Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовые состояния веществ и фазовые равновесия

    В третье издание включены некоторые новые разделы плазменное состояние вещества, фазовые равновесия в конденсированных системах и др. [c.3]

    Фазы изолированной системы могут взаимодействовать друг с другом, обмениваясь веществом и энергией. В неравновесной системе их компоненты будут самопроизвольно переходить из одной фазы в другую. Этот процесс самопроизвольного массо-и энергообмена между фазами должен в итоге привести к такому предельному состоянию, когда скорость перехода из одной фазы в другую в точности уравновесится переходом в обратном направлении, и в системе не будет наблюдаться никаких видимых изменений. В этом случае, когда во всех фазах системы все макроскопические свойства остаются неизменными во времени, говорят, что система находится в состоянии динамического фазового равновесия. [c.10]


    Состояние системы в твердом, жидком и парообразном состояниях можно изобразить с помощью плоских или трехмерных графиков. Эти изображения называются диаграммами. Диаграмма, в которой по осям координат откладываются значения термодинамических параметров или функций состояния, называется термодинамической диаграммой. Если диаграмма несет информацию о фазовом состоянии вещества, то она называется фазовой диаграммой. Каждая точка на фазовой диаграмме, называемая фигуративной, или изображающей, несет информацию о фазовом состоянии вещества и значениях термодинамических параметров. Две фазы (или более) могут существовать в равновесной ситуации одновременно. Тогда они называются сосуществующими фазами. Например, твердая или жидкая фазы могут сосуществовать с газовой фазой. Нафевание твердого вещества сопровождается расплавлением, и все три фазы — твердая, жидкая и газовая, будут при некоторых строго определенных условиях по температуре и давлению существовать одновременно. Возможно одновременное сосуществование двух твердых и одной жидкой фазы. Точка на термодинамической диаграмме, соответствующая состоянию, в котором находятся в равновесии три фазы вещества, называется тройной точкой. Хорошо известна тройная точка воды при температуре около 273 К и давлении 1 бар. [c.163]

    ФАЗОВЫЕ СОСТОЯНИЯ ВЕЩЕСТВ И ФАЗОВЫЕ РАВНОВЕСИЯ [c.9]

    Применим выведенные общие условия, определяющие положение равновесия в системе при постоянных р и Т и направление изобарно-изотермического процесса, для рассмотрения изменения агрегатного состояния вещества (фазового перехода). Изменение О, как и любой экстенсивной функции, в этом случае согласно (12.2) составляет 0 = (С<2> — где с11 — количество вещества, переходящее [c.197]

    Выражение констант равновесия. Константы равновесия в зависимости от фазового состояния веществ выражают различным -способом. [c.183]

    С термодинамической точки зрения различают фазовые состояния вещества. Фаза — это однородная часть системы, состоящая из большого числа частиц, имеющая пространственную протяженность и обладающая поверхностью раздела с другими фазами, с которыми она всегда находится в равновесии. [c.22]

    Из изложенного выше следует, что понятие об идеальной газовой смеси как о смеси частиц, взаимодействие которых заключается только в упругих соударениях, неприменимо к жидкостям и твердым телам, так как эти состояния вещества невозможны без межмолекулярного взаимодействия. Энергия последнего зависит от химической природы и строения молекул, которые чрезвычайно разнообразны. Поэтому изучение свойств вещества в конденсированном состоянии представляет большие трудности по сравнению с изучением свойств вещества в газообразном состоянии. Однако применительно к задачам, возникающим при исследовании фазового равновесия, эти трудности можно в некоторой степени обойти. Специфика этих задач заключается в том, что в них всегда рассматриваются по крайней мере две фазы. В состоянии равновесия свойства фаз связаны выведенными выше термодинамическими условиями равновесия. Используя эти условия, представляется возможность почти полностью исключить из рассмотрения вопросы, связанные со строением конденсированных фаз. Это достигается путем сопоставления реальных смесей с идеальными. [c.49]


    Процессы, при которых изменяются только количественные соотношения веществ (компонентов), входящих в состав перерабатываемых продз ктов (сырья). В основе этих процессов лежат физикомеханические и физико-химические методы обработки. Сюда относятся сушка, выпаривание, кристаллизация, экстрагирование, разделение газов методом глубокого охлаждения, получение растворов двух и многокомпонентных систем и т. д. Материальный, а следовательно, и тепловой расчет подобного рода процессов основан на законах газового состояния и фазовых равновесий. [c.43]

    При встряхивании в жидкости все.х твердых веществ в конце концов устанавливается равновесие данного твердого вещества с насыщенны.м растворо.м его в этой жидкости. Это положение можно обобщить в том случае, если при растворении имеет место изменение фазового состояния, любые разнородные фазы (твердое вещество — жидкость, газ — жидкость, газ — твердое вещество) при тесном контакте в течение достаточно большого промежутка времени при.ходят к взаимному равновесию, если только одна нз них полностью не израсходуется. При равновесии молекулы переходят из одной фазы в другую с одинаковыми скоростями, и суммарных изменений не происходит. Смешение двух газов, или двух жидкостей, или двух твердых веществ часто дает однофазные системы, которые не образуют насыщенных растворов — каждый компонент может растворить любое количество другого компонента они образуют неограниченный ряд растворов. [c.90]

    Так же как и в агрегатных состояниях, существуют три основных фазовых состояния вещества газообразное, жидкое и твердое. Все эти фазы различаются термодинамическими потенциалами, и потому к ним должны быть применены характеристики внешних условий, определяющие равновесие системы для данного фазового состояния, т. е. давление и температура. Как известно, при изменении этих условий одно и то же вещество претерпевает фазовые превращения. Существует непосредственная связь между фазовым состоянием и структурой вещества. [c.115]

    Рассмотрим некоторые понятия, существенные для теории фазового равновесия. В первую очередь определим понятие фазы как термодинамически однородной части системы и отметим, что в зависимости от условий, в которых находится система, возможно как сосуществование фаз без изменения их масс (фазовое равновесие), так и переход вещества из одного фазового состояния в другое (фазовые превращения). [c.137]

    Повышение подвижности молекул, однако, может быть достигнуто не только увеличением температуры, но и разбавлением вещества. Как прн изменении температуры происходит фазовый переход, в результате которого система переходит в новое состояние с определенным уровнем свободной энергии, так и при введении разбавителя (растворителя) может возникнуть аналогичный фазовый переход с образованием жидкокристаллической фазы (или равновесных фаз, одна из которых является жидкокристаллической — анизотропной, а другая — аморфной, изотропной). На рис. 1.2 приведена схема фазовых переходов (диаграмма фазового равновесия) в системе, содержащей растворитель А и вещество В, способное образовывать мезофазу. Эта смесь отличается от обычных смесей двух кристаллизующихся веществ с эвтектической точкой при концентрации Сэ и температуре 7 э тем, что если для чистого вещества А по шкале температур наблюдается обычное плавление кристаллов с образованием изотропного расплава (точка Гки), то для вещества Б выше температуры плавления чистых кри-сталов происходит переход не в изотропный раствор, а в анизотропную жидкость, т. е. в мезофазу (точка Т а). Состояние мезофазы сохраняется для чистого вещества Б вплоть до точки Т , в которой исчезает анизотропия и возникает обычное, аморфное состояние расплава, как это описано выше для термотропных систем. [c.18]

    С термодинамической точки зрения следует различать фазовые состояния вещества. Эти понятия имеют термодинамическое происхождение. Фазой называют однородную систему, находящуюся в равновесии. [c.38]

    Одним из наиболее плодотворных для химии оказался термодинамический метод развит он применительно к химии Гиббсом. Этот метод широко применяется при изучении химических равновесий и процессов, связанных с изменением фазовых состояний веществ. Применение термодинамического метода оказалось настолько живительным для химии, что на базе его выросла вполне самостоятельная научная ветвь, называемая химической термодинамикой. [c.5]

    В настоящей главе проводится краткое ознакомление со свойствами твердых и жидких веществ и газов, а также с термодинамическими переходами из одного фазового состояния в другое и с условиями равновесия между различными фазами одного и того же вещества. [c.120]

    В монографии рассмотрены вопросы фазового равновесия при переходе веществ из жидкого состояния в кристаллическое, кинетические закономерности образования и роста кристаллов. Обсуждены особенности теплообмена при охлаждении различных расплавов. Приведена классификация методов кристаллизации расплавов. Проанализированы особенности различных технологических методов кристаллизации расплавов, в том числе методов отверждения расплавов, фракционной кристаллизации, очистки веществ от примесей и выращивания монокристаллов. Рассмотрены вопросы аппаратурного оформления разных процессов кристаллизации расплавов. [c.728]


    График р—Т для чистых веществ. На рис. 7 представлена зависимость давления от температуры для чистых веществ. Линии НВ, НС и/ Я называются равновесными, так как они соответствуют сочетанию давлений и температур, при которых примыкающие фазы находятся в равновесии. При равновесии можно изменить фазовое состояние системы, не изменяя давление и температуру, а лишь добавив или изъяв из системы определенное количество энергии. Точка Я называется тройной, так как она соответствует давлению и температуре, при которых вещество одновременно может находиться в трехфазном состоянии. Вдоль линии ЕН не может быть жидкой фазы и твердое тело сублимируется в пар, минуя жидкое состояние. [c.23]

    Описание фазового равновесия является одной из важнейших задач при расчете процессов разделения. Знание условий равновесия позволяет не только принципиально решить вопрос о возможности разделения многокомпонентной смеси методами ректификации, абсорбции, экстракции, но и выбрать схему разделения. Наиболее обший метод расчета равновесия основан на применении некоторого уравнения (уравнения состояния) ко всем фазам системы пар - жидкость. Однако использование уравнений состояния возможно лишь в случае простых систем, которые образованы веществами с аналогичными свойствами, например неполярными веществами, составляющими природный газ. [c.40]

    Последний фактор обусловлен особенностями формования полимерного материала переводом высокомолекулярного вещества в вязкотекучее состояние растворением или плавлением и последующим отверждением его во внещнем силовом поле. Скорость протекания всех этих процессов предопределяется гибкостью макромолекул, а направление и степень завершенности - особенностями фазовых равновесий. Вместе с тем процессы синтеза и переработки полимеров никогда не реализуются в технологической практике как равновесные, а прекращаются на стадии, на которой достигается некоторый компромисс между приемлемыми качественными и количественными характеристиками полимерного субстрата, с одной стороны, и технико-экономической эффективностью - с другой. [c.14]

    Трудности при разделении смеси веществ возникают, если все компоненты разделяемой смеси образуют одну фазу. Для решения такой задачи приходится либо изменять агрегатное состояние части компонентов смеси, либо добиваться изменения фазового равновесия или кинетики процесса. Например, в таких широко известных методах разделения, как экстракция и ректификация, молекулы веществ, составляющих смесь, переходят через границу раздела фаз в обоих направлениях, стремясь к установлению равновесия. Эффективность разделения значительно увеличи-вается, если процесс перехода вещества из одной фазы в другую с последующим установлением равновесной концентрации многократно повторяется. Еще большего эффекта разделения можно достичь, если на процесс установления фазового равновесия наложить действие кинетического фактора. Такое наложение происходит, например, при разделении смеси веществ методом молекулярной дистилляции. В этом случае через поверхность раздела фаз переходят молекулы только одного вида и только в одном направлении. Однако даже самые совершенные ректификационные и экстракционные установки способны разделять лишь относительно простые смеси. [c.8]

    Под фазовым переходом понимают переход вещества из одного фазового состояния в другое при изменении параметров, характеризующих термодинамическое равновесие. Различают фазовые переходы первого и второго рода. Многие переходы первого рода широко известны — это процессы плавления, испарения, возгонки. [c.158]

    При температуре начинают выделяться кристаллы В из жидкости О, более богатой веществом В. Однако при этом между жидкостями происходит перераспределение вещества таким образом, что составы их снова приходят в точки СиО. Меняется лишь их количественное соотношение так, что относительное содержание жидкости О уменьшается. Пока сосуществуют обе жидкости, кристаллы В выделяются при постоянной температуре и Иначе говоря, на линии СО система инвариантна, и до исчезновения одной из фаз нельзя менять ни температуру, ни состав этих жидкостей без изменения фазового состояния системы. Только тогда, когда исчезнет вся жидкость О, температура будет понижаться. После охлаждения до температуры эвтектики расплав полностью затвердевает. Ниже этой температуры в равновесии находятся кристаллы А и В либо эвтектическая смесь+кристаллы В. [c.62]

    Во многих важных равновесных системах, как, например, в рассмотренной выше системе водород-азот-аммиак, все вещества находятся в одинаковом фазовом состоянии. Такие равновесные системы называются гомогенными. Но равновесие может устанавливаться и между веществами, которые находятся в разных фазовых состояниях, и в таком случае говорят о гетерогенном равновесии. В качестве примера рассмотрим разложение карбоната кальция  [c.48]

    Сборник задач и упражнений по физической и коллоидной химии содержит 800 задач и упражнений, относящихся к следующим разделам данного курса газы и жидкости, первый и второй законы термодинамики, термохимия, фазовые равновесия и растворы, химическое равновесие, химическая кинетика, электрохимия, поверхностные явления, коллоидное состояние вещества, Каждый раздел включает параграфы, в которых кратко излагаются некоторые теоретические вопросы, приводятся формулы, необходимые для решения задач. В разобранных примерах даны методические указания для решения задач и выполнения упражнений. [c.2]

    Правило фаз (Д. Гиббс, 1873—1876) устанавливает, при каких условиях (температуре, давлении, концентрациях веществ) имеющиеся фазы гетерогенных систем находятся в состоянии термодинамического равновесия. Гетерогенные равновесия, при которых процесс перехода веществ из одной фазы в другую не сопровождается изменением их химического состава, называются фазовыми равновесиями (например, испарение, плавление, растворение, полиморфные превращения и др.). Для характеристики фазовых равновесий широко пользуются уравнением правила фаз, которое связывает число фаз Ф, число компонентов К и число степеней свободы С равновесных гетерогенных систем Ф-ЬС = К-Ь2. Это уравнение обычно применяют для определения числа степеней свободы, т. е. [c.66]

    Фазовые равновесия. Общие закономерности, которым подчиняются равновесные гетерогенные системы, состоящие иа любого числа фаз и любого числа веществ, устанавливаются правилом фаз Гиббса. Руководствуясь правилом фаз, строят диаграммы, которые позволяют наглядно следить за состоянием системы при нагревании, охлаждении и при изменении ее состава. В фармации, пользуясь диаграммами состояния, можно определять оптимальные условия приготовления лекарственных форм с заданными свойствами. Изучение фазовых равновесий позволяет грамотно решать вопросы, связанные с очисткой лекарственных веществ перегонкой с водяным паром и разделением веществ ректификацией. С помощью фазовых диаграмм можно решать вопросы совместимости при изготовлении лекарственных форм и возможности химического взаимодействия между отдельными компонентами. [c.10]

    Основываясь на представлениях Льюиса, расширим понятие летучести. Как известно, фазовые равновесия характеризуются равенством мольных изобарных потенциалов. Если, для обоих состояний вещества (допустим, для жидкости и пара) стандартные состояния считать одинаковыми, то согласно (У.194) равенство изобарных потенциалов приведет к равенству летучестей, т. е. для равновесий (У.218) можно записать  [c.168]

    Применим выведенные общие условия, определяющие положение равновесия в системе при постоянных р и Т и направление изо-барно-изотермического процесса, для рассмотрения изменения агрегатного состояния вещества [фазового перехода). Изменение Оп, как и любой экстенсивной функции, в этом случае, согласно (12.2), составляет с10п= (С )—0( ))с1 , где — количество вещества, переходящее из первой фазы во вторую. В изобарно-изотермическом процессе с10п 0, и, следовательно, процесс возможен, если [c.224]

    Введение. Появление в последнее время множества обзорных статей, посвященных уравнениям состояния и фазовому равновесию, свидетельствует, вероятно, о существовании в этой области науки целого ряда нерешенных проблем. Единым общим уравнением состояния пока мы не располагаем и вряд ли будем располагать в ближайшее время. Даже уравнения, содержащие по 30—40 констант и предназначенные для расчетов при помощи ЭВМ, имеют значительные ограничения. Попытки выполнить обобщение уравнений, с тем чтобы они охватывали более широкий круг веществ, обычно ведут к снижению степени точности в конкретных случаях. Например, уравнение Хана — Старлинга, имеющее обобщенные коэффициенты, отличается гораздо меньшей степенью точности по сравнению с соответствующим уравнением Бенедикта — Уэбба — Рубина, коэффициенты которого меняются в зависимости от конкретного вещества. [c.104]

    В зависимости от запаса энергии частиц и их взаимного расположения различают три типа фазовых состояний вещества — газообразное (Г), жи дкое (Ж) и твердое (Т). При определенных условиях (температура и давление) вещество может находиться в одном, в двух или одновременно в трех фазовых состояниях. Например, вода при 0,01° С образует однокомпонентную трехфазную систему (с. И), состоящую из ее паров, жидкой воды и льда. Подобное равновесие [c.91]

    Фазовые состояния вещества отражаются диаграммами зависимости температуры устойчивого состояния фазы от давления в системе. Для воды изменение фазового состояния представлено более 14 полиморфными видами льдов [196], из которых при положительных температурах существуют льды V, VI, VII, VIII. Помимо основных областей существования указанных льдов экспериментально установлено, что фазовые границы одного льда имеют место и в области стабильности другого льда. Так, например, лед VI в равновесии с водой может находиться в области стабильного существования льда VII [197] и наоборот, что указывает на то, что тройные точки не полностью описывают фазовые состояния вещества. Таким образом, фазовые границы сосуществования аллотропной формы льда могут сдвигаться в области термодинамической устойчивости другой фазы льда в виде системы лед в воде как при положительных, так и отрицательных температурах. [c.63]

    Самые различные процессы в природе сопровождаются выделением или поглощением тепла, количество которого определяется характером процесса и калорическими свойствами исследуемого вещества (твердого тела, жидкости, газа и др.). Важнейшим из термодинамических свойств является теплоемкость, которая позволяет исследовать структуру образца и силы взаимодействия атомов и атомных групп в молекуле детально изучить и выявить энтропию системы, фазовые переходы, критические явления, состояние адсорбированного вещества определить количество примесей в веществе или растворе многокомпонентной жидкости вычислить характеристические термодинамичеокие функции различных систем и сред и констант равновесия их и др. [c.29]

    На основании температур начала кристаллизации двухкомпонентной системы 1) постройте диаграмму фазового состояния (диаграмму плавкости) системы А —В 2) обозначьте точками / — жидкий расплав, содержащий а % вещества А при температуре Тй II — расплав, содержащий а % вещества А, находящийся в равновесии с кристаллами химического соединения III — систему, состоящую из твердого вещества А, находящегося в равновесии с расплавом, содержащим Ь % вещества А IV — равновесие фаз одинакового состава V — равновесие трех фаз 3) определите состав устойчивого химического соединения 4) определите качественный и количественный составы эвтек-тик 5) вычертите все типы кривых охлаждения, возможные для данной системы, укажите, каким составам на диаграмме плавкости эти кривые соответствуют 6) в каком фазовом состоянии находятся системы, содержащие с, е % вещества А при температуре Т Что произойдет с этими системами, если их охладить до температуры Т 7) определите число фаз и число условных термодинамических степеней свободы системы при эвтектической температуре и молярной доле компонента А 95 и 5 % 8) при какой температуре начнет отвердевать расплав, содержащий с % вещества А При какой температуре он отвердеет полностью Каков состав первых кристаллов 9) при какой температуре начнет плавиться система, содержащая й % вещества А При какой температуре она расплавится полностью Каков состав первых капель расплава 10) вычислите теплоты плавления веществ А и В 11) какой компонент и сколько его выкристаллизуется из системы, если 2 кг расплава, содержащего а % вещества А, охладить от Тх до Г,  [c.247]

    Фазовые равновесия. Основные понятия и общие закономерности фазовых переходов. Фазовые равновесия в однокомпонентных системах. Диа1раммы состояния веществ. Бинарные растворы и основные их свойства. Фазовые равновесия в двухкомпонентных системах. Теоретические основы различных процессов разделения бинарных смесей. Некоторые сведения из фазовых равновесю в трехкомпонентных системах. Теоретические основы экстракции. Физико-химический анашз. [c.8]

    Испарение и конденсация. Любое вещество в жидком или кристаллическом состоянии подвергается испарению, т. е. переходу в газовое состояние. Этот переход, будучи эндотермичным, осуществляется самопроизвольно, поскольку он сопровождается увеличением энтропии системы. Скорость процесса испарения, очевидно, про-порниональна концентрации молекул вещества в жидкой фазе поэтому процесс испарения идет с некоторой постоянной скоростью при определенной температуре. То же относится и к скорости процесса испарения вещества в кристаллическом состоянии. Очевидно, что в процессе испарения или сублимации концентрация молекул вещества в жидкой или твердой фазе не изменяется уменьшается только общее количество вещества, составляющего жидкую или твердую фазу. Что касается газовой фазы, то если процесс испарения или сублимации происходит в замкнутой системе, концентрация молекул испаряющегося вещества в газовой фазе непрерывно возрастает. По мере возрастания концентрации вещества в газовой фазе возникают условия для протекания процесса, обратного испарению, — конденсации (сл<ил<еиия нли десублимации). Скорость экзотермического процесса конденсации, очевидно, пропорциональна концентрации молекул вещества в газовой фазе поэтому процесс конденсации в замкнутой системе идет со все возрастающей скоростью. Когда скорость процесса конденсации становится равной постоянной скорости процесса испарения, очевидно, наступает равновесие между газовой и жидкой (твердой) фазами, т. е. фазовое равновесие, которое характеризуется постоянством концентраций вещества не только в конденсированной, но и в га- [c.98]

    Если термодинамическая система является механической смесью (смесь кристаллов различных веществ, смесь взанмонераст-ворпмых жидкостей и т. п.), то каждый из ее компонентов представляет собой самостоятельную систему — чистое вещество. В связи с этим состав эвтектики не является ее термодинамической характеристикой и при рассмотрении фазового равновесия исключается как параметр состояния. [c.198]

    Нафевание жидкости, находящейся в равновесии с паром, при некоторых довольно строгих условиях, накладываемых на температуру, давление и объем системы, может приводить к внезапному исчезновению фаницы между жидкой и газовой фазой. Состояние вещества (или смеси веществ), возникающее при исчезновении различия между фазами, находящимися в равновесии друг с другом (например, между жидкостью и ее паром, между двумя жидкостями и др.), называют критическим состоянием. На фазовой диаграмме в этой точке кривая сосуществования жидкости и пара обрывается. Точка на термодинамической диаграмме, соответствующая критическому состоянию вещества, называется критической точкой. Критические состояния вещества свойственны не только системам с равновесием типа жидкость — ее насыщенный пар , но иногда также системам с равновесием несмешивающихся жидкостей и даже аморфнь[х или кристаллических твердых фаз. [c.169]

    Фазовые равновесия. Рассмотрим вначале ус 10вия фазового равновесия, следуя методу Гиббса. Гиббс характеризует химическое состояние системы числом граммов т, т ,. .Ши различных химических веществ компонентов Аи Лг,. . ., Аи, из которых состоит система. В настоящее время при обсуждении вопросов химической термодинамики принято в качестве единицы массы вещества брать не грамм, а моль. Поэтому условимся химическое состояние системы характеризовать числом молей Пи а,. .., пь компонентов, составляющих систему. [c.202]

    Чтобы вывести условия фазового равновесия в общем виде, нужно в объединенное уравнение первого и второго начал термодинамики (IV.45) ввести в качестве независимых переменных числа молей веществ, хара1ктеризующих химическое состояние системы. [c.202]


Смотреть страницы где упоминается термин Фазовые состояния веществ и фазовые равновесия: [c.105]    [c.26]    [c.99]    [c.54]    [c.163]    [c.123]    [c.87]   
Смотреть главы в:

Общая химия. Состояние веществ и химические реакции -> Фазовые состояния веществ и фазовые равновесия




ПОИСК





Смотрите так же термины и статьи:

Вещество, фазовые состояния

Равновесие фазовое

Фазовые состояния



© 2025 chem21.info Реклама на сайте