Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гомогенные и гетерогенные химические системы Компоненты. Фазы

    Гомогенные и гетерогенные химические системы. Компоненты. Фазы [c.9]

    ГОМОГЕННЫЕ И ГЕТЕРОГЕННЫЕ ХИМИЧЕСКИЕ СИСТЕМЫ. КОМПОНЕНТЫ. ФАЗЫ [c.11]

    Химические процессы в производстве катализаторов весьма разнообразны. Они могут проходить гомогенно в жидкой или газовой фазе и в гетерогенных системах. Широко применяют гетерогенные процессы, в которых химические реакции сопровождаются диффузией и переходом компонентов нз одной фазы в другую. В системе газ — жидкость часто используют процессы хемосорбции газовых компонентов и обратные процессы десорбции с разложением молекул жидкой фазы. В системе газ — твердое вещество также применяют хемосорбцию и десорбцию в системах жидкость — твердое вещество и жидкость — жидкость — избирательную экстракцию с образованием новых веществ в экстрагенте. Сложные многофазные процессы с образованием новых веществ происходят при термообработке катализаторов. При этом, как правило, в общем твердофазном процессе принимают участие появляющаяся при нагревании эвтектическая жидкая фаза или компоненты газовой фазы. [c.96]


    Гетерогенными системами называются системы, в которых однородные части отделены друг от друга поверхностью раздела. Примерами таких систем служат жидкость — пар, вода — лед. Допустим, что рассматриваемые системы подвергаются действию только температуры и давления, а другие внешние факторы отсутствуют (электрическое или магнитное поле). Такие системы описываются числом фаз Ф, числом компонентов К и числом степеней свободы С. Фазой называется однородная во всех точках по химическому составу и физическим свойствам часть системы, отделенная от других гомогенных частей системы поверхностью раздела. Любая система, содержащая более одной фазы, является гетерогенной. Числом независимых компонентов в системе называется наименьшее число индивидуальных веществ, при помощи которых можно описать состав каждой фазы в отдельности. Числом степеней свободы системы называют число термодинамических параметров, определяющих ее состояние, которые можно произвольно менять в определенных пределах без изменения числа фаз. К этим параметрам относятся температура, давление и концентрация веществ. [c.58]

    Система, химический состав и физические свойства которой во всех частях одинаковы или изменяются непрерывно от одной точки системы к другой, называется гомогенной. Система, состоящая из двух и более различных гомогенных систем называется гетерогенной. Гомогенные области в гетерогенной системе называются фазами. Гомогенная система, или каждая фаза гетерогенной системы, состоящая из нескольких компонентов, называется раствором или смесью. [c.9]

    Обычно при изложении химической кинетики ограничиваются рассмотрением гомогенных реакций. Однако большинство реакций в промышленности протекает в гетерогенной системе. Поэтому в данном разделе рассматриваются не только гомогенные, но и гетерогенные реакции. Гомогенными принято называть реакции, компоненты которых полностью смешиваются между собой, вследствие чего концентрация каждого из них во всех точках реакционного пространства одинакова. Гетерогенными обычно называют реакции, компоненты которых не смешиваются или смешиваются лишь ограниченно особенностью реакционной системы в этом случае является наличие нескольких фаз и градиента концентраций реагирующих компонентов между фазами [c.76]

    Результаты предыдущего раздела, полученные для случая протекания г одновременных химических реакций в замкнутой гомогенной системе, легко обобщаются на случай гетерогенных систем. Пусть компоненты, каждый из которых принадлежит к нескольким фазам 1, 2. .. ф, участвуют одновременно в реакциях, описываемых г стехиометрическими уравнениями [c.20]


    Методика раздельного вымораживания исходных компонентов позволяет избежать контакта веществ в газовой и жидкой фазах, но приводит к получению при низких температурах гетерогенных смесей. Резонно ожидать, что в гомогенных смесях химические реакции будут идти при более низких температурах. Проверка этого предположения была осуществлена путем проведения некоторых реакций бромирования и хлорирования ненасыщенных соединений в конденсатах, полученных вымораживанием исходных веществ из молекулярных пучков [142, 406]. Схема установки и реакционного сосуда описана в гл. 2 (см. рис. 2.8). Исходные вещества конденсировались на охлаждаемую жидким азотом тонкую стеклянную мембрану через капилляры при непрерывном вакуумировании. Скорость конденсации для каждой системы подбиралась экспериментально и обычно изменялась в пределах 2- 1016-т-5-1016 молекул/с. Количество каждого компонента составляло около 4-10 4 моль. Температуры реакций определялись с помощью простой и дифференциальной термопар. [c.122]

    Система с греческого — составленное из частей. Компоненты химически индивидуальные вещества. Фаза — совокупность гомогенных систем в гетерогенных. [c.170]

    Так как фазовые равновесия определяются свойствами фаз при условиях их сосуществования, то в результате решения этих задач можно, вообще говоря, надеяться на получение термодинамических данных только вдоль границ равновесия фаз. Как уже говорилось, цель расчетов можно считать достигнутой, если в каждой точке кривой или поверхности равновесия фаз станут известны величины энергии Гиббса и всех ее первых частных производных по термодинамическим переменным, что эквивалентно в общем случае знанию на фазовой границе энтальпии, энтропии, объема и химических потенциалов всех компонентов фазы и, естественно, любых других функций, являющихся комбинацией вышеназванных. Это не исчерпывающая информация о термодинамике системы на фазовой границе, так как остаются неопределенными высшие производные термодинамического потенциала. Но такой информации достаточно, чтобы находить энергии Гиббса в области гомогенности фазы, непосредственно примыкающей к границе ее существования, и это максимум того, что можно извлечь из условий гетерогенного равновесия, не прибегая к вне-термодинамическому моделированию функциональных зависимостей свойств. [c.24]

    Со второй половины XIX ст. наряду с препаративным методом в химии нашел широкое применение метод физико-химического анализа. Сущность его заключается в том, что о превращениях в равновесных физико-химических системах, а именно об ассоциации и диссоциации компонентов, о составе образующихся химических соединений, возникновении и исчезновении фаз судят по физико-химическим диаграммам (фигурам), устанавливающим зависимость между параметрами системы. Этот метод одинаково применим для изучения как гетерогенных систем, содержащих различные фазы — твердые, жидкие и газообразные, так и гомогенных систем, состоящих только из одной фазы. [c.11]

    Выведенные соотношения играют большую роль при изучении равновесий как в гомогенных, так и в гетерогенных системах. Нужно иметь в виду, что понятия изобарного потенциала системы и химического потенциала компонента системы нетождественны. Химический потенциал i данного вещества в какой-нибудь смешанной фазе равен парциальному значению изобарного потенциала G этого вещества в данной фазе. Поэтому в простых фазах величине химического потенциала соответствует просто изобарный потенциал данного вещества. [c.107]

    Гомогенные и гетерогенные системы. Фазы. Химические системы могут быть гомогенными — физически однородными, даже если они и неоднородны в химическом отношении. Смесь химических компонентов (азот, кислород и др.), составляющих воздух, или их раствор в воде образуют гомогенную — однофазную — химическую систему. [c.18]

    В области / (рис. 33) все системы гомогенные. Фаза одна, жидкий расплав / урд = 2. В области II — системы гетерогенные. В равновесии находятся две фазы расплав и кристаллы компонента А / 1. В областях ИГ IV системы гетерогенные, в равновесии находятся две фазы жидкий расплав и кристаллы химического соединения Ах у, /уел 1- В области V системы гетерогенные. В равновесии находятся две фазы жидкий расплав и кристаллы В /уел — 1. В области VI [c.241]

    Решение. Определим сначала фазовые состояния систем в различных областях диаграммы. В области I все системы гомогенные. Одна жидкая фаза, расплав /у л == 2. В области II системы гетерогенные. В равновесии находятся кристаллы компонента А и расплав /уел = 1- В области III системы гетерогенные. В равновесии находятся расплав и кристаллы неустойчивого химического соединения А В /уел = 1. В области IV системы гетерогенные. В равновесии находятся кристаллы В и расплав = 1. В области V все системы гетерогенные. В равновесии находятся две твердые фазы, кристаллы компонента В и кристаллы химического соединения А Ву. При температурах ниже Ti химическое соединение становится устойчивым fy J = 1, В области VI все системы гетерогенные. В равновесии находятся кристаллы А и Aj-By /удл = 1. В точке э сосуществуют в равновесии три фазы. Две твердые, кристаллы А, кристаллы А Ву и расплав /усл=0-В точке р в равновесии три фазы, кристаллы В, кристаллы соединения Аа Ву, которое становится устойчивым при температуре плавления Ti, и расплав = 0. [c.243]


    В главе IV химические реакции не рассматривались. Однако химическое равновесие является особым случаем внутреннего равновесия, так как оно устанавливается также в гомогенной системе. Так как в 27 для каждой фазы предполагалось существование внутреннего равновесия, то внутри фаз можно допустить протекание химических реакций, если предположить полное химическое равновесие и ввести в условия равновесия только числа молей независимых компонентов в смысле определения 2. Ранее полученные результаты останутся тогда неизменными, но, естественно, не будут содержать сведений об условиях химического равновесия. Реакции между фазами (гетерогенные реакции) можно допустить, предполагая равновесие и ограничиваясь независимыми компонентами  [c.161]

    Часть системы с присущим ей химическим составом и макроскопическими свойствами называется фазой. Фазы отделяются друг от друга физическими поверхностями, при переходе через которые свойства резко меняются. Если система состоит из одной фазы, то она называется гомогенной. Многофазная система является гетерогенной. Вещества, входящие в состав фаз, называются компонентами, или составными частями системы. [c.67]

    В зависимости от того, в одной или нескольких фазах находятся компоненты, реакции, различают кинетику гомогенных реакций и кинетику гетерогенных реакций. В гетерогенных системах процесс в целом состоит по меньшей мере из двух последовательных стадий диффузии реагирующих веществ к поверхности раздела фаз и химической реакции на поверхности. Разница между скоростями каждой стадии может быть очень большой. В этом случае скорость процесса в целом определяется скоростью наиболее медленной стадии, которая называется лимитирующей, или определяющей стадией. Если скорость процесса определяется химическим взаимодействием веществ на поверхности, то говорят, что реакция протекает в кинетической области. Если же определяющая стадия — подвод реагирующего вещества в зону реакции за счет диффузии, то считается, что реакция протекает в диффузионной области. Скорости реакции и диффузии могут быть соизмеримы. Тогда скорость всего процесса представляет собой сложную функцию кинетических и диффузионных явлений, и процесс протекает в переходной области. [c.228]

    Равновесие гетерогенных процессов определяется константой равновесия химических реакций, законом распределения компонентов между фазами и правилом фаз. Равновесие между исходными реагентами и продуктами химической реакции, происходящей в одной из фаз, определяется константой равновесия Кр, Кс или Kw так же, как и для гомогенных процессов. При расчете и моделировании гетерогенных процессов степень приближения к равновесию характеризуется критерием равновесия Ра. Равновесные концентрации компонентов в соприкасающихся фазах определяются законом распределения вещества, который устанавливает постоянное соотношение между равновесными концентрациями вещества в двух фазах системы при определенной температуре. Постоянство соотношения не нарушается при изменении начальной концентрации компонента или общего давления в системе. На законе распределения основаны такие промышленные процессы, как абсорбция газов жидкостями, десорбция газов, экстрагирование и т. п. При моделировании процессов массопередачи подобие характеризуется критерием равновесности в следующем виде  [c.151]

    Гомогенная термодинамическая система состоит из одной фазы, гетерогенная — из нескольких фаз. Системы, не обменивающиеся с окружающей средой массой или энергией (в форме теплоты или работы), называются изолированными, а не обменивающиеся только массой, —закрытыми. Компонентами называются вещества, изменения концентраций которых независимы. При отсутствии химических реакций понятие компонента совпадает с понятием вещества, и поэтому число компонентов в системе в этом случае равно числу содержащихся в ней веществ. [c.18]

    Основные научные исследования относятся к химической термодинамике и кинетике. Открыл (1881— 1884) законы, устанавливающие зависимость относительного состава компонентов в газовой и жидкой фазах растворов от давления пара и температуры кипения двойных жидких систем (законы Коновалова). Создал (1886) основы теории перегонки жидких смесей. Развил (1900) представления о критическом состоянии в системах жидкость — жидкость, указав области гомогенности и расслоения. Экспериментально обосновал (1886— 1900) идеи о химической природе растворов. Детально исследовал гетерогенные каталитические процессы, впервые ввел (1885) понятие активной поверхности, имеющее важное значение в теории гетерогенного катализа, и указал на роль химического взаимодействия реагентов с катализатором при активации молекул. Сформулировал (1886—1888) представления об автокатализе и на год ранее В. Ф. Оствальда вывел (1887) формулу для определения скорости автокаталитических реакций (уравнение Оствальда — Коновалова). [c.251]

    В заключение анализа физико-химических методов разделения компонентов смеси веществ отметим, что гетерогенные методы могут быть основаны и на принципах кинетики,, например, на различной скорости переноса веществ из одной фазы в другую, а методы в гомогенной системе могут быть основаны на использовании равновесия, как например в равновесной центрифуге, где равновесие устанавливается в результате наложения седиментации и диффузии. [c.9]

    Цель настоящей главы — показать, каким образом существующие технологические методы (механические, физико-хими-ческие, биохимические и др.) могут быть успешно применены при переработке и обезвреживании отходов, а также попытаться дать первоначальную информацию для выбора конкретного способа утилизации того или иного отхода. Другими словами, предоставить первоначальную информацию исследователю, который столкнулся с проблемой утилизации отхода с известными физико-химическими характеристиками и составом, для установления основного способа и оптимальной последовательности операций его переработки. Отходы обычно представляют собой сложные гомогенные или гетерогенные системы, и первым вопросом, стоящим перед исследователем, является выбор рационального метода их разделения по фазам и компонентам с последующим использованием или удалением конечных продуктов. На рис. II. 1 приведена классификация химических отходов по методам их утилизации и ликвидации. В основе этой классификации заложен принцип, определяющий первоначальную и конечную цель переработки или ликвидации химических отходов. [c.40]

    В химической технологии большое значение имеют процессы массопередачи, которые заключаются в переходе вещества (массы) из одной фазы в другую. Причиной, вызывающей перераспределение жидкого или газообразного компонента между фазами, является различное содержание этого компонента в фазах. Применяя процесс массопередачи, можно осуществлять разделение смесей различных веществ на компоненты. Эти смеси могут представлять собой неоднородные— гетерогенные или однородные — гомогенные системы, разделение которых представляет наибольшую трудность. [c.152]

    Углеводородные системы могут быть гомо- и гетерогенньпии. В гомогенной системе все ее части имеют одинаковые физические и химические свойства. Составляющие гомогенной системы (называемые компонентами) размазаны по всему пространству и взаимодействуют на молекулярном уровне. Для гетерогенной системы физические и химические свойства в разных точках различны. Гетерогенные системы состоят из фаз. Фаза-это часть системы, которая является гомогенной и отделена от других фаз отчетливыми границами. Смесь воды, нефти и газа в пласте-типичный пример гетерогенной среды. [c.252]

    Корреляция фазовой -диаграммы с электрохимическими характеристиками сплава частично обсуждалась в разд. 1.3. Имеется однозначная -аналитическая связь (il.)12) между химическими потенциалами компонентов А и В в сплаве и, соответствующими обратимыми электродными потенциалами по каждому из компонентов, т. е. обратимыми потенциалами реакций (1.6) и (1.7), причем термодинамическое равновесие в системе сплав — раствор электролита имеет место в случае л = Ев=Еа,в-сплав-Это условиё сохраняет силу независимо от того, какая интерметаллическая система подразумевается — гомогенная или гетерогенная, так как обратимые потенциалы реакций (1.6) и (1.7) для каждой из равновесно сосуществующих фаз одни и те же. Таким образом, каждой фазовой диаграмме может быть поставлена в соответствие зависимость обратимого потенциала от состава системы. [c.142]

    Для гетерогенных реакций в сравнении с гомогенными обнаруживается даже возможность существенного упрощения константы равновесия. Дело-в том, что в гетерогенных реакциях константа равновесия представляет собой произведение парциальных давлений одних только газообразных компонентов. Хотя в газовой фазе такой системы и присутствуют насыщенные пары конденсированных веществ и давление этих паров может быть значительным, но в вьфажение константы равновесйя Кр давления насыщенных паров не входят. Так обстоит дело в случаях, когда суммарное давление не чрезмерно велико (например, из-за присутствия сильно сжатых инертных газов) а именно не так велико, чтобы заметно сказываться (при Т = onst) на величине давления насыщенного пара чистой конденсированной фазы. И, кроме того, конденсированные фазы действительно должны быть чистыми, а не представлять собой смесь (раствор) реагирующих веществ. В последнем случае давление насыщенного пара над ними зависит от химического состава конденсированной фазы. [c.322]

    Гетерогенные системы. Гетерогенными системами называются системы, в которых однородные части отделены друг от друга поверхностью раздела. Примерами таких систем являются, например, вода — лед, жидкость — пар. При рассмотрении гетерогенных систем пользуются понятиями число фаз Ф, число компонентов К, число степеней свободы С. Фазой называется однородная во всех точках по химическому составу и физическим свойствам часть системы, отделенная от других гомогенных частей системы поверхностью раздела. Наличие поверхности раздела является необходимым, но недостаточным признаком фазы. Так, например, однородные кристаллы ЫаС1 в насыщенном растворе составляют одну фазу. Числом независимых компонентов в системе называется наименьшее число индивидуальных веществ, при помощи которых можно определить состав каждой фазы в отдельности. В химической системе понятие вещество и компонент не идентичны. Вследствие того, что между компонентами могут протекать химические реакции, число компонентов сокращается на число протекающих реакций. Иначе говоря, число компонентов химической системы равно числу веществ, содержащихся в системе, за вычетом числа реакций, идущих между ними. Так, например, система Са0(тв)+С02(г) СаСОз(тв) характеризуется любыми двумя компонентами из трех. Числом степеней свободы системы называется число термодинамических параметров (температура, давление и концентрация), определяющих ее состояние, которое можно произвольно менять в определенных пределах без изменения числа фаз. Гетерогенные системы имеют большое практическое значение в металлургии, галургии и других областях. [c.78]

    Кроме фазы важтюе значение при исследованиях равновесия термодинамических систем (как гетерогенных, так и гомогенных) имеет понятие компонент. Это такая часть сис1емы. содержание которой не зависит от содержания других частей. Смесь газов является однофазной, но многокомпонентной системой компонентов в смеси химически не реагирующих газов столько, [c.22]

    Диффузия — процесс теплового перемещения молекул вещества в среде, в ходе которого устанавливается равновесное их распределение. Результатом диффузии в гетерогенной системе при постоянной температуре является выравнивание химических потеициалов компонентов системы во всех фазах. Биологические системы принадлежат к сложным гетерогенным. При одномерной диффузии в гомогенной системе в идеальных газах или растворах при отсутствии внешних сил (простейший случай) масса компо нентайМ, которая переносится за время 1 через площадку с18 в направлении нормали X к рассматриваемой площадке, прямо пропорциональна градиенту концентрации с1С/(1х  [c.129]

    Кроме фазы существенное значение при исследовании равновесия термодинамических систем (как гетерогенных, так и гомогенных) имеет понятие компоненты. Это такая часть системы, содержание которой не зависит от содержания других частей [68. Смесь газов является однофазной, но многокомпонентной системой компонент в смеси химически не реагирующих газов столько, сколько в ней различных газов (см. Раздел 2.3.2). Вода, как и лед, также является однофазной системой, но однокомпонентной, так как водород и кислород в ней входят в определенном отношении количество одного зависит от количества другого. И вообще, если в фазе имеется N различных веществ (химических элементов), между которыми существует п химических реакций, то число компонент (независимых веществ) в такой фазе (Л -/ ) [68.  [c.89]

    Е области / (рис. 32) все системы гомогенные. Фаза одна, жидкий расплав fy = 2. В области II — системы гетерогенные. В равновесии находятся две фазы расплав и кристаллы компонента А / = 1. В об-ласт ях 11 и /У системы гетерогенные, в равновесии находятся две фазы жидкий расплав и кристаллы химического соединения А Ву /уол = 1. В области V системы гетерогенные. В равновесии находятся две фазы жидкий расплав и кристаллы В /уел = 1- В области VI системы гетерогенные. В равновесии находятся две фазы, кристаллы А и кристаллы химического соединения AJ-iy, /удл = 1. В области VII системы геге- [c.230]

    В области / (рис. 32) все системы гомогенные. Фаза одна, жидкии расплав fy = 2. В области II — системы гетерогенные. В равновесии находятся две фазы расплав и кристаллы компонента А / = 1. В областях III и /К системы гетерогенные, в равновесии находятся две фазы жидкий расплав и кристаллы химического соединения AajBj, /удл = 1. В области V системы гетерогенные. В равновесии находятся две фазы жидкий расплав и кристаллы В /уел, = 1- В области V системы гетерогенные. В равновесии находятся две фазы, кристаллы А и кристаллы химического соединения A Bj, /удл = 1- В области VII системы гетерогенные. В равновесии находятся две твердые фазы, кристаллы химического соединения A Bj, и кристаллы В /уел = 1. В точках а, и системы гетерогенные. В равновесии находятся три фазы. Две твердые и одна жидкая /у л = 0. [c.271]

    В химической технологии ширеко распространены и имеют важное значение процессы массопередачи, характеризуемые пере-хоцом одного или нескольких веществ из одной фазы в другую. Путем переноса вдного или более компонентов из фазы в фазу можно разделять как гетерогенные, так и гомогенные системы (газовые смеси, растворы жидкостей и др.), причем наиболее часто процессы массопередачи используют для разделения ромогенных систем. [c.382]

    Экспериментально область гомогенности промежуточных фаз можно обнаружить при исследовании диаграмм состав — свойство. На рис. 106 представлен общий вид изотерм электрической проводимости и твердости в системе с образованием одного промежуточного соединения, причем вблизи ординат компонентов и соединения существуют области гомогенности. В гетерогенной области изотермы свойств имеют вид аддитивных прямых, а в области твердых растворов они подчиняются законам Курнакова. Характерной особенностью таких диаграмм состав — свойство является наличие особой точки на изотермах свойств, которая отвечает некоторому составу промежуточной фазы. При этом для любого измеряемого при данных условиях физического свойства экстремальная точка на изотермах состав — свойство соответствует одному и тому же составу. Согласно Курнакову, такие особые точки на изотермах состав — свойство называются сингулярными. Данное понятие привлечено из геометрической топологии и характеризует точки, инвариантные относительно преобразования координат. В рамках физико-химического анализа это Р и с. Ю6. Диаграмма образования означает, что при замене координат физических дальтонида и характер изотерм свойств на диаграммах состав — свойство [например, электрической проводимости б" и [c.205]

    Вместе с тем эти термины неверны, поскольку каждый из них объединяет в одном понятии два эмульсию и раствор, характеризующиеся принципиально различными коллоидно-химическими состояниями. Раствор является гомогенной (однородной) термодинамически стабильной жидкой системой с растврренными в ней одним или несколькими компоненами до молекулярных размеров. Эмульсии же, как указывалось ранее, гетерогенные (неоднородные) жидкие системы с четким разделением компонентов на две фазы - полярную и неполярную и обладающие значительной свободной энергией. [c.5]

    Выражение через отклонения от равновесия независимых гомогенных реакций. В силу линейной зависимости обш ей системы сте-хиометрических уравнений гомогенных химических реакций и гетерогенных каталитических реакций отклонения от равновесия гетерогенных каталитических реакций можно выразить через отклонения от равновесия независимых гомогенных реакций Действительно, отклонения от равновесия всех гетерогенных каталитических реакций можно выразить через отклонения от равновесия реакций адсорбции-десорбции и независимых реакций в газовой фазе. Используя этот факт и предположение о стационарном характере протекания гетерогенных каталитических реакций (1.2), выразим для реакций адсорбции-десорбции через отклонения у соответствуюгцие независимым гомогенным реакциям. Следовательно скорости образования компонентов во всех гетерогенных каталитических реакциях выражаются через отклонения от равновесия независимых гомогенных химических реакций. В работе [36] они записаны в матричном виде [c.20]

    В 3 этой главы рассматривались только гомогенные системы, т. е. системы однородные, состоящие из одной фазы. В этом и следующем параграфе мы ознакомимся с некоторыми из приложений физико-химического анализа к изучению гетерогенных, т. е. неоднородных систем, состоящих из нескольких фаз. Предполагается, что фазы, входящие в гетерогенную систему, способны обмени-ьаться своими компонентами. Если при этом массы фаз, их состав и все другие свойства остаются неизменными, то имеет место фазовое равновесие. Одним из наиболее широко известных примеров фазового равновесия является равновесие между раствором соли в воде и твердой солью. [c.203]

    ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ — область химии, изучающая посредством сочетания физпч. и геометрич. методов превращения, происходящие в равновесных системах. Системы, изучаемые Ф.-х. а., в соответствии с правилом фаз (см. Фаз правило) делятся а) по характеру фазового строения на гетерогенные (состоящие из двух или большего числа фа ), гомогенные (состоящие из одной фазы) п конденсированные (не содержащие паро- или газообразных фаз) б) но числу степеней свободы па безвариантные, одно-, двух-, трех- и многовариантные в) ио чпслу независимых компонентов на одно-, двух-, трех- и многокомпонентные (употребительны также термины двойные, тройные, четверные системы). [c.214]


Смотреть страницы где упоминается термин Гомогенные и гетерогенные химические системы Компоненты. Фазы: [c.11]    [c.120]    [c.65]    [c.382]   
Смотреть главы в:

Курс химии -> Гомогенные и гетерогенные химические системы Компоненты. Фазы




ПОИСК





Смотрите так же термины и статьи:

Гетерогенные гомогенных

Компонент химический

Компоненты системы

Система гетерогенная

Система гомогенная

Фаза гетерогенной системы

Фазы системы

Химический ая гетерогенное



© 2025 chem21.info Реклама на сайте