается сложная поли-модальная зависимость сорбционных свойств — скорости сорбции, энергии активации, теплот сорбции н-парафинов от длины молекулы. Представляет интерес сравнение данных по жидкофазной адсорбции н-алканов на цеолите СаА из их растворов в изооктане и из масляных фракций. [c.285]

    Бензин из туркменской нефти (продукция Батумского нефтеперерабатывающего завода) имеет столь низкое октановое число (55), что без его повышения он не находит применения в народном хозяйстве. Низкое октановое число данного бензина обусловлено присутствием алканов нормального строения, поэтому их удаление должно повышать антидетонационные свойства бензина. Объектом исследования в данной работе был бензин из туркменской нефти с т. кип. 37—158°С, а в качестве адсорбента н-алканов применяли синтетический цеолит СаА в виде гранул — образец Горьковской опытной базы ВНИИНП Ц-202-238. [c.193]

    Вспомогательные добавки улучшают или придают некото — рые специфические физико —химические и механические свойства пеолитсодержащих алюмосиликатных катализаторов (ЦСК) крекинга. ЦСК без вспомогательных добавок не могут полностью удовлетворять всему комплексу требований, предъявляемых к современным промышленным катализаторам крекинга. Так, матрица и активный компонент — цеолит, входящий в состав ЦСК, обладают только кислотной активностью, в то время как для организации интенсивной регенерации закоксованного катализатора требуется наличие металлических центров, катализирующих реакции окислительно-восстановительного типа. Современные и перспектив — гые процессы каталитического крекинга требуют улучшения и оптимизации дополнительно таких свойств ЦСК, как износостойкость, механическая прочность, текучесть, стойкость к отравляю — Б(ему воздействию металлов сырья и т.д., а также тех свойств, которые обеспечивают экологическую чистоту газовых выбросов в атмосферу. [c.114]

    Селективность каталитического действия в процессах селективного гидрокрекинга (СГК) достигается применением специаль — них катализаторов на основе модифицированных высококремне— земных цеолитов, обладающих молекулярно— ситовым свойством. Катализаторы СГК имеют трубчатую пористую структуру с разме — рсМи входных окон 0,5 — 0,55 нм, доступными для проникновения и рс агирования там только молекулам парафинов нормального с тро — ег ИЯ. Для гидрирования образующихся продуктов крекинга в цеолит ВЕодят обычные гидрирующие компоненты (металлы У1П и VI групп). [c.234]

    Однако 1 процессе восстановления катионообменных форм цеолитов водородом происходит миграция образующихся атомов металла на вторичную пористую структуру I . последующим их агрегированием в крупные кристаллы [2]. Между том изпестно, что каталитические свойства этих контактов во многом зависят ог со( тояния ввсдепного в цеолит металла, его дисперсности и степени гомого то1 ты в цеолите. [c.331]

    При увеличении объемной скорости подачи сырья до 4,0 ч и 6,0 ч наибольшую активность показал катализатор Г5-168ш. При исследовании зависимости степени обессеривания 1яи<елой дизельной фракции от объемно скорости подачи сырья отчетливо наблюдается перегиб кривых при переходе от скорости 4,0 ч к 6,0 ч для катализаторов на аморфных носителях, ) практически линейная зависимость для цеолитных катализаторов, такая ка1 при изменении температуры и давления. Указанное явление может б1 п объяснено, по-видимому, тем, что цеолитный компонент носителя начинас проявлять свои крекирующие свойства по отношению к сернис г1зИ соединениям лишь при высокой температуре и давлении, и пониженно объемной скорости подачи сырья, , е, условиях, приближающихся к условия гидрокрекинга. При обычных же условиях гидроочистки цеолит таких свойс/ не проявляет. [c.107]

    Улучшению каталитических свойств цеолита способствует обмен аммонийной формы на трехвалентные катионы редкоземельных элементов (РЗЭ). Полноте ионообмена способствует ведение этой гидротермальной стадии при повышенных температурах (230 С) в автоклаве под давлением. Деалюминирование и последующее де-гидроксилирование протекают при 200-600 С. Активация в присутствии NH3 или паров воды при температурах выше 750 С дает цеолит, стабильный при температурах выше 700 С. Его называют ультраста-бильным цеолитом. [c.104]

    Созданию высокоселективных, активных и стабильных катализаторов крекинга способствует также оптимизация состава и поровой структуры матрицы. В качестве матрицы чаще всего используют аморфный алюмосиликат с диаметром пор > 500A (50 нм), так называемы мезопор. При этом большие молек улы асфальтенов, смол и фракций, выкипающих выше 500 °С, подвергаются в крупных порах матрицы на опротонных центрах легкому крекингу с получением продуктов с молекулами меньших размеров без образования заметных количеств газа и кокса. Соотношение свойств матрицы и цеолита должно быть таким, чтобы на матрице подвергались крекингу фракции, кипящие выше 500 °С с образованием фракций тяжелого газойля, а на цеолите - фракции, кипящие в пределах 300-500 С с образованием бензина. Схематически это.можно изобразить следующим образом  [c.111]

    Все природные и большинство синтетических цеолитов представляют собой алюмосиликаты. Наибольшее значение в катализе имеют кристаллические алюмосиликатные цеолиты типа А, X, У и другие, с прочным трехмерным скелетом [215]. Общую формулу цеолитов можно представить в виде Мг/пО-АЬОз- сЗЮг-г/НгО, где п — валентность металлического катиона М л — мольное соотношение ЗЮг АЬОа у — число молей воды. Величина х в значительной степени определяет структуру и свойства цеолитов. В цеолите типа А X близок к 2 в цеолитах типа X — изменяется от 2,2 до 3 У — от 3,1 до 5,0 в синтетическом мордените достигает 10. Для каталитических процессов используют цеолиты с х = 2,8—6,0 [215, 216]. При различных условиях синтеза цеолитньус катализаторов (химический состав кристаллизуемой массы, параметры кристаллизации, природу катиона) можно в широких пределах изменять величину X [217, 218]. Так, низкокремнистые катализаторы (х = = 1,9—2,8) синтезируют в сильно щелочной среде, а в качестве источника кремнезема используют силикат натрия. Для получения высококремнистых цеолитов применяют более реакционно-способные золи или гели кремневой кислоты, а синтез проводят в менее щелочной среде [219]. [c.172]

    Jia селективность цеолитов большое влияние оказывает их мо Гекулярно-ситовой эффект. Объем пор соизмерим с размером молекул (0,2—1,0 нм) и его можно изменять введением различных катионов методом ионного обмена. В цеолитах можно не только менять катионный состав, но и модифицировать алю-мосиликатный каркас и таким образом, изменять каталитические свойства в желаемом направлении.И ем больше соотношение Si02 AI2O3, тем более активен цеоли  [c.25]

    В работе [31] описана глубокая деароматизация керосина (фракция 170-270°С), содержащего 3,7 2 ароматических углеводородов и жидких парафинов. В качестве адсорбента поимйнен цеолит На . После деароматизации продукта содержание аромати скюс углеводородов не превышает 0,1-0,252. Для десорбции использовали водяной пар с температурой 300°С. После многих циклов деароматизации, проведенных непрерывно на пилотной установке в течение 23 суток, адсорбционные свойства цеолита, связанные с отрицательным воздействием на него водяного пара, снизились примерно на 10 8. [c.231]

    В табл. 18 показаны каталитические свойства кальций- и лантандекатионированных цеолитов до и после их регенерации. Из данных табл. 18 видно, что первоначальная активность некоторых цеолитных катализаторов после нескольких регенераций значительно снизилась. Лишь при содержании более 60% на цеолит ионов a + и Ьа + достигается высокая стабильная активность [79]. [c.58]

    Синтетический цеолит типа морденит относится к среднекремнистым цеолитам (модуль SiO /Al O, = 8,0-10,0), обладающим высокой термической и кислотной стабильностью. Эти свойства в сочетании со специфической кристаллической структурой морденита обусловили eio применение в качестве адсорбента для осушки кислых газов, а также компонента ряда современных катализаторов. [c.152]

    Сорбционные свойства цеолита могут быть усилены путем введения в его состав определенных добавок, проявляющих склонность к химической ассоциации с извлекаемыми веществами. Так, например, в рецептуру цеолита, применяемого для выделения олефиновых углеводородов из их смесей с парафинами, целесообразно ввести соли металлов, образующих комплексы с олефинами — медь, никель, серебро и т. д. Иногда, наоборот, требуется подавить слишком интенсивное взаимодействие адсорбента и адсорбата, так как это может привести к необратимому поглощению части адсорбата и, как следствие, к потере активности цеолита. Примером такого явления может служить полимеризация непредельных углеводородов в порах цеолитов кислой природы. Для устранения этого нежелателыюго свойства цеолит приготовляют на основе нейтральных связующих (глин). [c.307]

    Примером образования поверхностных химических соединений в процессе адсорбции является очистка водорода от примеси кислорода на цеолите типа AgNaA [18]. Известно и свойство палладия поглощать водород. В нагретом состоянии палладий поглощает до 900 объемов Hj на 1 объем металла с образованием PdaHj и PdjH. При этом палладий сохраняет свой внешний вид, но значительно увеличивается в объеме, становится ломким и легко образует трещины. Поглощенный палладием водород находится в состоянии, приближающемся к атомарному, и поэтому очень активен. Выделение водорода из палладия происходит при снижении давления. [c.54]

    Особенностьв системы цеолит-адсорбат является ее изменяемость в ходе процесса адсорбции-десорбции из-за снижения емкости цеолита, основными причинами которой являются необратимая адсорбция части углеводородов в первых циклах и коксообразование при длительной эксплуатации. Принимая во внимание эти явления, результаты первого опыта на свежем образце оценивали как относящиеся к активированному цеолиту. Затем проводили ряд циклов адсорбции и по-следупщей десорбции, в ходе которых адсорбционная емкость цеолита снижалась до определенного уровня, на котором оставалась в течение 10-20 циклов (стабилизированный цеолит). При этом масса стабилизированного цеолита перед опытами несколько отличалась от массы активированного цеолита на одну и ту же величину. Если термо-десорбцией не удавалось восстановить массу образца до уровня стабилизированного, содержание кислорода в азоте постепенно повышали до 2 об. и проводили окислительную регенерацию. Кроме того о стабильности адсорбционных свойств судили по величине адсорбции в контрольных опытах. [c.25]

    Статья посвящена анализу работы цеолитов различной формы в пилотных и прошшленных условиях. Показан характер изменения емкости цеолитов до проскока по н-парафинам в процессе их эксплуатация. Найдено, что цеолит кальциевой формы, используемый в настоящее время ва промышленных установках, по своим адсорбционным свойствам значительно превосходит проектный цеолит магниевой формы Идя.2, табл.1. [c.147]

    Метод ионного обмена основан на свойстве некоторых твердых тел (ионитов) поглощать из раствора ионы в обмен на эквивалентное количество других ионов того же знака. Иониты подразделяются на катиониты и аниониты. Катиониты содержат подвижные катионы натрия или водорода, а аниониты подвижные ионы гидроксила. В качестве катионитов применяют сульфоугли, алюмосиликаты (пермутит, цеолит и др.), в качестве анионитов искусственные смолы, например карба-мидные. [c.75]

    При изготовлении катализаторов содержание натрия снижают до минимума, так как в его присутствии при высоких температурах в средах, содержащих водяной пар, резко снижается активность и стабильность катализатора. При замене в цеолите одновалентного металла (Na) на двухвалентный и более, например на кальций, рений, церий н др., его структурная характеристика изменяется (увеличивается размер пор) прн этом благодаря наличию на внутренней поверхности кристаллов цеолитов кислотных центров активность катализатора возрастает. Чем больше окнслов кремния и чем меньше окислов алюминия в решетке цеолита, тем больше расстояние между атомами алюминия. Следовательно, валентные связи между атомами алюминия -и других трехвалентных металлов все больше ослабевают, и образуются сильно выраженные диполи. Прн этом активность кислотных центров возрастает. Применяя цеолиты с различными типами решеток и различными катионами металлов, можно регулировать каталитические свойств а цеолитов и получать катализаторы различного назначения. [c.54]

    Адсорбционные свойства цеолитов проявляются после их обезвоживания, так как в процессе синтеза полости кристаллов заполняются молекулами воды. Она может быть удалена нз кристаллов при нагревании до 300— 50 °С. При этом решетка большинства цеолитов сохраняе-j свою структуру. После дегидратации цеолиты обладают высокой адсорбционной емкостью. Объем пустот в них может составить до 50% общего объема кристаллов. Важной особенностью решетки цеолита является высокая термостабнльность. Так, цеолит NaA устойчив до 650 С, NaY —до 700—750 °С, aY —до 800 °С, LaY —до 850 °С. Термостабильность цеолитов возрастает с увеличением содержания в них кремнезема, а также размеров катиона [34]. [c.54]

    По сравнению с составляющими компонентами сложная система цеолит — матрица обладает рядом новых важных свойств, обусловленных взаимодействием и взаимовлиянием этих ком,по-нентов. Было обнаружено [27], что матрица оказывает синергическое действие на каталитическую стабильность цеолита ири термоиаровой обработке. Например, влияние матрицы на стабильность цеолита типа Y в редкозе.мельной обменной форме (сырье — среднеконтинентальный газойль, температура 482 °С, объемная скорость 4 ч , время крекинга 10 мин) показано ниже  [c.40]

    В табл. 3.1 приведены показатели трех образцов цеолитсо-держащих катализаторов, стабилизованных при различных условиях в сопоставлении с их свойствами в равновесном состоянии на промышленной установке [2]. Использование вместо природной глины полусинтетической матрицы лри неизменном цеолит-ном компоненте требует ужес-точения условий дезактивации Для достижения свойств, наблюдаемых для равновесного катализатора. Введение прокаленного аммонийзамещенного цеолита типа Y вместо REHY при одинаковой матрице обусловливает дезактивацию в более мягких условиях. Обработка даже при 732 °С для третьего катализатора является несколько жесткой, так как значения основных свойств ниже, чем у равновесного образца. [c.43]

    Собственно сорбенты, как природные, так и синтетические, например, перлит, вермикулит, цеолит, могут сорбировать в своей пористой структуре лишь до 0,2-0,3 г нефти на г сорбента, однако благодаря адгезии количество удерживаемой нефти на сорбентах многократно повышается. Для улучшения адгезионных свойств сорбенты можно модифицировать. Так, обработанный кремнийорган ческими соединениями перлит собирает нефть до 6-9г/г. Гидрофобизированное базальтовое волокно одним фаммом способно удерживать до 50-60 г легких нефтепродз. ктов [9]. [c.159]

    В данной работе рассмотрены зависимости кислотных свойств К0ГШ03И1ЩЙ иД 1/ -АХзОз/промотор ( 2л ) от содержания отдельных компонентов, условий введения промотора и условий последующих обработок. Пля исследования использовали цеолит ЦШ ( 02/ 120 = 35) и гидратированный оксид алюминия, синтезированные в АО АНХК. Промотог) вводили методом ионного обмена и пропитки по водо- [c.136]

    При сорбции из бинарных жидких растворов на кристаллическом цеолите СаА, когда в силу геометрических размеров в кристаллы проникают молекулы лишь одного компонента, большую роль играет растворитель. Любой растворитель, адсорбируясь на поверхности кристалла цеолита, является конкурентом основного компонента. В зависимости от природы растворителя и его концентрации доля поверхности, занятая компонентом, проникающим в полости цеолита, может зЕтачительно меняться, что приводит к изменению скорости адсорбции. При сорбции из растворов внешняя поверхность цеолита находится в равновесии с раствором, при этом часть поверхности занята молекулами сорбирующегося вещества, а другая часть — молекулами растворителя. Доля поверхности, занятая каждым из компонентов, определяется их адсорбционными свойствами. Так как внешняя поверхность кристаллов цеолита полярна, то активность растворителей должна увеличиваться с ростом их полярности и способности к специфическим взаимодействиям с поверхностными активными центрами. [c.284]


Смотреть страницы где упоминается термин Цеолиты свойствам: [c.161]    [c.14]    [c.303]    [c.331]    [c.331]    [c.332]    [c.337]    [c.174]    [c.313]    [c.30]    [c.367]    [c.92]    [c.147]   
Лабораторная техника органической химии (1966) -- [ c.330 , c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные и молекулярно-ситовые свойства цеолитов

Адсорбционные свойства натриевых синтетических цеолитов

Адсорбционные свойства различных катионзамещенных форм цеолитов

Адсорбционные свойства цеолитов

Адсорбция оснований и кислотные свойства цеолитов

Виноградова, Л. С. Кофман. Исследование молекулярно-сиговых свойств синтетических цеолитов

Влияние воды на кислотные свойства цеолитов

Влияние замещения Na на Са2 на адсорбционные и молекулярно-ситовые свойства цеолитов

Г РАЗДЕЛЕНИЕ ВЕЩЕСТВ НА ОСНОВЕ МОЛЕКУЛЯРНО-СИТОВЫХ СВОЙСТВ ЦЕОЛИТОВ

Гидрирующе-дегидрирующие свойства цеолитов

Гидроксильные группы структурны цеолитов, свойства

Грязнова, М. М. Ермилова, А. А. Баландин, Г. В. Цицишвили, Башин (СССР). Влияние ионного обмена на каталитические свойства цеолита типа

Диэлектрические свойства цеолито

Ивл 1,4 Особенности структуры и свойств СВКI— цеолитов

Изменение свойств кристаллов цеолитов с изменением их химического состава

Изменения адсорбционных свойств, связанные с изменениями природы щелочноземельных катионов в цеолитах

Изменения адсорбционных свойств, связанные с изменениями природы щелочных катионов в цеолитах

Изучение свойств адсорбированных веществ и состояния обменных катионов в различных катионзамещенных формах цеолитов методом Исследование состояния адсорбированных молекул методом ПМР

Ионный обмен на цеолитах и некоторые физико-химические свойства их катионзамещенных форм

Каталитические свойства металлсодержащих цеолитов

Каталитические свойства некоторых ионных форм цеолитов типа У, морденита и ЛМ

Каталитические свойства цеолитов, содержащих катионы металлов различной валентности

Кислотные свойства декатионированных цеолитов

Модификация цеолитов металлами через их карбонилы. Получение, состояние металла, каталитические свойства

ОГЛАВЛЕНИЕ Стр Общие свойства и особенности структуры цеолитов

Основные физико-химические и адсорбционные свойства цеолитов

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ПРИРОДНЫХ СОРБЕНТОВ И ЦЕОЛИТОВ Л И Пигузова Об основных свойствах и применении некоторых высококремнистых природных цеолитов типа молеку пярных сит

Протонодонорные свойства гидроксильных групп декатионированных цеолитов

Разделение веществ на основе молекулярноситовых свойств цеолитов

Свойства фазы, адсорбированной в цеолитах

Свойства цеолитов, важные для их использования в качестве катализаторов

Свойства цеолитов, оптические

Связь каталитической активности цеолитов с их структурой и химическими свойствами

Синтез и свойства высококремнеземиых цеолитов

Сравнение свойств аморфных алюмосиликатов и цеолитов

Строение и свойства цеолитов

Структурные гидроксильные группы и кислотные свойства поверхности цеолитов

Теоретические вопросы адсорбции на цеолитах и исследование их свойств Дубинин. Особенности адсорбции паров различных веществ на цеолитах как на микропористых адсорбентах

Физические свойства кристаллических цеолитов

Физические свойства кристаллов цеолитов

Характерные свойства узкопористых цеолитов

Химические свойства и реакции цеолитов

Цеолиты молекулярно-ситовые свойства

Цеолиты, адсорбция ионообменные свойства

Цеолиты, адсорбция молекулярно-ситовые свойства

Цеолиты, аммонийные формы каталитические свойства

Шишаков а, М. М. Дубинин. Термическая обработка гранул и адсорбционные свойства кристаллических и формованных синтетических цеолитов NaX и СаА



© 2025 chem21.info Реклама на сайте