Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая связь Общие представления о химической связи

    Метод валентных связей (локализованных электронных пар) строится на положении о том, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар. Таким образом, в представлении теории валент-. ных связей химическая связь локализована между двумя атомами, т. е. она двухцентровая и двухэлектронная. [c.63]

    В связи с тем, что вся технология переработки нефти (как первичная, так и вторичная) базируется на использовании разнообразных методов разделения сложных углеводородных смесей, в книгу помещен раздел, дающий краткие принципиальные сведения о таких процессах, как перегонка и ректификация, абсорбция, кристаллизация, экстракция, термодиффузия, адсорбция, хроматофафия и др. Эти сведения призваны дать общие представления о процессах разделения и облегчить усвоение последующего материала по всем разделам технологии нефти и газа. Одна из глав посвящена описанию систем классификации нефтей и организации их унифицированных исследований. Там же приведена характеристика основных фупп нефтепродуктов, получаемых из нефти и газа, - топлив, масел, парафинов, битумов, растворителей и т. д., их назначение, области применения, кратко рассмотрены способы их получения. Дается перечень определяющих для каждой фуппы физико-химических свойств и их значение для химмотологии. [c.18]


    Рассмотрение молекулярных орбиталей и химической связи во втором издании в общем понравилось большинству преподавателей, но показалось им несколько усложненным и трудным для восприятия. Теперь мы разбили этот материал на две части в гл. 12 излагаются основы теории молекулярных орбиталей и ее применения к некоторым двухатомным молекулам, а в гл. 13 рассматриваются многоатомные молекулы и молекулярная спектроскопия. Кроме того, написана новая глава (гл. 11), представляющая собой введение в теорию химической связи в ней используются только представления об электронных парах и отталкивании электронных пар и еще не упоминается о квантовой механике. Рассматриваемая в этой главе теория отталкивания валентных электронных пар (как это ни странно, мало известная в США) дает интуитивно понятный и простой способ качественного объяснения формы молекул. Эти три главы вместе с гл. 14, посвященной химической связи в кристаллах и жидкостях, дают студентам всестороннее представление о принципах химической связи, строения молекул и спектроскопии. [c.10]

    Первым важнейшим недостатком его является то, что оно не может быть получено в рамках квантовой механики самой по себе. Действительно, чтобы пренебречь в операторе Гамильтона Н химической частицы всеми членами, указанными выше, и представить его в виде суммы операторов Н 1), необходимо знать формулу химического строения, приписываемую данной химической частице классической теорией химического строения. Но до настоящего времени ни понятие химических связей для" многоядерных химических частиц, ни представление о формуле химического строения не были выведены (хотя бы как приближенные представления) из общих положений квантовой механики как ее следствия . Таким образом, в рамках современной квантовой механики молекул (без включения в нее посторонних гипотез) нет пока квантово-механических аналогов понятий химическая связь и формула химического строения . Следовательно, нет возможности для различных состояний заданной системы из К ядер с зарядами а(а=1,. .. К) и N электронов из квантово-механических соображений определить, какие пары ядер следует считать химически связанными (в смысле, аналогичном химической связи классической теории) и между какими парами ядер таких химических связей нет. А поэтому нет исходных данных для преобразования оператора// в сумму операторов Н 1), так как неизвестно, к каким парам ядер должны относиться операторы Н 1), [c.80]


    По современным представлениям, химическая связь в органических соединениях осуществляется с помощью двух электронов, которые становятся общими для соседних атомов. Атомы углерода легко объединяют свои валентные электроны с валентными электронами других атомов и создают с ними прочные общ,ие электронные оболочки. Таким образом, в наружном слое атома углерода будет находиться 8 электронов, 4 из которых одновременно принадлежат другим атомам. Такие устойчивые оболочки из восьми электронов называют октетами (по-гречески окта — восемь). [c.16]

    По этим причинам пытаться дать сколько-нибудь единообразное толкование природы химической связи, кроме как на базе уже упомянутых самых общих представлений, вряд ли целесообразно. В то же время для классификационных целей могут быть использованы весьма различные признаки, в частности основанные на анализе происхождения связей. Тем не менее, при этом следует помнить, что представляют собой эти признаки. Так, если считать, что молекула Н2 образуется из двух нейтральных атомов, то можно говорить о ковалентной связи между атомами. Однако, если эта молекула [c.474]

    Создание математической модели химического реактора заканчивается составлением уравнений материального баланса и сохранения энергии. Однако, приступив к исследованию и решению этих уравнений, целесообразно преобразовать их к безразмерному виду. Это преобразование в значительной степени облегчает исследование и помогает составить общее представление об изучаемой системе. Такие вопросы, как, например, влияние параметров системы на ее поведение, взаимоотношения различных моделей одного реактора, связь между моделям различных реакторов и пр., могут приобрести окончательную ясность только после преобразования уравнений к безразмерным переменным. После перехода к безразмерным переменным множество параметров, обычно входящих в уравнения, сводится к небольшому числу их безразмерных комбинаций. Разумным выбором этих комбинаций можно сократить число параметров преобразованной системы до минимума. [c.553]

    В середине прошлого века, благодаря исследованиям А. М. Бутлерова, В. В. Марковникова, А. Дюма, возникла другая теория, основанная на противоположных представлениях о природе химической связи, а именно теория гомеополярной связи. По современным представлениям, гомеополярная, или ковалентная связь также обусловлена электростатическим взаимодействием. Однако в отличие от ионной, она не определяется взаимодействием между разноименно заряженными частями молекулы. Гомеополярная связь возникает благодаря взаимодействию между внешними электронами атомов, составляющих молекулу, и положительно заряженными атомными остатками, т. е. ионами, образующимися из атомов при удалении внешних электронов. Теории ионной и ковалентной связи противопоставлялись друг другу в течение многих лет, пока в 30-е годы нашего столетия не возникла общая теория, которая объединила эти представления о двух основных типах связи и показала, в каких классах химических соединений преобладает первый тип связи, а в каких — второй. [c.295]

    В последнее время представление о валентности очень усложнилось и сегодня нет единого подхода для количественной оценки способности атомов к образованию химической связи. Для характеристики способности атомов соединяться друг с другом чаще всего используются три понятия валентность (ковалентность), степень (состояние) окисления и координационное число атома. Между численными значениями степени окисления, координационного числа и валентности (число связей) в общем случае прямой связи нет. [c.79]

    Полная волновая функция может быть теперь представлена комбинированием значений радиальной и угловой частей в соответствии с выражением (3.5). Она нагляднее всего изображается с помощью контурных диаграмм, как это сделано для р -орбитали на рис. 3.7. Однако очень удобным, хотя и приближенным,является представление орбиталей с помощью угловых частей, как показано на рис. 3.6. Оно будет неоднократно использовано на протяжении этой книги. Как видно, волновая функция может иметь положительную и отрицательную области. Однако наблюдаемые свойства электрона зависят не от функции Т, а от функции (в более общем случае — от 4 ), которая всегда положительна. Какова же тогда роль знака и существен ли он вообще Для выяснения этого проведем здесь аналогию с амплитудой световой волны. Она может быть положительной или отрицательной, но знак важен только в том случае, когда две волны интерферируют. Тогда соотношение знаков обеих амплитуд определяет, будет ли происходить при интерференции взаимное ослабление или усиление волн. Аналогично, как будет видно из теории химической связи, важно именно соотношение знаков двух перекрывающихся атомных орбиталей, а не знаки каждой из них в отдельности. [c.46]

    Первые два вопроса приложимы к любому химическому соединению, а не только к комплексным соединениям. Ответы на них даются общей теорией химической связи, в частности теорией молекулярных орбиталей, которая в теории комплексных соединений называется теорией поля лигандов. Из-за большой сложности эти вопросы выходят за рамки данного учебника. Вместе с тем все вопросы, кроме второго, имеют качественные ответы в рамках наглядных представлений теории кристаллического поля и метода валентных связей. [c.231]


    Из приведенного краткого образца видно, что применение метода ЭПР к проблемам, связанным с гетерогенным катализом, находится лишь в самом начале своего развития. Большинство работ посвящено изучению структуры катализаторов, в то время как с точки зрения общих представлений о механизме катализа гораздо больший интерес представляет изучение хемосорбции на парамагнитных активных центрах, природы образующейся при этом химической связи и промежуточных активных веществ в ходе каталитического процесса. Большой интерес представляет также намечаю-. щаяся связь каталитической активности с обменными эффектами, которая может быть подробно исследована методом ЭПР. Наиболее четко эта связь прослежена до настоящего времени в случае геля окиси хрома. Если эти наблюдения будут подтверждены на других системах и если удастся показать, что такая взаимосвязь действительно является существенной в сколько-нибудь значительном числе известных каталитических процессов, то откроются совершенно новые возможности подхода к анализу механизма каталитического действия с учетом возможных эффектов дальнодействия в многоэлектронных системах реагенты — катализатор . Дальнейшее развитие этих идей без дополнительных экспериментальных данных в настоящее время вряд ли можно считать целесообразным. Ясно только, что проведение систематических исследований по выяснению при помощи метода ЭПР влияния способов приготовления и тренировки катализаторов, адсорбции различных газов на них, разнообразных методов активации и промотирования и, наконец, самих каталитических процессов на электронные характеристики атомов, входящих в состав этих катализаторов, смогут помочь решению ряда проблем, связанных с этой интереснейшей областью современной химии. [c.212]

    При определении объема понятия химический индивид целесообразно исходить из более общего представления о фазе и рассматривать как сложные, так и простые вещества. Последнее тем более необходимо, что иногда химический характер связи между одинаковыми атомами простого индивида пытаются использовать для отнесения всех простых веществ к химическим соединениям [306]. [c.59]

    Прежде чем продолжать рассмотрение природы химических соединений, необходимо несколько расширить наши общие представления относительно связей между атомами. В особенности следует обсудить явление направленности валентности. Уже давно предполагалось, что валентные связи (неполярного типа) имеют направленность например, в органической химии уже давно стало обычным говорить о тетраэдрическом атоме углерода и считать, что валентные связи направлены к вершинам правильного тетраэдра. В этом случае естественно считать, поскольку атом углерода обычно связан с четырьмя другими атомами, что вершины правильного тетраэдра представляют наиболее естественные положения, которые могут занимать эти атомы вне зависимости от того, имеют ли связи какое-либо ориентирующее влияние, или нет. Поэтому лучшим примером проявления направленности связи является молекула, подобная молекуле воды. Определенно установлено, [c.262]

    Метод подхода к основам химической технологии через рассмотрение работы отдельных установок в настоящее время в основном не практикуется в связи с переходом к более обобщенному направлению, в котором теория явлений переноса рассматривается в общем виде. В пределах этого направления могут быть рассмотрены многие классические теории химической технологии. Долгое время явления массопереноса в условиях протекания химической реакции, которые имеют огромное значение в широком многообразии химических процессов, практически не использовались. В последние пятнадцать лет в литературе появились важные работы по общему представлению одновременных процессов массопереноса и химической реакции. Сюда можно отнести теоретические и экспериментальные работы в таких промышленно важных областях, как химическая абсорбция, гетерогенный катализ, продольное перемешивание в химических реакторах и др. [c.7]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Известно также много молекул, которые образуются из атомов, имеющих одинаковые или близкие электроотрицательности (На, С о., СН4 и т. д.). В 1907 г. Н, А. Морозов (Россия) и позднее в 1916—1918 гг. Льюис и Лэнгмюр (США) ввели представление об образовании химической связи общей парой (или парами электронов) и предложили обозначать валентные электроны точками  [c.68]

    Многочисленные химические соединения, в том числе и простые вещества (т. е. соединения ато.мов одного элемента), являются основным объектом изучения химии. Химия изучает состав соединений, их строение, свойства, разрабатывает методы их получения, использования и анализа. Примечательно, что молекулы подавляющего большинства известных химических соединений содержат в своем составе атомы углерода. Соединений, не содержащих углерода, известно лишь немногим более трехсот тысяч. В связи с исключительной многочисленностью соединений углерода, важной их ролью в природе и технике и совершенно отличающимися от других соединений свойствами химия соединений углерода выделена в самостоятельную область, называе.мую органической хи-М1 ей. Химия соединений всех остальных элементов, а также учение О взаимосвязи между химическими элементами, является областью неорганической химии. Состав и строение химических соединений и общие закономерности течения химических процессов составляют предмет общей химии. Очевидно, что эти общие представления о строении вещества и о закономерностях химических процессов одинаково важны для всех специальных областей химии. [c.6]

    Из вышеизложенного следует, что химический состав мицеллы зависит от многих факторов, за количественным влиянием которых на состав мицеллы практически невозможно проследить. В связи с этим ограничиваются записью состава мицеллы полу-количественно, что позволяет составить общие представления о свойствах рассматриваемой дисперсной системы. В этой формуле указывают качественный химический состав агрегата, состав адсорбционного слоя с потенциалопределяющими ионами и противоионами и состав диффузионного слоя мицеллы. Так  [c.279]

    В то же время любая электрохимическая реакция приводит к изменению заряда реагирующих частиц и, следовательно, вызывает перераспределение диполей растворителя, окружающих эти частицы. Такая реорганизация растворителя, как показывают теоретические расчеты, также сопровождается значительным изменением потенциальной энергии, а потому может служить основой для построения кривых потенциальной энергии, в которых путь реакции представляет собой некоторую обобщенную координату (у), характеризующую распределение диполей растворителя. По современным представлениям реорганизация растворителя является определяющим фактором в ходе элементарного акта разряда, хотя в общем случае необходимо рассматривать также энергию растяжения химических связей в реагирующих частицах. Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. точку А на рис. 79), то появляется вероятность квантовомеханического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты г/у. Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантовомеханического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень [c.186]

    При использовании аудиовизуальных средств политехнического содержания необходимо руководствоваться общими принципами нахождение оптимального сочетания конкретных знаний деталей производства и общих представлений о нем, т. е, чтобы учащиеся овладевали фактическими знаниями, необходимыми для формирования общих представлений (если фактические знания недостаточны, то общие представления о производстве носят формальный характер) подготовка учащихся к восприятию демонстрируемых экранных средств, т. е, ознакомление их с помощью химического эксперимента с реакциями, лежащими в основе производства раскрытие связи между химизмом процесса, условиями его осуществления, устройством и действием лабораторных и промышленных установок. [c.62]

    ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ХИМИЧЕСКОЙ СВЯЗИ [c.171]

    Наша жизнь немыслима без широкого использования всевозможных полимерных материалов, в связи с чем интенсивно развивается и расширяется их производство. Для выяснения эксплуатационных свойств полимерных материалов потребовалось изучение микростроения пфимеров были. исследованы химический состав и пространственное строение их молекул и составлены общие представления о связи указанных характеристик с эксплуатационными свойствами полимерных материалов. [c.294]

    Развитие представлений о природе комплексных соединений тесно связано с созданием и развитием общей теории химической связи. Уже в 20-х годах появились первые работы, применявшие идеи ионной и ковалентной связи к комплексным соединениям. Так, Косселю и Магнусу принадлежит большая заслуга в разработке электростатических представлений, а приложение идеи о парноэлектронной связи разрабатывалось в работах Сиджвика. В дальнейшем было разработано три квантовомеханических метода МВС, теория кристаллического поля (ТКП) и ММО. Ни один из этих методов не предназначался для объяснения связи только в комплексных соединениях, но и в этой области применение их оказалось весьма успешным. Они не являются противоположными друг другу. Наоборот, во многих отношениях они дополняют друг друга, трактуя одни и те же вопросы с различных точек зрения, и зачастую приводят к идентичным результатам. [c.160]

    Первая из этих задач в настоящее время решена на достаточно строгой физико-химической основе, решение второй затруднено недостаточным развитием теории растворов, невозможностью сколько-нибудь полного учета богатой гаммы межмолекулярных взаимодействий в хроматографических системах. Поэтому закономерно, что в данной области основным подходом является полуэмпирическое моделирование, базирующееся на общих представлениях о механизмах сорбции в системах того или иного типа. С учетом этого настоящий раздел посвящен исключительно первой задаче вопросы связи между строением сорбатов и удерживанием рассматриваются в последующих разделах, посвященных конкретным разновидностям ВЭЖХ. [c.26]

    Какая же связь между превращение.м органической химии в количественную науку и электронными теориями Известно, что ход химической реакции, природа конечных продуктов, их выход — все это функция от состава и строения исходных продуктов и от условий, в которых протекает их взаи.модействие — химическая реакция. Можно даже сказать — все это есть функция только строения исходных продуктов, потому что поведение данного вещества в данных условиях (температура, растворитель, катализатор, сореагент и т. п.) также можно рассматривать как функцию его строснпя. Поскольку химик изучает превращения. кимических соединений, то очевидно правильнее всего начинать с выяснения их строения. Только такой путь к познанию закономерностей химических превращений. южет быть кратчайшим — все остальные пути будут более долгими и трудоемкими или приведут лишь к поверхностным результатам. Собственно последователей Бутлерова в этом убеждать и не надо, ибо основное положение теории химического строения, как мы уже говорили (стр. 410), сводится к тому, что химическая натура молекулы определяется натурой элементарных составных частей, количеством их и химическим строением [25, стр. 70]. Но в классической теории химического строения эта зависимость химических свойств органических молекул от их химического строения носит качественный характер. Для того, чтобы зависимость между реакционной способностью молекул, например значениями энергий активации органических реакций с их участием, от строения реагентов была количественной, необходимо не только иметь общее представление о более тонких деталях этого строения, но и обладать набором отвечающих им количественных характеристик. Решение этой задачи невозможно без электронных теорий, которые уже теперь показали себя способными к количественному описанию тонкого строения органических молекул, а в будущем обгщают делать это несравнимо точнее и полнее. [c.414]

    Я согласен с С. В. Горбачевым, что при рассмотрении проблем теории электродных процессов необходимо максимально пспользовать общие представления химической кинетики. Я не остановился на этом в своем докладе, так как недавно посвятил этому вопросу отдельное сообщение [Сб. Вопросы химической кинетики, катализа и реакционной способности . М., Изд. АН С( СР, 1955, стр. 403]. Однако, вопреки утверждению С. В. Горбачева, из нак0пленн010 при исследовании объемных химических процессов материала отнюдь не вытекает вывод об отсутствии связи между энергиями реакций и энергиями активации. Напротив, соотношение, согласно которому при сравнении реакций, протекающих не идентичному механизму, возрастание энергии реакции сопровождается приближенно пропорциональным снижением ее энергии активации, часто связываемое с именем Бренштеда, получает все новые и новые подтверждения, в частности в работах Н. Н. Семенова и его школы (Н. Н. Семенов. О некоторых проблемах химической кинетики и реакционной способности. М., Изд. АН СССР, 1954, стр. 29). [c.136]

    Чтобы написать уравнение для потенциальной энергии молекулы, необходимо знать все силы взаимодействия между атомами. Возможно, что когда-Ешбудь эти силы смогут вычисляться на основании теории валентности, однако в настоящее время вычисление силовых постоянных а priori невозможно. Поэтому применяют обходные и приближенные методы. Наиболее общая форма функции потенциальной энергии, представленная выше, не подходит для наших целей, так как содержит слишком много силовых постоянных и не позволяет дать простую интерпретацию этих постоянных в виде свойств химических связей. [c.298]

    В последние полтора десятилетия вопрос о моле кулярно-орбитальной интерпретации понятия валентности, а также кратности химической связи обсуждался не раз. Были предложены различные определения эФих величин, причем все исследователи исходили из математического представления атома А некоторым набором АО или A O. Как было отмечено С. Г. Семеновым, под набором спин-орбиталей, представляющим атом А в составе молекулы, нецелесообразно понимать спин-орбитали изолированного атома, так как эти спин-орбитали при сближении атомных ядер оказываются, в общем случае, неортогональными и в этом смысле частично, включают друг друга .. ..Для математического моделирования химически связанного атома целесообразно использовать... функций ортонормированного базиса . [c.221]

    Связь в молекуле Н2 обусловлена коллективизированием одного-единственного электрона. Таким образом, укоренившееся в химии представление Льюиса о химической связи, как образованной общей парой электронов, не выдерживает в данном случае проверки опытом. Дело не в числе общих электронов, а в таком их распределении между атомами, чтобы переход от атомной системы к молекулярной сопровождался понижением средней потенциальной энергии электронов. [c.70]

    Содер>кание дисциплины Задача flannofi дисциплины - освоение студентами теоретических основ химии и химии элементов и их соединение . В связи с этим программа состоит из двух разделов. Первы содержит основы теории, без которых невозможно понимание свойств и превращений- неорганических веществ современные представления о природе химической связи, строении ве-вещства и межмолекулярном взаимодействии общие закономерности протекания химических процессов изгалаются с привлечением химической термодинамики и кинетики. Второй раздел поввящен систематическому обзору свойств химических элементов и их соединений и включает общую характеристику элементов, способы получения и свойства элементарных веществ, а также некото Я1х соединений, применяемых в различных отраслях народного хозяйства, особенно в нефтеперерабатывающей промышленности. [c.178]

    В настоящее время люминесцентное свечение в большинстве случаев не позволяет установить определенную количественную связь его с химическим строением люминесцирующих веществ, том не менее методы, основанные на использовании этого типа свечения, позволяют весьма успешно решать качественно, а нередко и нолуколи-чественно некоторые практически важные задачи. Так, при визуальном наблюдении общей картины люминесцентного свечения нефтяных смол и продуктов их гидрирования и окисления можно составить себе представление о направлении и глубине химических превращений этих веществ. [c.487]

    Материал рассматривается с позиции современных представлений о химической связи с привлечением теорегических представлений и результатов химических и физических методов исследований. По мере встреч с новыми понятиями они рассматриваются сначала подробно, затем все более лаконично. В книге излагаются основные начала органической химт, ее наиболее общие принципы и понятия р дпступной и компактной форме, необходимые инженерам-химикам-технологам -выпускникам те.чнического > нивфситета. [c.13]

    Формирование в нефтяной системе при высоких температурах необратимых агрегативных комбинаций высокомолекулярных соединений в присутствии агрегативных комбинаций пузырькового типа в конечном итоге приводит к образованию твердой пены — кокса. Подобные агрегативные комбинации, имеющие упорядочен-н уто структуру, часто называют кристаллитами. Кристаллиты являются необратимыми в высокотемпературной области структурами, представленными агрегативными комбинациями, образованными за счет химических связей продуктами термополиконденсации и уплотнения компонентов нефтяного сырья полициклических ароматических углеводородов, смол, асфальтенов, карбенов, карбоидов и др. В общем случае необратимую совокупность агрегативных комбинаций нефтяного происхождения, отличающуюся условно конечными физико-химическими и струкаурно-механичес-кими характеристиками, можно назвать сверхструктурой. [c.53]

    Представления о механизме образования химической связи в молекуле водорода можно распространить и на более сложные молекулы. Следовательно, в общем случае механизм образования химической связи сводится к перекрыванию атомных орбиталей, содержащих неспаренные (одиночные) электроны, в результате чего образуется принадлежащая обоим взаимодействующим атомам пара электронов с противоположно направленными спинами, которая осуществляет химическую связь. Отсюда статэвится понятным, что атомы благородных газов, не имеющие неспаренных электронов, не могут объединяться в молекулы. Молекула водорода также не содержит неспаренных электронов и к ней третий атом водорода присоединиться не может. [c.70]

    Сравнение методов ВС и МО. Эти методы, на первый взгляд, совершенно различны, но более подробное сопоставление вскрывает много общих черт. В методе ВС предполагается, что атомы полностью сохраняют свою индивидуальность, и единственным изменением, происходящим при образовании молекулы, является обмен электронами между орбиталями соседних атомов. Метод МО, по существу, является распространением теории многоэлектронных атомов на молекулы. Если состояние атома описывается как совокупность атомных орбиталей, то аналогично можно рассматривать молекулу как совокупность молекулярных орбиталей, которые возникают из комбинации орбита-лей атомов, входящих в состав молекулы. Оба эти метбда скорее дополняют, чем противостоят друг другу. Аргументированный выбор между ними целиком зависит от тех задач, которые необходимо решить. В настоящее время в большинстве работ по теории химической связи применяется метод МО. Это объясняется тем, что в применении к многоатомным молекулам как сам метод МО, так и программирование расчетов на ЭВМ осуществляется проще, чем для метода ВС. С другой стороны, метод ВС дает более наглядное представление о химической связи и строении молекул. [c.198]


Смотреть страницы где упоминается термин Химическая связь Общие представления о химической связи: [c.758]    [c.143]    [c.51]    [c.175]    [c.2]    [c.122]    [c.220]   
Смотреть главы в:

Введение в общую химию -> Химическая связь Общие представления о химической связи

Введение в общую химию -> Химическая связь Общие представления о химической связи




ПОИСК





Смотрите так же термины и статьи:

Представление о химической связи до

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте