Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптические методы дихроизм

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Хотя явление оптической активности известно давно [1], первыми спектральными методами, которые стали широко использоваться в органической химии, явились ультрафиолетовая и инфракрасная спектроскопия. Дисперсия оптического вращения и феноменологически родственный оптический круговой дихроизм только недавно привлекли внимание химиков и биохимиков и нашли широкое применение для решения аналитических, структурных и стереохимических проблем. Дисперсия оптического вращения (ДОВ) и круговой дихроизм (КД) — новые, очень важные физические методы, поскольку они помогают разобраться в широких аспектах, с которыми связаны многие области знания. Применение этих методов в современной науке очень велико и охватывает структурные и стереохимические проблемы в органической хилши (например, в химии природных соединений), конформационные проблемы в биохимии (спиральность белковых цепей), пространственные аспекты в неорганической химии и химии металлоорганических соединений (например, строение лигандов), а также такие фундаментальные проблемы, как обнаружение оптической активности в космическом пространстве (например, исследование метеоритов и т. д.). Эти оптические методы находятся в настоящее время в стадии развития, и исследование эффекта Коттона почти каждого прежде не изученного хромофора является важным вкладом в развитие стереохимии. Однако исследования в области ДОВ и КД встречают некоторые затруднения, из которых важно упомянуть два следующих. Первое — это технические трудности. В настоящее время возможны измерения в области 180—700 ммк, однако многие хромофоры поглощают ниже 180 ммк. Вторая, более существенная трудность даже когда с помощью имеющихся приборов удается исследовать оптически активный хромофор, иногда нелегко сделать структурные и стереохимические выводы из-за отсутствия теоретических обоснований (например, эффект Коттона, вызываемый п л -переходом в а,р-ненасыщенных кетонах). Отсюда вытекает настоятельная необходимость более [c.101]

    ИСПОЛЬЗОВАНИЕ МЕТОДОВ ДИСПЕРСИИ ОПТИЧЕСКОГО ВРАЩЕНИЯ И КРУГОВОГО ДИХРОИЗМА В ИССЛЕДОВАНИИ ПОЛИМЕРОВ [c.195]

    Оптические методы позволяют получить информацию о механизме фотосинтеза, электронном транспорте, транспорте кислорода в тканях, транспорте ионов, взаимодействии веществ различной природы с мембранами, белок-липидных взаимодействиях и других процессах. Они основаны на присутствии в изучаемой системе эндогенных или экзогенных (вносимых в систему экспериментатором) хромофорных групп. К эндогенным хромофорам относятся порфирины, флавины каротиноиды, пиридиннуклеотиды, цитохромы, гемоглобин, миоглобин, которые поглощают свет в видимой области спектра. Акридины, нафталин-сульфонаты, цианины являются экзогенными хромофорами. К оптическим методам относят абсорбционную спектрофотомет-рию, люминесценцию, метод флуоресцентных зондов, а также круговой дихроизм, дисперсию оптического вращения. Последние наряду с ИК-спектроскопией и спектроскопией комбинационного рассеяния используются для определения содержания различных элементов вторичной структуры молекулы белка, позволяют изучать ее конформационные переходы. [c.208]


    Однако эти методы часто весьма трудоемки и связаны с реакциями, механизмы которых не всегда достоверны. Часто более предпочтительно использовать оптические методы (круговой дихроизм, дисперсию оптического вращения). Таким образом была определена абсолютная конфигурация многочисленных соединений. [c.98]

    Нам кажется, что больше преимуществ дает изучение не вращательной дисперсии, а оптического кругового дихроизма соединений, который проявляется в различном поглощении правой и левой форм циркулярно-поляризованного света. Для подтвер-л дения этой точки зрения в нашей лаборатории в Париже были проведены исследования, что положило начало методу измерения этого явления. [c.7]

    Для изучения биологических мембран применяют разнообразные физико-химические методы ИК- и раман-спектроскопию, ЯМР, оптические Методы (ДОВ и циркулярный дихроизм), рентгеноструктурный анализ. Определенная информация о структуре и функционировании биологических мембран может быть получена также из изучения искусственных мембранных систем. [c.377]

    Что касается анизотропии оптических свойств дисперсных систем, то общедоступные методы их расчета отсутствуют. Отметим лишь, что коллоидных растворов иаиболее характерным свойством является дихроизм — [c.258]

    Для определения вторичной структуры белков используются в основном оптические методы. Конечно, более надежным является рентгеноструктурный метод, однако его применение сопряжено с определенными трудностями и требует значительного времени. Такие оптические методы, как дисперсия оптического вращения и круговой дихроизм, являются более простыми и, что весьма важно, позволяют определять изменений вторичной структуры белка в растворах. При помощи дисперсии оптического вращения можно получить информацию о степени спирализации белковой макромолекулы. Несмотря на то что метод является приближенным, достаточно отчетливо просматриваются переходы типа спираль—клубок. Что касается метода кругового дихроизма, то его спектр определяется набором углов ф и у, свойственных тому или иному типу вторичной структуры. Оба метода можно расценивать как скриннинго-вые, и для полной идентификации вторичной структуры их надо комбинировать с рентгеноструктурным анализом белков. [c.43]

    Для решения вопросов структуры мономерных органических соединений чаще всего в настоящее время применяют ИК-спектроскопию и ЯМР-спектроскопию высокого разрешения. Далее следуют масс-спектрометрия, электронная, ЭПР- и раман-спектроскопия. В относительно узкой области соединений с центрами асимметрии применяют методы кругового дихроизма или дисперсии оптического вращения [28—301. [c.407]

    Используются и другие методы, в том числе дисперсия оптического вращения [58], круговой дихроизм [58] и асимметрический синтез (разд. 4.10). [c.150]

    Среди оптически активных ароматических соединений видное место занимают бензольные соединения с одним или несколькими асимметрическими атомами в боковой цепи. Соединения такого типа встречаются в природе (миндальная кислота, фенилаланин, эфедрин, адреналин и др.), а также получены синтетическим путем. Их общей особенностью является наличие бензольного хромофора. Ввиду важности такого рода соединений изучению оптически активных веществ с бензольным хромофором уделяется большое внимание. Возможности для подобного изучения появились в связи с развитием спектрополяриметрического метода исследования, позволяющего получать данные о характере кривых дисперсии оптического вращения и кругового дихроизма в области поглощения ароматического ядра. [c.504]

    Использование спектрополяриметрического метода — изучение кривых дисперсии оптического вращения ДОВ и кругового дихроизма (КД)—позволило более глубоко понять природу оптической активности комплексных соединений. [c.674]

    В отличие от кругового дихроизма дисперсия оптического вращения (ДОВ) распространяется в спектральную область, далекую от полос поглощения образца. По мере приближения к полосе поглощения оптическое вращение возрастает либо в положительном, либо в отрицательном направлении. Затем в пределах самой полосы поглощения оно резко падает до нуля и далее принимает противоположный знак (кот-тон-эффект). Хотя наличие оптического вращения в той области, где вещество не поглощает, является определенным преимуществом метода ДОВ, интерпретировать спектры ДОВ несколько сложнее. В принципе данные, полученные с помощью указанных методов, взаимозависимы, и в обоих случаях мы получаем химическую информацию одного и того Же типа. Поскольку регистрация спектров КД и ДОВ не составляет труда, а также благодаря чувствительности этих спектров к кон-формационным изменениям и к изменениям состава среды, оба метода широко используются в биохимии. [c.25]


    Присутствие асимметрических центров может быть обнаружено и оценено с помощью методов дисперсии оптического вращения (кругового двойного лучепреломления), когда показатели преломления неодинаковы (по Ф rii), и молекулярного кругового дихроизма при различии в коэффициентах поглощения (ео = 8l). [c.188]

    Два родственных оптических метода — дисперсия оптического враи ения (ДОВ) и круговой дихроизм (КД), отличаются от упоминавшихся выше тем, что используются почти исключительно для стереохимических целей. Так, практически только эти методы (вместе с простой поляриметрией) позволяют отличить друг от друга оптические антиподы, а также вообще оптически активные формы от рацемических. Кривые ДОВ и КД особенно чувствительны к изменениям пространственного строения молекул. Например, УФ-спектры кетонов любого строения имеют практически одинаковый характер — главное в них, это полоса поглощения карбонильного хромофора в области 300 нм. Характер же кривых ДОВ оптически активных кетонов существенно зависит от окружения хромофора — от строения всей молекулы в целом и, прежде всего, от расстояния между хромофором и асимметрическим центром. [c.86]

    Абсолютная конфигурация многих хиральных каротиноидов была определена главным образом с помощью оптических методов [дисперсии оптического вращения (ДОВ), кругового дихроизма (КД)] и ядерного магнитного резонанса (ЯМР). Недавно было обнаружено, что у разных живых организмов встречаются различные оптические изомеры каротиноидов. Так дрожЖи Рка111а гНойогута образуют (ЗР, 5 / )-астаксантин ( 19), в то время как омар накапливает преимущественно (< 5, 5 5)-изомер (2.20) наряду с ЗЯ, З Щ- и мезо-(ЗР, 3 5)-формами в меньщих количествах. [c.42]

    Статья общего характера, посвященная оптическим явлениям, методам разделения оптических изомеров, дисперсии оптического вращения и т. д. Вел юз Л., Легранд М,, Г росджен М., Оптический круговой дихроизм, Мир , 1967, [c.46]

    В третьей главе Пьер Краббе обсуждает новейшие применения дисперсии оптического вращения и оптического кругового дихроизма в органической химии. Основные принципы этих методов были подробно обсуждены в нескольких учебниках и обзорах, а цель статьи Краббе — информировать читателя о цоследних важных успехах как в области теории, так и ее применения к различным природным продуктам. [c.8]

    Удельное и, следовательно, молярное вращение зависят от длины волны света. Это явление называется дисперсией оптического вращения. Его изучение позволило обнаружить конформащюнные изменения белков в процессе их денатурации. В последние годы для изучения конформационных изменений в белках, синтетических полипептидах и нуклеиновых кислотах применяют метод оптического кругового дихроизма. Этот метод основан на различии коэффициентов поглощения левого и правого циркулярно-поляризованного света в зависимости от длины волны. [c.205]

    Два родственных оптических метода, объединяемых ныне под общим названием хирально-оптические методы [дисперсия оптического вращения (ДОВ) и круговой дихроизм (КД)], отличаются от всех упомянутых выше методов тем, что используются почти исключительно для стереохимических целей. Так, практически только эти методы (вместе с поляриметрией) позволяют отличить друг от друга энантиомеры, а также вообще оптически активные формы от рацемических. Кривые ДОВ и КД особенно чувствительны к изменениям пространственного строения молекул. [c.39]

    Исследование пространственных, конформационных состояний. иолгипептидных и белковых молекул проводится современными физическими и физико-химическими методами. Вполне понятно, что ценность любого из этих методов будет тем большей, чем точ1нее он позволяет определять пространственное строение белка-фермента, непосредственно связанное с выполняемой последним биологической функцией. Поскольку все ферменты являются асимметрическими системами, растворы которых вращают плоскость поляризации света, то здесь широко используют оптические методы. К ним относятся дисперсия оптического вращения и круговой дихроизм, т. е. изменение оптических характеристик какого-либо соединения в зависимости от длины волны облучающего света. Для многих ферментов, особенно содержащих металлы, можно применить метод магнитной дисперсии, когда оптическая активность (новая, отличная от естественной) индуцируется сильным магнитным полем (это явление известно под названием эффекта Фарадея). При изменении пространственного строения белков-ферментов в растворе меняются и их оптические характеристики — кривые оптической дисперсии и кругового дихроизма, и на основании этого можно судить о характере происшедших изменений. Широкую популярность в химии ферментов завоевали различные спектральные методы, в частности метод ядерно-магнитного резонанса, регистрирующий поведение ядер некоторых атомов в исследуемом пептиде или белке при наложении сильного внешнего магнитного поля, а также методы инфракрасной и ультрафиолетовой спектроскопии и т. п. [c.46]

    Простую поляриметрию заменили методы дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД), которые позволили изучать более полно оптические характеристики оптически активных веществ как функции длины волны излучения. Современные методики ДОВ и КД позволяют определять абсолютную конфигурацию молекул (правда, на полузмпирической основе), химическое строение, конформации и некоторые спектральные характеристики молекул. [c.167]

    Ранее издательством Мир были опубликованы книги К. Джерасси Дисперсия оптического вращения (1962) и Л. Веллюза, М. Леграна, М. Грожана Оптический круговой дихроизм (1967). Выпускаемая сейчас книга не дублирует их содержания. Она значительно более современна, чем труд Джерасси, содержит гораздо больше материала и представляет все разнообразие идей и методов, фигурирующих в нынешней спектрополяриметрии. [c.6]

    Биофизические методы позволяют изучать динамическую организацию биомембран, получить представления об упаковке и движении липидных молекул в природных и модельных мембранах, их взаимодействии друг с другом и молекулами белков, исследовать фазовые переходы и другие процессы. К ним относятся дифракционные методы (рентгеновская дифракция, дифракция нейтронов), резонансные методы, метод электронной микроскопии, оптические методы (круговой дихроизм, дисперсил оптического вращения, абсорбционная спектроскопия, люминесценция, метод флуоресцентных зондов), метод дифференциальной сканирующей микрокалориметрии, метод моделирования и получения искусственных мембран и др. [c.203]

    До сих пор абсолютная конфигурация диэдрических комплексов устанавливалась методами, основанными на растворимости [1, 2], которые по результатам согласуются друг с другом [3], но несколько отличаются от методов, основанных на оптической вращательной способности комплексов [3]. Методы, основанные на растворимости, не дают возможности связать хиральности катионных, нейтральных и анионных комплексов, а оптические методы позволяют сделать это. Предложенные оптические методы основывались на знаке вращения данного комплекса при В-линии натрия [4] или, что является более надежным, на знаке длинноволнового эффекта Коттона, определенного из кругового дихроизма или из аномальной дисперсии вращения [3]. Спиново-разрещенные переходы с наинизщей энергией в октаэдрических комплексах в случае с/ - или с( -диэдрического комплекса расщепляются на Ло-и Я-компо-ненты, которые обязательно имеют противоположные по знаку силы вращения [5], и длинноволновый эффект Коттона определяется компонентой перехода, имеющей более низкую энергию. [c.118]

    Во введении (разд. 2.1), посвященном тому, какие фазы возможны в гребнеобразных полимерах, мы уже упоминали о работе Коха и др. [8] по исследованию эластомеров. Отметим еще раз, что в изотропной фазе гребнеобразных полимеров вблизи фазового перехода отрицательный механооптический эффект увеличивается при усилении предпереходных нематических флуктуаций. Это наводит на мысль, что при вытягивании основных цепей под действием внешнего напряжения боковые группы (определяющие основной вклад в оптическую анизотропию) вынуждены ориентироваться в плоскости, перпендикулярной направлению растяжения. Таким образом, для подобных молекул константа ь т считается отрицательной величиной, и поэтому в системе наиболее вероятно образование нематической фазы Ыг или N11. Отличие этих фаз состоит в том, что после приложения напряжения вдоль директора фаза N1 остается одноосной, а фаза Мц становится двуосной, что соответствует результатам наблюдений. Этот эффект можно представить наглядно с помощью рис. 2.1. В последующих экспериментальных работах на ту же тему [22] выявлены дополнительные трудности в установлении роли химического строения гибких развязок. Так при исследовании ряда гребнеобразных полимеров обнаружено, что боковые группы ориентируются либо параллельно, либо перпендикулярно относительно приложенного напряжения (а следовательно, и основной цепи) в зависимости от числа атомов углерода в гибкой развязке. Дальнейшее обсуждение возможностей получения информации о фазах и различных типах упорядочения путем исследования полимерных сеток оптическими методами, а также с помощью методов ИК дихроизма и ЯМР изложено в гл. 10 и кратко в гл. 8. [c.34]

    Простейший оптический метод измерения дихроизма с помощью микроскопа заключается в следующем. В микроскоп вставляется дихроскопи-ческий окуляр, т. е. окуляр с призмой Волластона, над которой находится вращающаяся призма-анализатор с круговой шкалой. При измерении следует вывести поляризатор и анализатор микроскопа поляризатор используется лишь для правильной ориентировки кристалла, чтобы его плоскости колебания совпадали с плоскостями колебания изображений в дихроскопе. Чрезвычайно важно, чтобы в окуляр попадал только свет, прошедший через кристалл, так как в противном случае возможны серьезные ошибки, причиной которых являются блики от объектива, если он освещен ярким посторонним светом (стр. 319). Монохроматическое освещение микроскопа должно идти узким конусом и давать маленькое поле поэтому для получения его удобно использовать лабораторный спектрометр. Если интенсивности двух смежных изображений в поле дихроскопа обозначить через и 2. а угол, который составляет плоскость колебания анализатора с плоскостью колебания изображения с интенсивностью /j, через в, то [c.309]

    Обзор данных о взаимодействии пигментов в ФРЦ пурпурных бактерий, полученных с помощью оптических методов (круговой дихроизм, фотодихроизм и линейный дихроизм ориентированных реакционных центров), приведен в работе В. А. Шувалова и А. А. Красповского [1981]. На рис. 8 показана схема взаимного расположения фотоактивных пигментов ФРЦ пурпурных бактерий (содержащих бактериохлорофилл а) [Шувалов, 1982]. [c.28]

    Явления двойного лучепреломления щфПг) и кругового дихроизма Ё1фег) для данного хромофора взаимосвязаны. Если известна кривая ДОВ, то по формулам Крамерса — Кронига можно вычислить соответствующую кривую КД для данного хромофора, и наоборот. Выраженные при помощи различных уравнений явления преломления и поглощения света оптически активным веществом тем не менее дают одну и ту же информацию о конформации молекз лы. Несмотря на то что методы ДОВ и КД дают родственную информацию, каждый из них имеет свои преимущества и недостатки, а вместе они взаимно дополняют друг друга. Преимущества метода КД перед ДОВ  [c.37]

    Интенсивно развиваются методы снятия спектров магнитной дисперсии оптического вращения (МДОВ) и особенно магнитного кругового дихроизма (МКД). В основе этих методов лежит эффект Фарадея любое прозрачное вещество, помещенное в магнитное поле, вращает плоскость поляризации при прохождении через [c.43]

    С двойным лучепреломлением полимеров связано возникновение явления фотоупругости (в механическом поле), эффекта Керра (в электрическом поле) и эффекта Коттона—Мутона (в магнитном поле). Фотоупругость полимеров зависит от их фазового и физического состояния. Метод фотоупругости используется для изучения характера распределения внутренних напряжений в полимерах без их разрушения [9.4]. Изучая эффект Керра в полимерах, можно оценить эффективную жесткость полярных макромолекул, мерой которой служит корреляция ориентаций электрических диполей вдоль цепей [9.5]. Наблюдение эффекта Коттона — Мутона (проявление дихроизма в магнитном поле), обусловленного диамагнитной восприимчивостью и анизотропией тензора оптической поляризуемости, позволяет оценивать значения коэффициентов вращательного трения макромолекул полимеров. Все эти методы исследования оптических свойств полимеров получили широкое распространение и, так же как и спектроскопические методы, в достаточной мрпл описаны в литературе [9.6 50]. [c.234]

    ХИГОПТЙЧЕСКИЁ МЁТОДЫ, объединяют родственные оптич. методы исследования оптически активных (хиральных) соед. поляриметрию (ПМ), дисперсию оптич. вращения (ДОВ) и круговой дихроизм (КД). X. м. основаны на взаимод. поляризованного света с хиральными сфуктурами, к-рые об- [c.273]


Смотреть страницы где упоминается термин Оптические методы дихроизм: [c.208]    [c.123]    [c.208]    [c.6]    [c.73]    [c.568]    [c.177]    [c.361]    [c.48]    [c.157]    [c.544]    [c.209]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.153 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Дихроизм

Использование методов дисперсии оптического вращения и кругового дихроизма в исследовании полимеров

Метод оптического кругового дихроизма

Методы оптические

Относительные преимущества методов дисперсии оптического вращения и кругового дихроизма

Сравнение методов дисперсии оптического вращения и кругового дихроизма (П. Краббе)



© 2025 chem21.info Реклама на сайте