Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипептидная цепь мутация

    Сочетание УАА и УАГ не соответствует какой-либо определенной аминокислоте. Это так называемые бессмысленные кодоны . Однако они не вполне лишены смысла. Синтез белка останавливается, когда работа рибосомного аппарата доходит до бессмысленного кодона. Следовательно, они в какой-то степени могут регулировать длину образующихся полипептидных цепей, хотя не вполне ясно, играют ли они эту роль в ходе нормального синтеза белка. Вопрос о прекращении роста цепи РНК важен, так как от механизма, прекращающего синтез на определенном звене, зависит и функция синтезируемого белка. Имеющиеся данные говорят как будто в пользу предположения, что на молекуле м-РНК все же имеются сочетания нуклеотидов, сигнализирующие о начале и конце синтеза цепи. Процесс считывания нормального кода, т.е. синтез нормального белка, может претерпеть нарушения в результате, например, действия некоторых лекарственных веществ (стрептомицин) или под влиянием мутаций. Лекарственные вещества изменяют состояние самой рибосомы, что нарушает ход синтеза. Мутации выражаются в замене правильного триплета каким-либо иным, что приводит к росту числа ошибок при считывании генетического кода. [c.394]


    При изучении любого белка, играющего какую-то роль в функционировании организма, мы всегда сталкиваемся с генетическими проблемами. В случае коллагена возможность вредных мутаций повышается, поскольку этот белок кодируется больше чем одним набором генов - . Было идентифицировано по меньшей мере четыре типа коллагена, характеризующихся вполне определенными различиями на молекулярном уровне, и было показано, что различные гены коллагена по-разному проявляют себя в разных тканях. Например, молекулы коллагена хрящей состоят преимущественно из трех идентичных а-цепей, отличающихся по аминокислотной последовательности от а1- и а2-цепей коллагена сухожилий и костей. Коллаген кожи маленьких детей и коллаген клапанов сердца и крупных артерий содержат полипептидные цепи двух других типов. [c.500]

    Белки-мутанты можно привлекать к интерпретации структурных принципов. Все фиксированные мутации белков можно рассматривать как эксперименты природы, которые указывают нам, какие вариации мало влияют на стабильность белка и на динамику свертывания. С другой стороны, случайные и, по-видимому, нефиксирую-ш иеся мутации, как в аномальном гемоглобине, дают примеры вариаций, заметно понижающих стабильность белковой структуры. Оба типа мутаций можно использовать для совершенствования наших представлений о невалентных силах в белках. Для этой цели можно использовать процедуры минимизации энергии исходных и мутировавших полипептидных цепей на основе известных трехмерных структур [501]. Определенные таким образом разности энергий и геометрические отклонения можно сравнить с экспериментальными данными, полученными соответственно из термодинамических измерений [413, 417[ и рентгеноструктурных исследований с высоким разрешением. Аналогичные сопоставления можно провести с помощью моделирования свертывания цепи (разд. 8.6), которое позволяет получить дополнительную информацию о некоторых аспектах процесса свертывания. [c.207]

    Аномальные гемоглобины, различающиеся по форме, химическому составу и величине заряда, были вьщелены при помощи электрофореза и хроматографии. Передающиеся по наследству изменения чаще всего являются результатом мутации единственного триплета, приводящей к замене одной какой-либо аминокислоты в полипептидных цепях молекулы гемоглобина на другую. В большинстве случаев происходит замена кислой аминокислоты на основную 1ши нейтральную (табл. 2.1). Поскольку это замещение осуществляется в обеих полипептидных цепях одной из пар (а 1ШИ 3), образовавшийся аномальный гемоглобин будет отличаться от нормального величиной заряда и соответственно электрофоретической подвижностью. [c.82]


    Мутации, сдвигающие рамку считывания информации. Это может происходить при выпадении какого-либо нуклеотидного звена цепи ДНК (деле-ции) или вставки дополнительных нуклеотидов (инсерции). Сдвиг рамки считывания меняет всю программу синтеза полипептидной цепи и, как правило, приводит к образованию нефункциональных белков, которые быстро деградируют в клетках. [c.455]

    Нонсенс-мутация. Мутация, которая приводит к преждевременному окончанию синтеза полипептидной цепи. [c.1015]

    Щелочная фосфатаза имеет молекулярный вес 80 ООО и состоит из 2 одинаковых блоков, по 380 аминокислотных звеньев каждый. Блоки соединены ионными связями. При гидролизе трипсином получается 35 полипептидов, которые могут быть хорошо разделены электрофорезом и хроматографией Исследование фосфатазы ревертантов показало, что она отличается от обычного белка из клеток дикого типа часто 1, изредка 2 аминокислотными звеньями. Мутация Р - Р приводит к клеткам, неспособным синтезировать активную щелочную фосфатазу. С помощью генетических экспериментов по рекомбинации место повреждения в цепи ДНК установлено с точностью до 2—3 нуклеотидных звеньев. Когда возникает возвратная мутация, происходит новая замена нуклеотида в том же звене или рядом и возникает опять осмысленное сочетание, но необязательно то же самое, какое было до первой мутации. Полипептидная цепь синтезируется на матрице, но одно аминокислотное звено оказывается измененным. Если замена звена [c.418]

    Генетический контроль над синтезом НЬ. Синтез четырех полипептидных цепей НЬ человека контролируется четырьмя генами, обозначаемыми по названию цепей а-, р-, у- и б-. Сходство в строении а- и р-, и особенно у- и р-, р- и б-цепей наводит на мысль, что все они произошли от общего предшественника в результате большого числа мутаций. Возможно, что на ранних ступенях эволюции существовал гемопротеид только с одной полипептидной цепью, имеющей определенную аминокислотную последовательность, образование которой контролировалось единственным геном. В результате дупликации генетического материала образовался новый ген, развитие которого пошло независимым путем и привело к гену современного миоглобина, имеющего одну полипеп-тидную цепь. [c.146]

    Очень низкая частота возникновения мутаций Str -Str объясняется, по-видимому, причиной, в корне противоположной рассмотренным причинам молчащих мутаций. Ранее указывалось, что гены, при мутировании которых возникает фенотип Str , контролируют образование компонентов, обеспечивающих синтез белков, и, следовательно, контролируют незаменимую функцию в том смысле, как это обсуждалось в предыдущей главе. Легко можно понять, что любая мутация, приводящая к утрате незаменимой функции, является летальной. Клетка, которая не может нормально осуществлять процесс сборки полипептидных цепей, неизбежно погибнет, и ее нельзя спасти добавлением в среду каких-либо факторов роста. Поэтому, чтобы клетка приобрела мутантный признак Str , требуется не утрата, а изменение функции белка, контролируемого затронутым мутацией геном. Это изменение белка должно не только сохранить незаменимую функцию, но и сделать ее нечувствительной к воздействию стрептомицина, который подавляет эту функцию в клетках дикого типа. По-видимому, к таким изменениям третичной и четвертичной структуры, которые удовлетворяют этому жесткому функциональному критерию, приводят лишь очень немногие из всех возможных изменений первичной структуры полипептидной цепи. Поэтому не удивительно, что частота возникновения мутаций, изменяющих функцию, намного ниже частоты возникновения мутаций, приводящих к утрате функции,. i [c.153]

    Прямые, внутригенные супрессоры похожи на истинные обратные мутации тем, что они залечивают первичное генетическое повреждение и представляют собой другую мутацию в том же самом мутантном гене. Но в отличие от истинной обратной мутации, при которой восстанавливается исходная первичная структура полипептидной цепи, при внутригенной супрессорной мутации первичная структура белка исправляется за счет того, что в нее вводится второе изменение, которое компенсирует действие первой мутации и допускает образование функциональной третичной и четвертичной структуры. Примеры таких прямых, внутригенных супрессоров будут рассмотрены в гл. ХИ1. Наконец, в гл. ХУП будут обрисованы супрессоры еще одного, третьего класса, которые были открыты лишь в 1960 г. [c.155]

    Работа Чаргаффа открыла возможность сформулировать теорию, объясняющую, каким образом ДНК может осуществлять перенос генетической информации в опыте с трансформацией. Теперь уже невозможно установить, кто фактически первый высказал эти идеи. Теория появилась после 1950 г. и была окончательно принята многими молекулярными генетиками уже к 1952 г. Основное положение этой теории сводилось к следующему если молекула ДНК содержит генетическую информацию, то последняя определяется не чем иным, как специфической последовательностью четырех нуклеотидных оснований в полинуклеотидной цепи. Иными словами, молекула ДНК — это апериодический кристалл Шредингера, в котором четыре основания — это то небольшое число изомерных элементов , чья точная последовательность представляет наследственный код (см. гл. I). Но поскольку информация, содержащаяся в генах (как было показано в гл. V), должна определять последовательность аминокислот в полипептидной цепи, нетрудно было сообразить, что смысл наличия в ДНК последовательностей из четырех нуклеотидных оснований, составляющих ген, состоит в том, чтобы определять последовательность аминокислот белковой молекулы, синтез которой контролируется этим геном. Такое представление давало возможность объяснить мутации на молекулярном уровне — как изменение в последовательности нуклеотидов в ДНК. [c.163]


    Для того чтобы дать объяснение особенностям мутантного /s-фенотипа на молекулярной основе, необходимо уточнить фундаментальный принцип молекулярной биологии, введенный в гл. IV и состоящий в том, что первичная структура белка полностью определяет вторичную, третичную и четвертичную структуры. Это уточнение заключается в том, что определенная вторичная, третичная и четвертичная структуры, образуемые полипептидной цепью с определенной первичной структурой, зависят от внешних условий, особенно от температуры. Так, функционально активная третичная и четвертичная структура каждого белка возникает в довольно строго ограниченном физиологическом интервале температур, а за пределами этого интервала белок переходит в нефункциональную, денатурированную форму. Первичная структура белков, кодируемая генами дикого типа, такова, что их функционально активные структуры высших порядков образуются в интервале температур от 25 до 42 "С. Однако изменение последовательности нуклеотидов в гене, несущем /s-мутацию, ведет к такому изменению первичной структуры полипептида, при котором мутантный белок, хотя и сохраняет способность образовывать функционально активные структуры высшего порядка при [c.284]

    Описанные опыты привели и к другому выводу трудно было представить, что только 20 из 64 возможных нуклеотидных триплетов соответствуют 20 аминокислотам, входящим в стандартный набор, а остальные 44f триплета бессмысленны . Если бы дело обстояло так, то область, в которой могли бы происходить мутации, супрессорные в отношении F O, была бы значительно меньше, чем она есть на самом деле. Если бы большая часть триплетов была бессмысленной, то сдвиг фазы считывания между (-f )-мутацией и (—)-мутацией, отделенными друг от друга более чем на несколько нуклеотидов, обязательно приводил бы к возникновению хотя бы одного бессмысленного триплета, а это нарушало бы непрерывность образования полипептидной цепи, так что процесс считывания уже не мог бы достичь тех участков гена, в которых восстанавливается правильная фаза считывания. Следовательно, результаты этого опыта свидетельствуют о том, что в коде, по-видимому, имеется много синонимов, т. е. что многие аминокислоты кодируются несколькими триплетами. Если из 64 возможных триплетов только небольшая часть бес- [c.332]

    Легче всего объяснить мутации типа La - -La , Тгр - -Тгр или - -His". Очевидно, что в этом случае мутантный фенотип обусловлен потерей каталитической функции фермента. Эта потеря функции обусловлена в свою очередь мутацией в гене, контролирующем первичную структуру соответствующей полипептидной цепи. Мутации такого типа должны, по-видимому, происходить с высокой частотой, обусловленной следующими причинами. Во-первых, замещение аминокислоты почти в любом месте полипептидной цепи, вероятно, нарушит третичную и четвертичную структуру белка таким образом, что он утратит свою каталитическую функцию. Поэтому любое из очень многих возможных мутационных изменений в соответствующем гене может привести к функционально дефектному мутантному фенотипу. Во-вторых, прототрофность (или способность сбраживать сахар) бактерий дикого типа зависит от последовательного действия нескольких ферментов. Поэтому при мутации в любом из этих нескольких генов возникнет мутантный, ауксотрофный, или неспособный сбраживать сахар, фенотип. Менее ясна природа мутирования Топ" — Toп так как механизм синтеза рецепторов для фага Т1 в клеточной стенке Е. соИ пока еще мало изучен. Тем не менее существуют косвенные указания на то, что отсутствие рецепторов для фага TI у мутантных клеток Топ обусловлено тем, что эти мутантные клетки утратили функциональный белок, имеющийся у клеток Топ . Но если это так, то почему мутации [c.152]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]

    Вторая часть доказательства коллинеарности между нуклеотидной последовательностью в ДНК и последовательностью аминокислот в белках включала в себя определение полной аминокислотной последовательности триптофансинтетазы и картирование пептидных фрагментов мутантных ферментов (гл. 2, разд. 3,2). Пептидные карты позволили идентифицировать дефектные пептиды и точно установить природу аминокислотных замещений в большом числе различных ауксотрр-фов по триптофану. Когда это было сделано, оказалось, что мутациям, локализованным очень близко друг к другу, соответствовали аминокислотные замещения в непосредственно (или очень близко) прилегающих друг к другу участках полипептидной цепи. [c.251]

    Далее, триплетный код мог бы быть либо перекрывающимся, когда один и тот же нуклеотид участвует в трех (сильно перекрывающихся) й двух (менее перекрывающихся) кодирующих триплетах, либо непе-рекрывающимся, когда в цепи нуклеиновой кислоты независимые кодирующие триплеты примыкают друг к другу или даже разделены некодирующими нуклеотидами. Однако тот факт, что точечная мутация (изменение одного нуклеотида в цепи нуклеиновой кислоты) приводит, как правило, к замене только одной аминокислоты в белке, говорил против идеи перекрывающегося кода. Кроме того, перекрывающийся код неизбежно влек бы за собой ограничения в возможных аминокислотных соседях вдоль полипептидной цепи, чего не [c.11]

    Замены, влияющие на процесс свертывания, исследуются на моделях — аналогах белков. В предыдущих разделах обсуждалось влияние замен аминокислот на функцию или на стабильность свернутых белков. Однако очевидно, что наиболее отрицательное воздействие мутация оказывает на динамику свертывания полипептидной цепи. Исследование этой проблемы на естественных мутантах затруднительно по двум причинам. Во-первых, если путь свертывания белка-мутанта полностью заблокирован, то полипептидную цепь невозможно идентифицировать и выделить обычными биохимическими методами (однако можно использовать иммунологические [94, 4181 или комплементационные методики [446]). Кроме того, полипептиды, которые после их биосинтеза не свертываются совсем или свертываются слишком медленно, часто подвержены быстрому разрушению in vivo [154]. Эти трудности заставили искать модели для изучения влияния мутаций на свертывание белка среди полусинте-тических аналогов белков [497—499] или белков с модифицированными боковыми цепями [445] (разд. 8.2). [c.206]

    В процессе укладки синтезированной полипептидной цепи, получившем название фолдинга —формирование нативной пространственной структуры, в клетках происходит отбор из множества стерически возможных состояний одной-единственной стабильной и биологически активной конформации, определяемой, вероятнее всего, первичной структурой. Описан ряд наследственных заболеваний человека, развитие которых связывают с нарушением вследствие мутаций процесса фолдинга (пигментозы, фиброзы и др.). Поэтому в настоящее время пристальное внимание исследователей приковано к выяснению зависимости между аминокислотной последовательностью синтезированной в клетке полипептидной цепи (первичная структура) и формированием пространственной трехмерной структуры, обеспечивающей белковой молекуле ее нативные свойства. Имеется немало экспериментальных доказательств, что этот процесс не является автоматическим, как предполагалось ранее, и, вероятнее всего, регулируется и контролируется также внутриклеточными молекулярными механизмами, детали которых пока полностью не раскрыты. Из клеток выделено несколько классов белков, названных шаперонами, или белками теплового шока, которые располагаются между М-концевым сигнальным пептидом и матричным белком. Предполагается, что основными функциями шаперонов являются способность предотвращать образование из полипептидной цепи неспецифических (хаотичных) беспорядочных клубков, или агрегатов белков, и обеспечение доставки (транспорта) их к субклеточным мишеням, создавая условия для завершения свертывания белковой молекулы. Эти результаты наводят на мысль о возможности существования второй половины генетического кода , определяя тем самым повышенный интерес [c.67]

    Свойства любого белка зависят от его конформации, которая в свою очередь определяется аминокислотной последовательностью. Некоторые аминокислоты в полипептидной цепи играют ключевую роль в определении специфичности, термостабильности и других свойств белка, так что замена единственного нуклеотида в гене, кодирующем белок, может привести к включению в него аминокислоты, приводящему к понижению его активности, либо, напротив, к улучшению каких-то его специфических свойств. С развитием технологии рекомбинантных ДНК появилась возможность производить специфические замены в клонированных генах и получать белки, содержащие нужные аминокислоты в заданных сайтах. Такой подход получил название направленного мутагенеза. Как правило, интересующий исследователя ген клонируют в ДНК фага M13. Одноцепочечную форму ДНК этого фага копируют с использованием олигонуклеотидного праймера, синтезированного таким образом, чтобы в ген-мишень был встроен определенный нуклеотид. Затем трансформируют двухцепочечными ДНК M13 клетки Е. соИ. Часть образующихся в клетках фаговьгх частиц несет ген, содержащий нужную мутацию. Такие частицы идентифицируют, встраивают мутантный ген в экспрессирующий вектор, синтезируют белок и определяют его активность. Вносить изменения в клонированные гены можно также с помощью плазмид или ПЦР. Обычно заранее не известно, какую [c.175]

    Мутации, приводящие к изменению смысла кодона (т188еп8е-мутации). Это может произойти при замене пар оснований, ответственных за включение определенной аминокислоты в синтез белка, например замена Г — Ц на А — Т. В результате происходит подстановка другой аминокислоты в полипептидную цепь. При этом новая аминокислота может исказить свойства белка и сделать его функционально незначимым. [c.455]

    Мутации, делающие кодон бессмысленным (попзепзе-мутации), т. е. не несущим информации (например, УАА или УАГ). В этом случае происходит обрыв полипептидной цепи и образование дефектного белка. [c.455]

    Известно много генетических болезней человека, при которых тот или иной фермент либо совсем неактивен, либо имеет какой-то дефект, затрагивающий его каталитическую или регуляторную функцию. При таких заболеваниях в полипептидных цепях дефектного фермента содержится одна или большее число неправильных аминокислот, появившихся в результате мутации участков ДНК, кодирующей этот фермент. Каталитическая активность фермента зависит не только от наличия определенных аминокислотных остатков в каталитическом и регуляторном центрах, но и от общей трехмерной структуры фермента. Поэтому замена одного аминокислотного остатка в каком-либо важном месте цепи может привести к изменению или даже к полной утрате каталитической активно сти фермента, подобно тому как замена всего лишь одного аминокислотного остатка в молекуле гемоглобина вьпы-вает появление серповидноклеточного гемоглобина с нарушенной функцией (разд. 8.18). Если генетически измененный фермент входит в состав ферментной системы, катализирующей ка-кой-нибудь центральный метаболический путь, то последствия такого изменения могут быть очень тяжелыми, вплоть до летальных нарушений метаболизма. [c.266]

    У человека известно много различных наследственных нарушений аминокислотного обмена. В основе всех этих нарушений (большинство из них встречается редко) лежит мутация какого-нибудь гена, кодирующего определенный фермент, участвующий в превращениях данной аминокислоты. Под контролем Мутантного 1-ена синтезируется дефектный фермент, у которого в том или ином ключевом участке полипептидной цепи может стоять неправильная аминокислота кроме того, какой-нибудь аминокислотный остаток может быть утрачен или, наоборот, включен в полипептидную цепь. В одних случаях такой наследственно измененный фермент неактивен вообще, а в других проявляет лишь часть присущей ему активности, поскольку характерное для него значение Ки (или не соответствует норме. Большинство врожденных нарушений аминокислотного обмена у человека сопряжено с накоплением тех или иных промежуточных продуктов этого обмена. При некоторьк наследственньк заболеваниях такого рода нарушается нормальное развитие нервной ткани, что приводит к умственной отгстадости. [c.580]

    Всякое живое существо по большинству своих признаков сходно со своими предками. Сохранение специфических свойств, т.е. постоянство признаков в ряду поколений, называют наследственностью. Изучением передачи признаков и закономерностей и Г наследования занимается генетика. Каждому признаку в качестве носителя информации соответствует определенный ген. Еще во времена классической генетики исследователи пришли к выводу, что гены находятся в клеточном ядре. Тогда же было уС ан6цлено, что они должны располагаться в линейном порядке. Долгое время считали, что наследственная информация связана с белковыми компонентами нуклеоплазмы. Лишь после успешных экспериментов по передаче наследственных признаков с помощью ДНК. (см. разд. 15.3.4) генетики пришли к убеждению, что именно ДНК, входящая в состав хромосом у всех организмов, служит материальным носителем наследственной информации, Сначала на насекомых, а затем на микроорганизмах было показано, что проявление признаков зависит от активности ферментов. У микроорганизмов ферменты можно было связать с конкретными признаками, поддающимися точному биохимическому определению. Гипотеза один ген-один фермент гласит, что определенный ген содержит информацию, необходимую для синтеза определенного фермента (позднее была принята более точная формулировка каждый структурный ген кодирует определенную полипептидную цепь). Изменение гена вследствие мутации приводит либо к утрате фермента, либо к изменению его свойств, а тем самым и к изменению признака. Гены выявляются только благодаря мутациям. Генетический анализ основан прежде всего на изучении различий в признаках, определяемых альтернативными формами (аллелями) того или иного гена. Поэтому исследование различных генетических проблем ведется на мутантах. [c.434]

    Молчащие мутации. Если под мутацией в традиционном смысле понимают внезапное изменение признака, т. е. изменение генотипа, проявляющееся в фенотипе, то на молекулярном уровне любое стабильное наследуемое изменение ДНК рассматривают как мутацию. Однако ввиду вырожденности генетического кода понятно, что не всякая мутация такого рода будет проявляться в фенотипе. Во многих триплетах изме- нение третьего основания остается без последствий ( молчапще мутации). Даже замена первого или второго основания триплета не всегда приводит к серьезным последствиям. Хотя структуры высшего порядка (третичная и четвертичная) определяются первичной структурой белка (т.е. последовательностью аминокислот), разные аминокислоты играют в этой структуре не одинаково важную роль. Например, мутация АиС->ОиС ведет к замене изолейцина валином, т.е. к замене одной липофильной группы на другую. Однако мутация Сии- ССи приведет к замене лейцина пролином, и последствием такой замены будет отклонение от нормальной пространственной конфигурадии полипептидной цепи, что может сильно изменить структуру высшего порядка. Из этого понятно, что различные мутации в одном и том же структурном гене определенного фермента могут по-разному сказываться на его активности возможны любые изменения-от едва заметного снижения каталитического действия до полной инактивации. [c.442]

    Таким образом, аллели А ж В доминируют над своими мутантными аллелями а ж Ь. Функционально активная генетическая единица в даннохМ случае состоит из двух сегментов, или цистронов,— А ж В,— которые располагаются рядом на генетической карте. Каждый цистрон в отдельности контролирует синтез специфической молекулы, которая, однако, сама по себе неактивна даже будучи абсолютно неповрежденной. Продукты цистронов А ж В должны объединиться для того, чтобы возникла активная структура. Мутации в каком-либо из двух цистронов приводят к синтезу дефектной молекулы, не способной к образованию активного продукта нри взаимодействии с нормальным продуктом второго цистрона. Естественно предположить, что генетическая единица функции — ген или цистрон — кодирует субъединицу белка — индивидуальную полипептидную цепь. Допустим, что функционально активный белок состоит из п полипептидных цепей (субъединиц), связанных друг с другом ковалентными или другими связями. Для кодирования такого белка необходимо п цистронов. Поэтому мы и предполагаем существование двух полипептидных цепей, соответствующих двум цистронам области гП. Если активный белок состоит из одной полипептидной цени, то ген, кодирующий этот белок, эквивалентен цистрону. Если даже мутация Л ->- а или В Ъ приводит к полному отсутствию соответствующего полипептида или к образованию совершенно искагкенного полипептида, несомненно, что до тех пор, пока в клетке имеются нормальные аллели, детерминирующие полипептидные субъединицы А и В, внутриклеточный фонд будет содержать некоторое количество этих субъединиц. [c.494]

    Оказалось, что внутригенные супрессорные мутации возможны не только в случае делеций или вставок, но и в тех случаях, когда исходная мутация обусловлена заменой основания, что, как мы помним, приводит к синтезу дефектного белка, в полипептидной цепи которого какая-то одна аминокислота заменена на другую. Вторая, независимая мутация в том же самом гене приведет к замене еще одной аминокислоты в другом участке полипептидной цени, причем эта вторая мутация может частично или полностью компенсировать дефект от первой мутации, так что функциональная активность белка будет восстановлена. Известно, что замена остатка глицина на остаток глутаминовой кислоты в одном положении белка А триптофансинтетазы может быть компенсирована второй заменой (которая сама по себе также приводит к инактивации белка) — тирозина на цистеин (расстояние между этими двумя точками равняется 36 аминокислотным остаткам). [c.495]

    Внезапные спонтанные изменения фенотипа, которые не связаны с хромосомными аберрациями (что подтверждается данными микроскопических исследований), можно объяснить только изменениями в структуре отдельных генов. Генная или точковая мутация (поскольку она относится к определенному генному локусу) — результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в одном гене воспроизводится при транскрипции мРНК и может привести к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах. [c.213]

    В процессе биосинтеза белка случаются ошибки, следствием которых является изменение нормальной последовательности аминокислотных остатков. Образующийся аномальный белок, лишенный биологической активности, является результатом генетической мутации. Она происходит, если в ДНК, кодирующей данную полипептидную цепь, химически изменяется или выпадает одно мононуклеотидное звено или же если в эту ДНК включается один лишний мононуклеотид. При этом нормальная, непрерывная последовательность кодирующих триплетов в гене изменяется и соответствующим образом изменяется аминокислотная последовательность полипептидной цепи, кодируемой этим геном. В большинстве случаев процесс ограничивается заменой одной-единственной аминокислоты на другую. Исследование таких мутантных белков (т. е. белков с каким-либо изменением, являющимся результатом мутации) представляется очень важным, так как оно дает возможность обнаруживать те аминокислотные остатки полипептидной цепи, которые играют существенную роль в определении структуры и функции белка. [c.382]

    После того как в гл. УП было рассказано об открытии Эйвери, установившего, что трансформирующий фактор бактерий представляет собой не что иное, как ДНК, все дальнейшее изложение велось на основе молекулярного взгляда на ген как на полинуклеотидную цепь, последовательность оснований которой определяет с помощью генетического кода последовательность аминокислот в полипептидной цепи. Однако такая точка зрения вовсе не обязательна для объяснения большинства нз рассмотренных до сих пор опытов по мутациям и генетическим рекомбинациям у бактерий и их вирусов. Все эти опыты можно почти так же хорошо объяснить с классической точки зрения о неделимом гене, определяющем один фермент. Сейчас мы рассмотрим работу, заполнившую наконец тот разрыв, который существовал между выводами, основанными исключительно на данных формальной генетики с использованием различий признаков, с одной стороны, и чисто химическими исследованиями на уровне нуклеотидных последовательностей — с другой. [c.304]

    Существование внутригенной комплементации на самом деле не снижает основной ценности определения гена, данного Бензером. Ее легко объяснить, исходя из представления о четвертичной структуре белков. Как мы уже видели в гл. IV, многие белки осуществляют свою биологическую функцию лишь в том случае, если они находятся не в виде отдельной полипептидной цепи, а в составе четвертичной структуры, образованной из двух или большего числа полипептидных цепей. Так, мы уже упоминали, что Р-галактозидаза представляет собой агрегат, состоящий нз четырех идентичных полипептидных цепей. Рассмотрим теперь /5-мутацию в гене, определяющем белок, который проявляет свою ката-.литическую активность, лишь находясь в форме комплекса, построенного из четырех идентичных полипептидных цепей. В этом случае мутантный фенотип 1з, очевидно, возникает в результате появления в одном из участков мутантной полипептидной цепи неподходящей аминокислоты. Вследствие этого интервал температур, в котором агрегат, состоящий из четырех цепей, может принимать физиологически активную четвертичную структуру, оказывается суженным. Это значит, что, хотя при пермиссив-ной температуре 25 °С такой агрегат сохраняет свою активность, при 42 °С он денатурирует. Допустим теперь, что в одной и той же клетке присутствуют две копии гена, определяющего рассматриваемый белок, и, как в цис-транс-тесте, эти копии несут разные мутации. Тогда должны возникнуть гибридные агрегаты мутантного белка, из четырех полипептидов которого часть синтезирована под контролем одного, а часть — под контролем другого /5-мутантного гена. В этом случае существует возможность, что интервал температур, в котором гибридный мутантный агрегат образует функционально активную структуру, окажется шире интервала температур для образования функционально активных агрегатов, состоящих только из одного типа мутантных полипептидов. Это значит, что два разных замещения аминокислот в первичной структуре белка, вызванные двумя й-мутациями, могут привести к взаимной компенсации. В результате такой компенсации агрегат из мутантных полипептидов, так же как и белок дикого типа, сохраняет стабильность в широком интервале температур. [c.314]

    Внутригенная комплементация наблюдается и при обычных мутациях с потерей функции (см. гл. VI). В этом случае два мутанта по одному и тому же гену синтезируют каждый по полипептидной цепи, не обладающей функциональной активностью ни п/ м каком температуре. Ком-плементируя друг с другом, они образуют функционально активные гибридные четвертичные структуры. Тот факт, что Бензер не обнаружил никакой внутригенной комплементации в своей большой коллекции гП-мутантов, дает основание думать (хотя и не доказывает это), что биологическая активность белковых продуктов генов гИА и гПВ обусловлена [c.314]

    Новый подход к расшифровке кода, не связанный со сравнением криптограммы и текста, появился в конце 50-х годов, когда, с одной стороны, было показано, что в определенной точке полипептидной цепи мутантного белка одна аминокислота замещает другую, присутствующую в белке дикого типа, а с другой — были расшифрованы механизмы спонтанного и индуцированного мутагенеза (см. гл. XIII). Например если мутация, приводящая к замене аминокислоты а на аминокислоту , была индуцирована мутагеном, вызывающим транзиции азотистых оснований, то это означает, что кодоны, соответствующие аминокислотам а и , имеют два общих нуклеотида, а третий нуклеотид у обоих кодонов либо пуриновый, либо пиримидиновый. Если, далее, другая мутация, индуцированная мутагеном, вызывающим транзиции, приводит к замене аминокислоты а на аминокислоту у, это значит, что кодоны, соответствующие аминокислотам и Y, имеют один общий нуклеотид и различаются по двум другим нуклеотидам. Таким образом, анализируя известные замены аминокислот в мутантных белках и сопоставляя их с предполагаемыми заменами нуклеотидов, вызвавших мутации в соответствующих генах, в принципе можно построить схему взаимоотношений между аминокислотами и кодонами. Анализируя эту схему, можно попытаться расшифровать генетический код. [c.434]


Смотреть страницы где упоминается термин Полипептидная цепь мутация: [c.35]    [c.142]    [c.253]    [c.256]    [c.495]    [c.14]    [c.45]    [c.117]    [c.125]    [c.315]    [c.330]    [c.363]    [c.365]    [c.365]    [c.432]   
Молекулярная генетика (1974) -- [ c.152 , c.155 , c.314 , c.315 , c.330 , c.451 , c.453 ]




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи



© 2025 chem21.info Реклама на сайте