Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Координационная теория растворителей

    Координационная теория растворителей [c.443]

    В развитии современных представлений нашла свое место и координационная теория комплексных соединений А. Вернера, позволившая рассматривать растворы как системы комплексов растворенного вещества и растворителя. [c.128]

    В неводных растворителях создается новая химия таких элементов как Т1, 2г, ЫЬ, А1, Ва, Ое и др. В воде соединения этих элементов испытывают сильное конкурирующее действие растворителя и легко гидролизуются. Многие элементы в неводных растворителях образуют более прочные комплексы, чем в воде, например галогениды серебра (I) или галогениды рту- ти (II) в диметилформамиде. Изучение комплексов в неводных средах сулит новые достижения в координационной теории и химической технологии. [c.138]


    Если к воде добавить парамагнитные катионы, линия резонанса уширяется, так же как линия протона [68, 69, 72]. Это можно объяснить, по крайней мере частично, тем, что молекулы ОНз входят в первую координационную оболочку парамагнитного катиона. Сильное магнитное поле, обусловленное неспаренным электроном, магнитный момент которого превышает магнитный момент ядра примерно в 10 раз, облегчает изменение спинов ядер, расположенных вблизи. Уширение зависит от времени жизни т ядра 0 между изменениями спина и, следовательно, связано с константой скорости (т ) обмена молекул воды между массой растворителя и первой координационной оболочкой катиона (в действительности наблюдаемое уширение дает только нижний предел скорости обмена). Была предложена общая теория [70, 72]. Предположение о том, что большая часть уширения обусловлена обменом молекул растворителя, подтверждается тем фактом, что оно минимально для иона Сг(Н20) +, несмотря на его большой парамагнитный момент этот ион, как известно из опытов по изотопному разбавлению, только медленно обменивает воду в водных растворах (см. [42], гл. 2). [c.255]

    Маркус, Зволинский и Эйринг ([178] развили затем количественную теорию, основанную на предварительной перегруппировке координационных сфер в наиболее благоприятную конфигурацию с последующим туннельным переходом электрона от одного реагента к другому через барьер, создаваемый растворителем. Оптимальное расстояние для туннельного эффекта было определено при рассмотрении противоположных влияний возрастающей вероятности туннельного перехода (х) и возрастающего кулоновского взаимодействия по мере приближения ионных реагентов друг к другу. Свободная энергия активации AF выражается уравнением [c.145]

    Рассмотрим свойства полученных стандартных химических потенциалов катионов лития в различных растворителях. Они не коррелируют с параметрами простых электростатических теорий сольватации, такими, как диэлектрическая проницаемость растворителя или дипольный момент молекулы растворителя. В то же время существует корреляция с донорным числом растворителя [62-67] и эффективным зарядом на электронодонорном атоме молекулы растворителя [81]. Отклонения точек для некоторых растворителей с крупными молекулами от регрессионной прямой в сторону более положительных значений обусловлены стерическими взаимодействиями в координационной сфере катиона это подтверждается тем, что формы графиков зависимости от X в смесях, содержащих данный раствори- [c.214]


    В жидких углеводородах и других растворителях, классифицируемых как инертные или апротонные , диэлектрические постоянные часто настолько малы и сольватация ограничена в такой степени, что имеется в наличии всего несколько свободных ионов. Кроме того, эти растворители не способны к самодиссоциации, и, следовательно, для них эквивалентное соотношение между кислотностью и основностью уже не выполняется. В этих условиях процесс кислотно-основного взаимодействия, в котором главную роль играет водородная связь,, исключительно специфичен [9]. В такой ситуации обобщенная теория кислот и оснований значительно более приемлема, чем одноэлементная теория Бренстеда. Кислотными частицами являются акцепторы электронов, а основаниями — донорные частицы со свободной парой электронов, способной к образованию ковалентной координационной связи. Несмотря на наличие некоторых дополнительных закономерностей, создание полезной шкалы измерений, которая будет отражать наличие акцепторов электронов, — очень трудная задача. [c.309]

    Теория Самойлова позволила правильно истолковать процессы диффузии ионов в растворах и оценить изменение коэффициентов активности воды в присутствии различных электролитов. При помощи некоторых дополнительных допущений им были определены также координационные числа ряда ионов в разбавленных водных растворах. Величины энергии активации А[/д характеризуют изменение не энергетических свойств иона, а состояния воды (или другого растворителя) при введении в них ионов электролита. При [c.83]

    Теория Самойлова позволила правильно истолковать процессы диффузии ионов в растворах и оценить изменение коэффициентов активности воды в присутствии различных электролитов. При помощи некоторых дополнительных допущений им были определены также координационные числа ряда гидратированных ионов в разбавленных водных растворах. Величины энергии активации Ua характеризуют изменение не энергетических свойств иона, а состояние воды (или другого растворителя) при введении в них ионов электролита. При дальнейшем развитии теория Самойлова сможет, по-видимому, дать также характеристику изменения энергетических свойств ионов в процессе сольватации. [c.80]

    Разделы 8—11 представляют сердце неорганической химии— это теория кислотно-основного равновесия, химия растворителей и координационная химия. Последующие пять разделов книги совершенно независимы друг от друга. Они содержат обзор новейших достижений химии отдельных групп элементов (благородных газов, галогенов, переходных элементов, семейств лантаноидов и актиноидов), химии металлорганических соединений, неорганических цепных и циклических соединений, кластеров и др. [c.13]

    В этом смысле как кислотная, так и основная функции не зависят от механизма переноса иона и не зависят от растворителя. Фактически это положение относит все рассматриваемые в данной теории реакции к области координационной химии. Термины кислота Льюиса и основание Льюиса главным образом применяют в органической химии. [c.19]

    Не удивительно, что для дальнейшего развития теории необходимо было получить количественные данные об относительной силе растворителей. Авторы одной из недавних работ [91 пришли к заключению, что донорные свойства триэтилфосфата немного лучше, чем оксихлорида фосфора, но эти растворители настолько похожи, что не следует ожидать значительных различий в их координационном поведении . Авторы [91 занялись вопросами интерпретации результатов исследования в оксихлориде фосфора просто потому, что в системе хлорное железо — триметилфосфат были получены другие результаты. [c.24]

    Развитые до настоящего времени теории кислот и оснований позволили многое понять в свойствах растворителей и растворов. И наоборот, исследования свойств растворителей в значительной мере способствовали развитию теорий кислот и оснований. Однако еще не создана всеобъемлющая теория растворителей, которая на основе единой концепции строения системы растворитель — растворенное вещество могла бы количественно описать все ее важнейшие свойства. В то же время для различных классов растворителей разработаны теории, которые могут качественно объяснить и предсказать результат влияния природы растворителя на процесс растворения и поведение растворенного вещества в различных реакциях. Среди этих теорий можно назвать теорию сольвосистем, которая разработана для ионизирующихся растворителей, координационную теорию, рассматривающую по большей части растворители с донорно-акцепторными свойствами, протонную теорию, пригодную для растворителей, в которых происходит перенос протонов. [c.440]


    Оптимальная каталитическая система согласно координационной теории характеризуется максимальной бифильностью по отношению к реагента м. Для увеличения селективности процесса следует повысить бифильность катализатора к нужному соединению и понизить ее к побочному продукту. Бифильность каталитической системы можно регулировать изменением электроотрица-тельности металла, сплава, носителя, растворителя и химического потенциала реактантов. [c.173]

    Неоднократные неудачи, связанные с применением, электростатических теорий для количественного описания солевых эффектов (и даже для качественного описания, если вспомнить, к примеру, правило Олсона — Симонсона ), можно объяснить в предположении, что активность иона определяется не только его зарядом и радиусом, как утверждает теория Дебая — Хюккеля, но еще и его донорными и акцепторными свойствами. По общему признанию эти свойства зависят не только от общего заряда. Если исходить из простого утверждения, что катионы — это акцепторы, а анионы — доноры, то солевые эффекты очень хорошо согласуются с представлениями о химических координационных эффектах растворителя. Отсюда вытекают два основных следствия. [c.197]

    С позиции координационной теории все растворители делят 23, 39] на две группы координирующие и некоординирующие. [c.22]

    С точки зрения координационной химии растворители классифицируют либо как акцепторы, либо как доноры, и реакции, протекающие в растворах, связаны со способностью молекул растворителей к координации. Для того чтобы установить, какие типы координационных соединений переходных металлов образуются в различных неводных средах, и скоррелировать эти результаты с различными свойствами растворителей, использовали данные, полученные разными физико-химическими методами в собственной лаборатории автора, а также имеющиеся нолуколичественные данные. Читатель, однако, не найдет в тексте обсуждения теории поля лигандов, аналитического применения некоторых реакций или электрохимии растворов (включая полярографию), так как эти, хотя и очень интересные, аспекты химии в неводных средах выходят за рамки данной книги. [c.7]

    Факторы плавучести, парциальные удельные объемы, эффективные диаметры молекулы фуллерена С60 (по данным плотности), а также эффективные диаметры молекулы растворителя, координационное число сольватокомплекса С60 (5о/у)п и молекулярная масса С60 (согласно теории Флори-Хаггинса) [c.87]

    Согласно теории сольватации, вокруг частицы растворенного вещества расположены две сольватные оболочки первичная и вторичная. В первичную сольватную оболочку входят молекулы растворителя, совершающие движение в растворе вместе с частичкой вещества. Число молекул растворителя в первичной сольватной оболочке называют координационным числом сольватации. Значение его зависит от природы растворенного вещества и растворителя. Во вторую сольватную оболочку входят молекулы растворителя, находящиеся от частицы растворенного вещества на большом расстоянии. Сольватация сильно проявляется в водных растворах электролитов за счет взаимодействия ионов с полярными молекулами воды (гидратация). Термодинамическая устойчивость сольватов определяется величиной энергии Гиббса (ЛОсол)- Так как А О соя = АН СП.-,—ТА.8 СОЛ, то чем меньше АСсо.ч, тем устойчивее комплекс. Основной вклад в величину ДСсол вносит энтальпия сольватации АНсол, которую находят из соотношения [c.137]

    Сложность теплового движения полимерных молекул затрудняет описание стерических эффектов, поэтому целесообразно рассмотреть альтернативный путь, предложенный Фишером. В его основе лежит теория растворов полимеров Флори и Хаггинса. Важнейшим понятием этой теории является параметр взаимодействия полимера с растворителем % гАЦи / КТ, где 2 — координационное число молекул растворителя вокруг звена полимерной молекулы в растворе, АПи = - [c.623]

    Если в какой-либо теории сольватации ограничиться рассмотрением образования только первой сольватной оболочки, то это будет самым грубым приближением. Так, например, в случае ионов в неполярном растворителе можно ввести напряженность микрополя Е в каждой точке раствора, однако подсчет средней эффективной напряженности Е для конденсированно фазы не может быть сведен к учету закона распределения лишь ближайших соседей. Основываясь на данных современных экспериментальных методов, мы можем установить влияние центральной частицы на довольно отдаленные от нее частицы растворителя. В связи с этим координационные числа сольватации, полученные разными путями, резко расходятся. [c.53]

    Теоретической основой развития такого подхода является координационная модель ионной сольватации, основы которой были заложены в работах Измайлова и его последователей [23, 49], Михайлова и Дракина [24], а также ряда зарубежных ученых [17, 35, 46, 50]. В этих работах показано, что взаимодействие ионов с ближайшими молекулами носит донорно-акцепторный характер и энергия ближнего взаимодействия составляет существенную часть общей энергии взаимодействия иона с растворителями энергия взаимодействия сольватокомплекса, образованного ионом с ближайшими молекулами, с остальным объемом раствора может быть оценена в рамках электростатической теории Борна, согласно которой она сравнительно слабо зависит от растворителя, что согласуется с допущением больших ионов . Эти вьшоды подтверждены экспериментальными данными о термодинамических функциях образования ион-молекулярных комплексов в газовой фазе, полученными методами масс-спектрометрии [c.202]

    Резюмируя, можно сказать, что наряду с расчетами изолированных комплексов важной теоретической задачей является анализ возможных механизмов влияния среды на параметры комплексов и вид потенциальной поверхности. Для истолкования имеющихся экспериментальных данных необходимо выяснить, как меняются эти параметры при переходе от газовой фазы к конденсированным инертным средам и, далее, к более активным растворителям. Ясно, что эта задача не может быть решена с помощью теорий типа теории Онзагера—Бетчера, оперирующей в основном макроскопическими величинами. Если потенциальная поверхность изолированной системы имеет только один минимум, то объяснить появление второго минимума при переходе в раствор в рамках подобной теории невозможно. Необходим учет всех видов взаимодействия на основе детального квантовомеханического рассмотрения. Первые шаги в этом направлении уже делаются. Так, в работе [9] проведен расчет по методу ППДП/2 взаимодействия комплекса НдК---НР с молекуламии воды, составляющими первую координационную сферу его гидратной оболочки. Расчет показал, что наличие такого взаимодействия может привести к появлению второго минимума на потенциальной кривой [c.242]

    Классическая теория Флори — Хаггинса. В своей наиболее простой и наглядной форме рассиатриваемая теория основана на решеточной модели жидкости. Согласно этой модели, жидкость м. б. представлена квазирешеткой с координационным числом 2, в каждой ячейке к-рой может поместиться либо молекула растворителя, либо равный ей но размерам участок макромолекулы. [c.142]

    В последнее время значительное развитие получили экспериментальные исследования, связанные с разработкой теории экстракции. Развиваются (10—12] представления о механизме экстракции внутрикомплексных соединений (ВКС). В исследованиях по экстракции отдельных теноилтрифторацетонатов и других экстракционных систем показано, что координационно ненасыщенные ВКС лучше экстрагируются кислородсодержащими органическими растворителями. Отмечается, что экстракции этих комплексов способствует избыток реактива, а также применение полидентантных реагентов. На примере отделения свинца и железа (///) от таллия (/) в виде оксихинолинатов бензолом и дальнейшей экстракции таллия изобутиловым спиртом, а также на примере экстракции ряда других элементов показана возможность использования фактора избирательности, основанного на выборе органического растворителя для экстракционного разделения ВКС. [c.131]

    Экстракционная химия — это прежде всего химия растворов координационных соединений. Современные же теория растворов и химия координационных соединений представляют собой обширные и интенсивно развивающиеся области физической и неорганической химии. При решении теоретических вопросов экстракции химику приходится, таким образом, изучать ряд связанных между собой проблем. Он должен знать первоначальную форму существования элемента в водном растворе, все стадии взаимодействия элемента с реагентом и растворителем, состояние реагента и комплексного соединения в водной и органической фазах. В растворах почти всегда существуют сложные равновесия, которые необходимо принимать во внимание в расчетах и при практическом использовании метода экстракции. Кроме того, нужно учитывать влияние сложного фона электролитов и изменение квазиструктуры воды и органических растворителей. [c.3]

    Сейчас известны способы экстракции и координационно ненасыщенных внутрикомплексных соединений, гидратированных в водной фазе. Способы эти заключаются в использовании координационно активных (главным образом кислородсодержащих) растворителей или специально вводимых координационно активных веществ — добавок (амины и др.). Теория такой экстракции была рассмотрена на стр. 94—106. Здесь напомним только, что координационно ненасьпценные (гидратированные) внутрикомплексные соединения образуются главным образом в тех случаях, когда координационное число центральшого атома превышает удвоенный заряд этого атома, а исиользуемый реагент является бидентатным [281—283]. Из экстракционно-фотометрических методов, основанных на этой экстракции, упомянем определение магния с 8-окси-хинолином в присутствии бутилцеллосольва [300, 301], определение кальция с глиоксаль-бмс-(2-оксианилом), основанное на использовании кислородсодержащих растворителей, определение кобальта в виде теноилтрифторацетоната в присутствии ацетона [291]. [c.183]

    Интересные результаты о влиянии неводного электролита на электрохимическое поведение координационных соединений были получены при изучении ацетилацетонатов железа (П1), никеля (И), кобальта (П1 и И), меди (П), палладия (П) и хрома (И1) в ацетонитриде на ртутном электроде [29] в присутствии перхлоратов лития и тетраэтиламмония. Это исследование является одним из первых, где показано, что в растворителе с низкой диэлектрической проницаемостью у электрода возможно взаимодействие сопутствующего электролита с деполяризатором или продуктом его электродной реакции, согласно ранее выведенной теории [13] (координационная релаксация), [c.263]

    Теория электронного смещения Льюиса — Лукаса дает удовлетворительное объяснение этой последовательности. Если атом водорода связан с достаточно электроотрицательным атомом, то связующая электронная пара оттягивается к последнему, в результате чего эффективный ядерный заряд водородного атома становится сравнительно сильным. Он поэтому может сильнее действовать в качестве акцептора электронов. В следующей главе мы уви-Д1Ш, что это объяснение еще не является исчерпывающим, но во всяком случае оно и не является ошибочным. Рассмотрев эту концепцию глубже, мы придем к выводу, что хотя водородный атом при углероде в общем случае не обладает достаточной электроотрицательностью, чтобы быть способным образовать координационную ковалентную связь, однако водород в соединениях типа СНС ,.. >9ке этой способностью обладает. Последнее обусловлено влиянием атомов хлора, которые повышают электрофильность как атома углерода, так и атомов водорода. Это представление находит себе подтверждение и в исследованиях растворимости различных веществ в различных растворителях. Цельгофер, Копли и Марвел [17] объясняют случаи отступления от общих закономерностей ассоциацией, которая в свою очередь во многих случаях объяснима образованием водородных связей. [c.56]

    Теория Франка не учитывает возможности образования координационных ковалентных связей между растворителем и растворенным веществом, а следовательно, применима только к апротическим растворителям. Полученные выше хорошие результаты в случае амфипротических растворителей объясняются следующими обстоятельствами. [c.411]

    Влияние растворителя на нейтрализацию будет рассматриваться в гл. VIII, так как для этого необходимо предварительное обсуждение реакций вытеснения. Типовое уравнение теории Бренстеда исключает нейтрализацию из всех кислотно-основных реакций, охватываемых этой теорией. Это происходит потому, что уравнение представляет реакции вытеснения вторичных кислот и оснований. Так как теория Льюиса включает теорию Бренстеда, мы приходим к тому же выводу, когда рассматриваем водородные кислоты. Однако теория Льюиса вкладывает содержание в термин нейтра-лизация применительно к реакциям между первичными кислотами и основаниями. Нейтрализация — реакция соединения первичной кислоты с первичным основанием, приводящая к образованию координационной ковалентной связи между ними. [c.117]


Смотреть страницы где упоминается термин Координационная теория растворителей: [c.223]    [c.84]    [c.15]    [c.134]    [c.216]    [c.58]    [c.242]    [c.139]    [c.56]    [c.571]    [c.10]    [c.210]    [c.421]    [c.99]    [c.18]   
Смотреть главы в:

Анорганикум. Т.1 -> Координационная теория растворителей




ПОИСК





Смотрите так же термины и статьи:

Координационная теория



© 2025 chem21.info Реклама на сайте