Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные пары аминах

    В случае адсорбции паров амина остается невыясненной та доля в образуемой связи, которая определяется либо водородной связью, либо ионным притяжением  [c.904]

    В этой реакции протон, связанный водородной связью с анионом ионной пары, переносится гораздо медленнее, чем протон, связанный с молекулой растворителя. В ледяной уксусной кислоте (е = 6,22 при 25°С) метиламины, почти полностью переходят в соответствующие ацетатные соли, которые существуют в этом растворе преимущественно в виде ионных пар типа ВН+ОАс-. Реакция переноса протона имеет первый порядок по этой ионной паре и протекает, вероятно, по двухстадийному механизму с первоначальным образованием недиссоциирован-ного амина. [c.35]


    Поскольку экстракционные равновесия являются гетерогенными, для получения данных о механизме извлечения необходимо знание состояния соединений рения как в водных, так в неводных и смешанных растворителях. В случае полярных растворителей (вода, спирты, кетоны и ряд аминов) в растворах находятся ионы и соответствующие ассоциаты (ионные пары, тройники и т. д.), причем состав ассоциатов и параметры, характеризующие их (в основном межионное расстояние и константы ассоциации) являются как функциями диэлектрических проницаемостей равновесных фаз, так и свойств и строения соответствующих растворителей [56]. Кроме того, поскольку при извлечении рения, как это было показано ранее, в состав ряда сольватов входит вода [20] и поскольку органические растворители в той или иной степени взаимодействуют с ней, необходимо изучение ряда равновесных систем, а также различных факторов, влияющих на соответствующие равновесия [21—26]. [c.247]

    Так как в системах, имеющих два минимума на поверхности потенциальной энергии, образование ионной пары из свободных молекул кислоты и основания происходит через стадию промежуточного молекулярного комнлекса, можно было бы попытаться извлечь информацию о скорости миграции протона внутри комплекса путем анализа кинетики процесса перехода протона от АН к В. Однако оказывается, что обычно миграция протона является процессом значительно более быстрым, чем образование комплекса. Так, в работе [128] методом микроволнового температурного скачка с регистрацией по УФ-ноглощению была изучена кинетика образования ионных пар при взаимодействии ряда фенолов с аминами в растворителях типа хлорбензола. Скорости процесса составляли 0,1—0,01 от диффузионного предела, причем константы скорости не коррелировали с константами равновесия и скорее всего определялись стерическими факторами молекул-партнеров. Это привело авторов к заключению, что образование ионной пары лимитируется не процессом перехода протона, а стадией образования комплекса с водородной связью. Уменьшение скорости по сравнению со скоростью диффузии было интерпретировано как обусловленное энтропийным фактором, т. е. необходимостью столкновения двух определенным образом ориентированных многоатомных молекул. [c.244]


    Более резко выраженная сольватация ароматическими углеводородами приводит к экранированию высокого дипольного момента мономерной ионной пары, стабилизации ее, что тем самым препятствует агрегации солей амина. В согласии с этим специфичес1 ие сольваты, образованные спиртами и ионными парами амина [484, 515—517. 543, 544], будут предотвращать молекулярную ассоциацию в полярных разбавителях. Возможно, молекулы спирта пли вообще [c.59]

    Хорошо известно, что высокомолекулярные амины могут экстрагироваться в виде ионных пар аммониевых солей с различными противоионами из водных растворов в среду, подобную хлороформу. Недавно селективная экстракция такого типа была положена в основу ряда аналитических методов [44, 47—51, 54, 58] и способов разделения [7, 52, 53]. Как уже упоминалось в разд. 1.3.1 и хорошо описано в обзорах Брендстрёма [11, 112], могут существовать чрезвычайно сложные равновесные системы с несколькими константами, которые зависят от структуры аниона, катиона и растворителя, а также от pH, ионной силы и концентраций. В результате физико-химических и аналитических исследований подобного равновесия установлено, что существует взаимосвязь между размером катиона и константой экстракции. Этот факт очень важен для МФК. [c.27]

    Показано [617], что при взаимодействии третичного амина, олефина и хлороформа (2 ч, 50°С) в отсутствие гидроксида натрия не образуется аддуктов дихлоркарбена. Далее, не наблюдалось также какой-либо реакции при продолжительном кипячении три-н-пропиламина и хлороформа [447]. Кимура и сотр. [623] считают, что А переносит дихлоркарбен к олефину. Однако Макоша [433] показал, что образование А не является обратимым при взаимодействии эквимолярных количеств третичного амина и хлороформа со стиролом и NaOH не образуется аддукт дихлоркарбена со стиролом. Макоша считает, что при нормальных условиях (при избытке хлороформа) А де-протонирует хлороформ с образованием ионной пары В, которая затем может переносить ССЬ с образованием С. Затем С разлагается на хлороформ и амин, и цикл может начаться снова [433]. [c.325]

    На основании этих результатов сделан вывод, что дейтерий отщепляется амином и образующийся аммоний-ион остается спаренным с карбанионом ионной связью. Катион необязательно должен оставаться в исходном положении, так как резонанс кольцевой системы обеспечивает делокализацию отрицательного заряда по всем атомам вплоть до кислорода заместителя. В таком случае ионная пара, которая теперь лежит в плоскости кольца, может скюльзить вдоль планарной структуры или возвращаться в исходное положение, не обменивая дейтерий на протоны растворителя. Для данного процесса Крам предложил название механизм направленной миграции (основание мигрирует вдоль молекулы), чтобы объяснить явление изоинверсии. Заметим, что в метаноле (более сильная кислота, чем трет-бутанол) карбанион гораздо легче протонируется и поэтому его период полупревращения не достаточно продолжителен, чтобы обеспечить процесс направленной миграции. [c.446]

    В этом случае информацию о механизме реакции можно получить, измеряя отношение константы скорости изотопного обмена ке) к константе скорости рацемизации (йа). Если отношение кс к значительно больше единицы, это означает, что реакция происходит с сохранением конфигурации, поскольку процессы изотопного обмена не вызывают изменения конфигурации. Величина отношения ке ка, близкая к единице, указывает на рацемизацию, а величина этого отношения, равная /г, говорит об обращении конфигурации (разд. 10.1). В зависимости от природы К, основания и растворителя наблюдается один из трех типов стереохимического поведения. Как и в реакции расщепления алкоксидов, в растворителях с низкой диэлектрической проницаемостью обычно наблюдается сохранение конфигурации, в полярных апротонных растворителях — рацемизация, а в протонных растворителях — обращение конфигурации. Однако в реакциях обмена протона появляется и четвертый тип стереохимического поведения. Было найдено, что в апротонных растворителях и с апротонными основаниями, подобными третичным аминам, отношение кс1ка. меньше 7г это свидетельствует о том, что рацемизация происходит быстрее, чем изотопный обмен (такой процесс известен как изорацемизация). В этих условиях сопряженная кислота амина остается ассоциированной с карбанионом в виде ионной пары. Иногда ионная пара диссоциирует достаточно медленно, для того чтобы карбанион успел вывернуться и снова захватить протон  [c.415]

    Ионная пара В+Р- будет растворяться в полярной органической фазе, например в смеси спирта с хлороформом, а ионные формы будут растворяться в воде. Для определения ароматических сульфокислот применяют в качестве противоиона тетра-бутиламмоний, а для анализа хинина—сульфокислоты камфоры. В качестве противоиона обычно используют четвертичные или третичные амины, соли сульфокислот. Наиболее часто применяют тетраметил, тетрабутил, пальметилтриметиламмоний для анализа кислот, сульфированных красителей и третичные амины типа триоктиламина для анализа сульфонатов. Противоионами для анализа оснований являются соли алкил- и арилсульфокислот, перхлораты, пикраты. [c.75]


    С помощью Д с с изучают процессы, происходящие в равновесных системах, преим однофазных жидких или твердых Так, в жидких р-рах осн процессы распад ассоциатов, образованных однотипными молекулами (напр, молекулами спирта, между к-рыми имеется водородная связь), образование сольватов (гидратов), хим р-ции обмена, напр этерификация в смесях спиртов с орг к-тами, образование ионных пар, напр [RjNH" ] [R OO ] при взаимод третичных аминов с карбоновыми к-тами, распад ионных пар В металлич сплавах с помощью Д с с изучают образование интерметаллич соед, определяют границы существования твердых р-ров [c.32]

    Причина этого явления, очевидно, заключается во взаимодействии кетокислоты и хирального амина, в результате которого образуется солеобраэная контактная ионная пара, а индуцированный КД возникает благодаря близости противононов в контактной ионной паре в недиссоциирующих растворителях. В таком случае повышение степени диссоциации ионной пары в более полярных средах должно снижать эллиптичность КД. что и наблюдалось в эксперименте [132]. [c.448]

    Достигнут большой прогресс в теории и практике экстракционных процессов с использованием высокомолекулярных алифатических аминов. Как показано в девятом разделе, эта быстро развивающаяся область может найти широкое применение в современной технологии разделения элементов. Установлено, что соли алкиламинов подвергаются в различной степени молекулярной ассоциации. Интерпретация данных по распределению металла на основе агрегации аминов, образующих ионные пары, составляет значительную часть экспериментальных исследований в этой области. [c.24]

    Под действием краун-эфиров могут быть растворены многие различные типы соединений, например неорганические соли, комплексы переходных металлов, метадлоорганические комплексы и органические соединения щелочных металлов. Недавно бцло обнаружено, что щелочные металлы (N3 и К) в присутствии краун-эфиров также растворимы в органических растворителях, таких, как эфиры и амины. В настоящее время изучаются механизм растворения, структура раствора и вопросы практического применения зтого явления. Другие исследования напраэлены на изучение структуры и поведения в растворе ионной пары комплекса органическое соединение щелочного металла - краун-зфир. [c.98]

    В некоторых случаях при экстракции аминами наблюдается образование третьей фазы из-за ограниченной растворимости соли амина в разбавителе. Образование третьей фазы наиболее характерно для систем аминосульфат — алифатический углеводород. Для предотвращения образования третьей фазы к разбавителю добавляют небольшое количество длинноцепочечного спирта. Молекулы спирта взаимодействуют с ионной парой соли амина и изменяют ее диэлектрические свойства. [c.192]

    Более подробно химизм взаимодействия перекиси бензоила с аминами исследован в работах Хорнера и сотр. [90, 91] и Грабака [92]. Согласно Хорнеру и Швейку [90], для всех аминов первичной стадией является образование комплекса амина с перекисью, в котором затем происходит переход электрона от амина к перекиси с образованием ионной пары и бензоатного радикала. Например, для метиланилина  [c.53]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях, выполненные Барроу с сотрудниками на основании изучения инфракрасных спектров, показали, что уксусная кислота и ее галоидозамещенные образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизиро-ванные продукты присоединения, образованные за счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы, которые благодаря низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные пары. Между катионом, полученным в результате передачи протона основанию, и анионом так же возникает водородная связь А . .. НМ+, но уже между веществами, полученными в результате обмена протона- [c.571]

    НИИ образования пар в аминах [196—198] ионы М+ вводили в виде имидов (например, СНзКНЫа для метиламина). Было обнаружено, что е быстро взаимодействуют с М+ и возникающие при этом ионные пары (еГ, М+) имеют оптические полосы поглощения с максимумами при более коротких длинах волн, чем полоса е (табл. 4.1). Отметим, что влияние природы катиона на оптический спектр поглощения ионной пары в аминах выражено в существенно меньшей степени, чем в тетрагидрофуране. [c.144]

    В спектрах растворов, содержащих уксусную кислоту (или другие алифатические кислоты — пропионовую, изомасляную и т. д.) и пиридин, во всем изученном интервале температур наблюдаются только полосы свободных молекул кислоты и пиридина, димеров кислоты и молекулярного комплекса с водородной связью-OH---N [39]. Полосы ионных форм отсутствуют. В спектрах же-растворов СН3СООН в третичных алифатических аминах наряду-с полосой V (С=0) молекулярного комплекса уже появляются слабые полосы, типичные для колебания групп Oa ацетат-иона (рис. 2), и, следовательно, имеет место таутомерия (3, б). Равновесные концентрации зависят от соотношения протонодонорных и протоноакцепторных свойств молекул и от температуры. При переходе к более сильной кислоте H2 I OOH (так же, как и при замене третичного амина вторичным) равновесие смещается в сторону ионной пары, о чем свидетельствует соответствующее перераспределение интенсивности полос. [c.221]

    Во многих работах в качестве основного параметра, определяющего степень взаимодействия 5комплекса со средой, называется диэлектрическая постоянная е. Рассматривая комплекс как жесткий диполь, помещенный в изотропную поляризующуюся среду, можно прийти к выводу, что с увеличением е равновесия (2) и (3) должны смещаться в сторону ионной пары, поскольку ее дипольный момент значительно больше дипольного момента молекулярного комплекса и тем более больше суммы дипольных моментов свободных молекул. В ряде случаев такая ситуация действительно наблюдалась на опыте. Так, в работах [55—57] исследовались УФ-спектры комплексов п-нитрофенола с триэтил-амином и было обнаружено, что в растворах в изооктане (е = = 1,94) и в триэтиламине (б = 2,42) комплекс имеет молекулярное строение, в дихлорэтане (е = 10,7) наблюдается равновесие (3, б), а в растворителях типа диметилсульфоксида, диметилформамида, ацетонитрила (е = 30 40) наблюдаются лишь ионные пары и сольватированные ионы, появляющиеся в результате диссоциации ионных пар. [c.241]

    Имеются, однако, и примеры другого рода. Так, энтальпия образования ионной пары в системе пентахлорфенол—дибутил-амин, измеренная в СС14, оказалась больше, чем в СНС1з, хотя Б последнего выше [46]. Этот факт объясняется, но-видимому, наличием водородной связи между молекулами амина и хлоро- [c.241]

    Однако несомненным недостатком большинства расчетов является то, что они проведены в приближении одномерного движения протона. В то же время, как об этом говорилось ранее, реакция перехода протона должна сопровождаться изменением конфигурации тяжелых ядер. Наконец, в случае комплексов с молекулярно-ионной таутомерией процесс сопровождается одновременной перестройкой молекул растворителя вокруг комплекса. Как уже отмечалось, при превращении молекулярного комплекса в ионную пару происходит понижение энтропии на величину 20—30 э. е. [46], которое трудно объяснить только изменением внутренних статистических сумм комплекса, и приходится предположить, что это изменение энтропии обусловлено перестройт кой сольватной оболочки. Следовательно, в противоположность часто высказываемому мнению (см., например, [126]) молекулы растворителя успевают принять равновесную (или почти равновесную) конфигурацию за время нахождения протона в каждой потенциальной яме. Кроме того, в спектрах типичных таутомерных комплексов, например комплексов карбоновых кислот с аминами, полосы колебаний, относящихся к молекулярной и ионной формам (в частности, полосы валентных колебаний групп С=0 и Og), наблюдаются раздельно и обычно не уширены по сравнению с аналогичными полосами нетаутомерных комплексов. Это пока-. [c.243]

    Некоторые комплексы указанных молекул обнаруживают молекулярно-ионную таутомерию. Например, в присутствии амина в спектре ЯМР квартет СН-грунпы динитроэтана смещается в слабое поле на величину до 2 м. д., что указывает на образование водородной связи. Кроме того, появляется широкий синглет в более слабом ноле, который может принадлежать только протону группы КН " в ионной паре. Наблюдаются также два сигнала СНз-грунны динитроэтана (дублет молекулярной и синглет ионной форм). Эти сигналы проявляются раздельно при температурах ниже 20° С, при повышении температуры они сливаются, что указывает на ускорение процесса взаимопревращения комплексов. При замене протона на дейтон наблюдается замедление процесса примерно в 3 раза. [c.246]

    Аналогично но спектрам ЯМР можно установить наличие миграции протона в комплексе с более сильной водородной связы молекулы (СРд)2СНМ02 с аминами. На рис. 8 приведены спектры Н и указывающие на то, что в растворе, наряду со свободными молекулами присутствуют комплексы с водородной связью-и ионные пары (в спектре им принадлежат соответственно дублет и синглет). Миграция протона в этом комплексе осуществляется примерно на 2 порядка быстрее (при одинаковой температуре), чем в комплексе СНзСН(К02)2. [c.246]

    Замещенные соли аммония (R4 nH NX) образуются по реакции аминов с кислотами или алкилгалогенидами. Эти соли, например соли четвертичных аммониевых соединений (Н4ЫХ), находятся в растворах в основном в виде ионных пар (К4Ы+-Х ), которые в зависимости от концентрации, а также природы иона алкиламмония, силы кислоты и полярности разбавителя могут диссоциировать или образовывать ассоциаты. В присутствии воды соли алкиламмония гидролизуются они малорастворимы в воде <10- моль/л). [c.257]

    Приведем несколько примеров равновесий типа (2). Спектроскопические исследования показали [32, 33], что в растворах, содержащих вторичные алифатические амины и пентахлор- или пен-тафторфенол в инертных растворителях, ионные пары находятся в равновесии только со свободными молекулами. Комплексы молекулярного типа обнаружить не удается во всем исследованном интервале температур. Для комплекса дибутиламина с дихлорук-сусной кислотой в циклогексане исследования ИК-спектров проводились вплоть до температур, близких к критической [34], при этом в растворе находились только ионные пары. Можно полагать, что в этих случаях потенциальная поверхность имеет единственный минимум, соответствующий устойчивому ионному К0№ плексу. Профиль пути реакции комплексообразования должен нри этом иметь вид кривой 2 (см. рис. 1). Аналогичная ситуация, по-видимому, имеет место также для растворов, содержащих алифатические амины и более сильные кислоты — пикриновую [35], хлорную [36], трифторуксусную (СРдСООН) и др. [c.218]


Смотреть страницы где упоминается термин Ионные пары аминах: [c.60]    [c.406]    [c.8]    [c.216]    [c.161]    [c.157]    [c.559]    [c.738]    [c.393]    [c.26]    [c.66]    [c.67]    [c.315]    [c.75]    [c.315]    [c.460]    [c.143]    [c.218]    [c.240]    [c.248]    [c.427]   
Анионная полимеризация (1971) -- [ c.345 , c.346 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная пара



© 2025 chem21.info Реклама на сайте