Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярные константы диссоциации

    Некоторая специфика в химическом поведении глутатиона связана с перекрыванием величин рКз — 5Н- и NHз-групп. Два более высоких значения р/Са, соответствующие молекулярным константам диссоциации, составляют 8,74 н 9,62. Были предприняты попытки оценить микроскопические константы (гл. 4, разд. В,3). В одном эксперименте отношение двух форм составляло 1,8  [c.179]

    Константы и К2 называют молекулярными константами диссоциации, чтобы отличать их от констант диссоциации, харак-6—282 [c.145]


    При переходе электронов с ВЗМО на НСМО в возбужденной молекуле появляются две частично заполненные молекулярные орбитали, что приводит к снятию запрета реакции по правилу соответствия атомных орбиталей (см. 214). Изменение распределения электронной плотности в молекуле может сопровождаться изменением геометрической структуры молекул (ср. рис. 199 с рис. 45). Оно может привести к изменению прочности отдельных связей, поляризации и дипольных моментов молекул. Так, например, константы диссоциации /г-крезола и 1-нафтола в исходном (5 о) и возбужденном состояниях характеризуются следующими данными  [c.614]

    На рис. 4.1 качественно показано, как изменяется потенциальная энергия двух связанных атомов в зависимости от расстояния г между ними. Точный вид межатомного потенциала в принципе можно получить путем расчета полной электронной энергии Е молекулы в зависимости от г. Однако для много-ато.мных молекул Е(г) нельзя рассчитать с достаточной точностью с помощью упомянутых приближенных методов. Поэтому координатные зависимости потенциала описываются эмпирическими феноменологическими функциями. Конечно, в данные функции входят известные молекулярные константы, например длпна связи (го), силовая постоянная растяжения связи и энергия диссоциации О. В качестве одной из таких функций используется потенциал Морзе, с помощью которого решается уравнение Шредингера [c.115]

    Константы диссоциации и окраски молекулярной и ионной форм некоторых индикаторов [c.306]

    Ю. Ю. Лурье. Расчетные и справочные таблицы для химиков. Госхимиздат, 1947 (332 стр.). Книга является справочником для аналитиков химических лабораторий. В ней помещены основные справочные и расчетные таблицы. Приведены таблицы факторов, величины эквивалентных и молекулярных весов наиболее важных соединений, данные о растворимости солей, константы диссоциации кислот и оснований, таблицы окислительных потенциалов и потенциалов полуволн, сведения об индикаторах методов нейтрализации и окисления-восстановления и т. д., а также таблицы логарифмов и ряд других величин. [c.484]

    Так как табличные данные о растворимости представляют сумму растворимости вещества в ионной и молекулярной формах, можно ожидать только качественного согласия между константой диссоциации и растворимостью вещества. Как показывает сопоставление экспериментальных данных, только для сильных электролитов наблюдается параллелизм между растворимостью [c.318]


    IV. 10. Как изменяется кажущаяся константа диссоциации высокомолекулярной полиакриловой кислоты с увеличением молекулярной массы полимера  [c.211]

    Определение i облегчает решение ряда физико-химических вопросов выяснение молекулярного состояния растворенного вещества, природы различных электролитических реакций, определение степени и константы диссоциации слабых электролитов и т. д. Например, в водных растворах тетраборатов калия и натрия с моляльностью от 0,04 до 0,01 коэффициент i колеблется от 5,4 до 6,6. Это указывает на то, что гидролиз тетраборатов протекает с образованием 6 частиц. Следовательно, реакцию гидролиза можно представить уравнением  [c.207]

Таблица 7.4. Сопоставление молекулярных констант и степени диссоциации для 0,1 и. раствора галогеноводородов Таблица 7.4. <a href="/info/52549">Сопоставление молекулярных</a> констант и <a href="/info/4961">степени диссоциации</a> для 0,1 и. раствора галогеноводородов
    Как видно из табл. 7.4, молекулярные константы и а для HF выпадают из общего ряда, потому что в этих молекулах имеются дополнительные водородные связи, увеличивающие энергию диссоциации. [c.190]

    Ниже приведены константы диссоциации (атм) молекулярных водорода, кислорода и азота на атомы при различных температурах  [c.122]

    Лурье Ю. Ю. Справочник по аналитической химии. М., Госхимиздат, 1962, 288 стр. В книге приведены таблицы факторов, величины эквивалентных и молекулярных весов важнейших соединений, данные о растворимости солей, константы диссоциации кислот и оснований, таблицы окислительных потенциалов и потенциалов полуволн, даны сведения об индикаторах для метода нейтрализации, окисления-восстановления, для метода осаждения и комплексообразования, приведены таблицы плотности растворов кислот и щелочей. Указаны методики приготовления буферных растворов. [c.383]

    Степень диссоциации зависит от величины и характера радикала, связанного с карбоксильной группой кислоты. С увеличением молекулярной массы константа диссоциации падает, что обусловлено и тем, что с увеличением радикала понижается растворимость. [c.185]

    Исследование электропроводимости (у) электролита необходимо с точки зрения количественной оценки степени и константы диссоциации, межионных и молекулярных сил взаимодействия в растворе, а также проведения оценки размеров частиц, изменения разности потенциалов в процессе электролиза и установления оптимальных режимов электрокоагуляционной обработки. [c.9]

    Известно, что сильные электролиты подчиняются закону разбавления Оствальда только при высоких степенях разбавления (до концентрации 2-1 О " моль/л) и имеют постоянную константу диссоциации. В более концентрированных растворах закон разбавления не действует. Исследование свойств водных растворов 8О2 методами электропроводности, растворимости и криоскопии позволило обнаружить существенное отклонение от данного закона [20], при этом установлено, что величина константы в области концентраций 2-30 % 8О2 проходит через максимум. Сильная зависимость величины константы от концентрации объясняется диссоциацией образующихся молекулярных комплексов. [c.32]

    Таким образом, завершая анализ результатов работ по исследованию равновесия бисульфит - сульфит, можно отметить наличие в специальной и справочной литературе значительно различающихся величин термодинамических параметров. Очевидно это связано с целым рядом ограничений и допущений, применяемых исследователями. В большей степени этого удалось избежать авторам работ [52, 199, 56]. Полученные ими значения термодинамических констант мы и будем в дальнейшем использовать при описании состава сульфитных растворов. В табл. 1.11 указаны значения термодинамической константы рК в зависимости от температуры. Обобщенные литературные данные по термодинамическим характеристикам ион-молекулярных равновесий в сульфитных растворах приведены в табл. 1.12, а на рис. 1.16 представлена графически функциональная зависимость термодинамических констант диссоциации сернистой кислоты от температуры. [c.68]

    Вместе с тем проведенные нами исследования [9] в диапазоне температур 298-350 К показали, что влияние температуры в значительной степени проявляется в изменении состояния ион-молекулярного равновесия в исследуемой системе, определяемого значением константы диссоциации рК и основности Н, Параметр нуклеофильности при сохранении структуры рассматриваемых нуклеофилов практически не зависит от температуры. [c.84]

    Уместно напомнить, что классическая термодинамика является наукой феноменологической, т. е. ее результаты не зависят от выбранной атомно-молекулярной модели явления. Важно только, чтобы на всех этапах расчетов модель оставалась неизменной. Если выбрана диссоциативная модель с определенной константой диссоциации, то и концентрацию ионов в растворе нужно вычислять, исходя из этой константы. Кроме того, независимо от состава системы должно соблюдаться постоянство К , рассчитанного по уравнению (232), в какие бы реакции не вступали ионы или молекулы данной системы. Поэтому при использовании табличных термодинамических данных следует обращать внимание на модель, которая была использована при их расчете. Эта модель обычно указывается в скобках. Например, если в таблице указано не-диссоциированный , это означает, что при определении термодинамических свойств этой частицы не учитывалась ее диссоциация на ионы. Поэтому это значение [c.405]


    УФ-спектры бензольных растворов компонентов гудрона и битумов близки по структуре, однако сильно отличаются по интенсивности, которая возрастает при переходе от масел к асфальтенам. Используя положительные отклонения от закона Бера и определяя предельные значения молекулярных коэффициентов поглощения экстраполяцией их величин к нулевым концентрациям, была определена степень диссоциации компонентов в растворах разной концентрации и рассчитаны константы диссоциации (А д)  [c.787]

    Молекулярные константы двухатомных молекул <0, собгтвенное волновое число Хе — коэффициент ангармоничности — вра-шательние постоянные — равновесное междуядерное расстояние — энер-r я диссоциации. ч [c.438]

    Теоретическое пояснение. Фотометрическим методом определяют константы диссоциации кислот и оснований, у которых молекулярная и ионная формы имеют различную окраску. Такие соединения применяют в качестве индикаторов. Перемена окраски связана с диссоциацией. Положим, что индикатор является слабой кислотой, при этом молекулы Hind бесцветны, а анионы lnd окрашивают раствор. Реакция диссоциации выражается уравнением [c.129]

    Отсюда следует, что в молекуле СО существует тройная связь. Такое представление отвечает очень высокой энергии диссоциации D )( O) = = 11,11 эВ (это максимальное значение энергии диссоциации, наблюдаемое у двухатомных молекул) и весьма малому межьядерному расстоянию п, (СО) = 1,12823 А. Обе эти молекулярные константы близки к константам для N2. [c.129]

    Учет поляризации ионов улучшает результаты расчета и других молекулярных констант, помимо дипольного момента, в частности энергии диссоциации молекулы. Потенциальная функция для молекул МеХ на основе модели с поляризующими ионами предложена Борном и Гейзенбергом (1924), развита далее С. Я. Пшежецким [25] и Риттнером [26]. Потенциальная функция (39.2) для молекулы с поляризующимися однозарядными ионами принимает вид [c.164]

    Окраска индикаторов в молекулярной и ионной формах может быть самой разнооб )азной. Существенно, что константы диссоциации индикаторов также различаются. В связи с этим как показано далее, окраска индикаторов меняется [1ри различных значениях pH. [c.149]

    В чем сущность теории электролитической диссоциации 2. Что такое кислоты, основания и соли с точки зрения теории электролитической диссоциации 3. Что такое степень электролитической диссоциации От каких факторов она зависит 4. Что такое константа электролитической диссоциации От каких факторов она-зависит Как ее увеличить . Как уменьшить 05. Чем обусловливается сила электролитов 6. Как формулируется и математически выражается закон разбавления Оствальда ф7. Что называется активностью ионов, молекул, коэффициентом активности, ионной силой раствора 8. Что называется произведением растворимости Примеры. От каких факторов оно зависит ф9. Как влияет введение в раствор одноименного иона на смещение ионного равновесия ф10. Можно ли к сильным электролитам применить закон действующих масс фИ. При каких условиях реакция между электролитами протекает до конца 12. Составьте молекулярные и ионные уравнения образования малорастворимых веществ ВаСг04, АдзРОд, СаСОз, Си(0Н)2, Ре(ОН)з. ф13. Вычислите константу диссоциации одноосновной слабой кислоты, если степень диссоциации ее в 0,1 н. растворе равна 1, 32% И. Вычислите степень диссоциации муравьиной кислоты (НСООН) в 0,5 н. растворе, если известно что концентрация ионов Н+ в нем равняется 0,1 моль/я. 15. Рассчитайте для сероводородной кислоты константу диссоциа- [c.99]

    Низкое значение для угольной кислоты обусловлено частично тем, что имеется некоторое количество едиссоциированной кислоты в форме растворенных молекул СО2, а не Н2СО3. Константа диссоциации молекулярных частиц Н2СО3 на протоны равна примерно [c.349]

    Составьте молекулярные и ионные уравнения гидролиза уксуснокислого кальция Са(СНзСОО)2 и хлорноватистокислого натрц я Na IO. Которая из этих солей в большей степени подвергается гидролизу, если константа диссоциации СН3СООН равна 1,8 10" а кон станта диссоциации НСЮ равна 4 10"  [c.166]

    Молекула Т. двухатомна, мол. м. 6,03210 основная частота колебаний атомов 2548,36 см" константа диссоциации / = р /р.р = 6,226 10" (293,15 К), те р - давление. С др. изотопами водорода Т. образует молекулы прототрития НТ с мол.м. 4,02395 и дейтеротрития DT с мол. м. 5,03015. Молекулярный Т. может находиться в орто-и пара-состояниях (соотв. o-Tj и n-Tj). При обычных условиях газообразный Tj представляет собой смесь 75% орто- и 25% пара-модификаций (нормальный Т., н-Тг). Равновесный Т. (p-Tj), имеющий равновесный орто-пара-состав при данной т-ре, содержит п-Т, (%) 97,243 (10 К), 66,453 (20 К), 43,493 (30 К), 33,35 (40 К), 28,789 (50 К), 25,075 (100 К). Энтальпия орто-пара-превращения н-Тг в p-Tj соАавляет -195,94 при 20 К и -11,51 Дж/моль при 50 К. [c.5]

    Поскольку производные Р-таутомера (изомочевины) являются сильными основаниями, ионы мочевины в водных растворах имеют строение H2N ONH3 и H2N (NH)0 [3], что, по-видимому, предопределяет способность этого вещества к образованию комплексных ионных соединений (типа аддуктов). Однако из-за низкого значения константы диссоциации Kj = 1,5 10" (298 К), обусловленного преимущественным содержанием а-формы, система вода-мочевина в целом представляет собой слабоосновную среду, а составляющие ее гидратные комплексы - молекулярные (неионные) структурные образования. Следствием этого является и весьма слабая гидролизуемость мочевины при низких температурах. Полный гидролиз мочевины с образованием NH3 и СО2 возможен лишь в разбавленных растворах при Т 473 К [2]. [c.111]

    Рассмотрим оценки, сделанные опытным проявлениям молекулярных свойств ангиотензина II и попытаемся составить общее представление о характерных особенностях структурной организации гормона, а затем qpasHHTb его с представлением, следующим из теоретического анализа. Противоречивыми оказались первые же исследования структуры ангиотензина II методом диализа на тонких пленках. В одних работах [33, 34] сделан вывод о том, что молекула гормона в растворе имеет одну компактную форму, а в другой [8] предположено наличие конформационного равновесия двух форм. Не менее противоречивы выводы разных авторов из кинетических данных по изотопному замещению протона в водородных связях ангиотензина II. Г. Шерага и соавт. [15] отмечают одинаковую скорость обмена всех амидных протонов и делают вывод о том, что конформационное состояние гормона отвечает статистическому клубку. Р. Ленкинский и соавт. [35] отмечают аномально низкую скорость обмена амидного протона His , а М. Принтц и соавт. [24, 36] выделяют по этой же причине остатка VaP и VaP. В работе [25] амидные протоны разделены по скорости обмена на три группы, причем к группе с наибольшими скоростями отнесены протоны Asp и Arg . В классификации, предложенной Г. Маршаллом [37], все обменивающиеся протоны разделены на четыре группы. К одной группе отнесены амидные протоны всех остатков ангиотензина II, за исключением Asp и Phe , имеющие, согласно сообщению [37], одинаковую скорость обмена. По значениям констант диссоциации ионогенных групп гормона, полученных потенциометрическим титрованием [9] и с помощью спектров ЯМР и КД [38], сделан вывод о сближенности N- и С-концевых групп пептидной цепи, допускающей их взаимодействие. Расстояние между группами значительно меньше соответствующего расстояния в случае пребывания ангиотензина в состоянии статистического клубка. В работе [38], кроме того, предположено, что все ионогенные группы доступны растворителю, а имидазольное кольцо остатка [c.279]

    Дана зависимость насыщения гемоглобина (НЬ) кислородом при pH 7,2 от концентрации свободного кислорода. Концентрации 0 в капиллярах легких (125 мкМ) н в капиллярах тканей, потребляющих (50 мкМ), зафиксированы в узких пределах. Кривая а в отсутствие дифосфоглицерата (ДФГ) гемоглобин насыщается О в легких, но не может доставлять его к тканям. Кривая б прн физиологическом уровне ДФГ (4.5 мМ. приблизительно 30% Оа. поглощенного легкими, высвобождается в тканях (стрелка 1). Кривые бив поскольку гемоглобин плода (кривая в) имеет более низкое сродство к ДФГ. чем материнский гемоглобин, освобожденный из материнской крови молекулярный кислород может захватываться гемоглобином плода (стрелка [[I). Кривая г высокая концентрация ДФГ (8 мМ) приводит к повышенному снабжению тканей кислородом (стре.жи I и [[). Кривая д при отсутствии кооператнвиостн между субъединицами гемоглобина от легких к тканям транспортировалось бы меньше Оз. При построении гипотетической кривой связывания (5) для комплекса НЬОз принята константа диссоциации 38 мкМ. [c.258]

    Ограничимся ссылками на возможность спектрофотометрического определения рКа бесцветных веществ по изменению окраски специально добавленного в раствор индикатора [169], раздельного определения констант ионизации и диссоциации слабых электролитов в растворителях с низкой диэлектрической проницаемостью [234], определения микроконстант ионизации [1, с. 179 235], применения дифференциальной спектрофотометрии для определения рКа веществ, содержащих примесь [236], а также спектрофотометрического определения констант диссоциации молекулярных комплексов [231, 237]. [c.151]

    Авторы пришли к заключению, что полимеризация мономера включает реакции между Si(0H)4 и =SiO независимо от того, будут ли последние находиться в растворе в виде ионов HSiOr или же на поверхности полимерных частиц в виде ионизированных групп =SiO . Это и есть механизм, предлагаемый Эшли и Инесом [151]. Марш, Клейн и Вермейлен объяснили автокаталитический эффект на основании того, что константа Диссоциации групп SiOH на поверхности полимера возрастала с его молекулярным размером. Таким образом, по мере того как образовывался полимер и размер частиц возрастал, обшая концентрация ионов SiO в системе при данном значении pH повышалась на несколько порядков. Следовательно, скорость увеличивалась до тех пор, пока наблюдалось компенсируюшее понижение концентрации Si(0H)4. [c.370]

    Цыпкина [225] показала, что предгидролиз древесины кипящей водой вызывает инактивацию лигнина вследствие автоконденсации и образования углерод-углеродных связей. При последующем ступенчатом низкотемпературном сульфировании эти связи расщепляются с образованием карбоксильных групп, имеющих константы диссоциации 10 —10 . Карбоксильные группы отщепляются при более высокой температуре варки. Поэтому они отсутствуют в лигносульфоновых кислотах, получаемых при нормальных условиях варочного процесса. В это же время отщепляется и часть сульфогрупп с образованием сульфатных ионов. Одновременно снил<ается кислотность оставшихся сульфокислых групп вследствие молекулярной перегруппировки. [c.363]

    Как было найдено Рюдхольмом [199], кислоты в сульфитном щелоке могут быть не диссоциированными, полностью диссоциированными и частично диссоциированными (например, сернистая кислота). При этом константа диссоциации кислот уменьшается с увеличением температуры. Так, например, в процессе Митчерлиха кислотность варочного раствора жесткой целлюлозы остается достаточно постоянной примерно при pH 2. Кислотность же вискозной варки увеличивается, особенно к концу варочного процесса. Конечно кислотность влияет на степень сульфирования лигнина и, по-видимому, также изменяет средний молекулярный вес лигносульфоновой кислоты. [c.413]

    Потенциометрическое титрование нашло применение при изучении различных соединений фосфора [55] фосфорноватистой, фосфористой, поли- и метафосфорных кислот, конденсированных фосфатов, алкил- и арилфосфорных соединений, смесей неорганических и органических кислот. Установлен кислотный характер атомов фосфора, а также то, что в водных растворах чистой фосфорной кислоты на каждый атом фосфора приходится только один ион водорода, соответствуюш,ий первой константе диссоциации Н3РО4. Остальные ионы Н+ титруются как слабая кислота и соответствуют атомам фосфора концевых групп конденсированных фосфатов. Количество концевых групп определяется титрованием в интервале pH 4,5—9 [55]. Чистые поликислоты с цепочечной структурой имеют тот же pH, что и ортофосфорная кислота. Триполифосфаты, три- и метафосфорные кислоты являются также сильными кислотами по первой ступени диссоциации. Установлены средние молекулярные веса фосфатов с длинной цепью. [c.56]

    Следующие свойства рецептора особенно интересны для иейрохимиков химический состав (т. е. состоит ли он из белка углевода, глико- или липопротеина) молекулярная масса и четвертичная структура аминокислотный состав и последовательность углеводная последовательность пространственная организация молекулярных компонентов число лигандов и константы диссоциации лигандов со связывающими их участками независимость или кооперативность связывающих участков взаимодействие рецептора как со своим окружением (т. е. с мембранными липидами, с другими мембранными белками), так и с компонентами вне- и внутриклеточного пространства. Эти данные могут стать основой для попытки построения модели механизма функционирования рецептора. [c.243]

    Они представляют собой кристаллические вещества, их растворимость в воде падает с увеличением молекулярного веса, а сила как кислот определяется взаимным расположеним карбоксильных групп при достаточно большом удалении последних друг от друга соответствующие константы диссоциации приближаются к таковым для насыщенных монокарбоновых кислот. То же относится и к другим их свойствам. Наоборот, с уменьшением и в приведенной выше формуле сила соответствующих кислот возрастает (электроноакцепторное влияние карбоксильной группы) и появляется ряд специфических свойств (для кислот с п от [c.389]

    Влияние растворителя. Широкое применение органических реагентов в аналитической химии ставит проблему изучения влияния растворителей на кислотно-основные свойства лигандов и устойчивость комплексов. Если реагент присутствует в растворе в протонированной форме (протонирован гетероатом), его константа диссоциации возрастает при уменьшении диэлектрической проницаемости раствора, если же реагент присутствует в молекулярной или анионной форме, то его кислотные свойства уменьшаются при уменьшении диэлектрической проницаемости раствора. Эта закономерность справедлива для 2-ХАН-1 [691], ПАН-2 и ТАН-2 [211], ПАР и ТАР [216], ТАМР [688, 694, 706[, 2-(3,4-диоксифенилазо)-4-оксиметил-5-карбметокситиазола [374], 4-(2-тиазолилазо)пирокатехина [3751. [c.96]


Смотреть страницы где упоминается термин Молекулярные константы диссоциации: [c.454]    [c.318]    [c.107]    [c.136]    [c.245]    [c.173]   
Основы ферментативной кинетики (1979) -- [ c.145 , c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Константа диссоциации

Константы молекулярные



© 2025 chem21.info Реклама на сайте