Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение движущая сила

    Движущими силами образования растворов являются энтальпийный и энтропийный факторы. Энтропийным фактором объясняется самопроизвольное смешивание двух инертных, практически не взаимодействующих газов гелия и неона. Чем слабее взаимодействие молекул растворителя и растворенного вещества, тем больше роль энтропийного фактора в образовании раствора. Знак изменения энтропии зависит от степени изменения порядка в системе до и после процесса растворения. При растворении газов в жидкости энтропия всегда уменьшается, а при растворении кристаллов возрастает. Знак изменения энтальпии растворения определяется знаком суммы всех тепловых эффектов процессов, сопровождающих растворение, из которых основной вклад вносят разрушение кристаллической решетки и взаимодействие образовавшихся ионов с молекулами растворителя (сольватация). [c.94]


    Вывод первого закона Фика на основе гидродинамики. Если осмотическое давление принять в качестве движущей силы, то можно прийти к уравнению Фика. Сила, действующая иа растворенную частицу в разбавленном растворе, может быть выражена уравнением [c.194]

    Диффузия молекул растворенного вещества в жидкость осуществляется путем беспорядочных тепловых движений этих молекул. При диффузии происходит перераспределение молекул, благодаря которому возможен их перенос из областей более высоких концентраций в области более низких. Обычно говорят о концентрационной движущей силе , вызывающей этот перенос, но в действительности диффундирующие молекулы не подвергаются действию силы в направлении градиента концентрации. Любая молекула в каждый момент может равновероятно иметь любое направление движения. Но беспорядочное перераспределение молекул при неодинаковости концентраций приводит к уменьшению разности концентраций и таким образом — к переносу массы в направлении понижения концентрадии. [c.21]

    Уравнение (V, 108) подобно уравнению (V, ) для абсорбции без реакции, за исключением того, что движущая сила выражена здесь через суммарные концентрации растворенного газа А в прореагировавшем и непрореагировавшем виде. [c.129]

    Однако на практике мембраны обычно не обладают идеальной полупроницаемостью и наблюдается некоторый переход через мембрану растворенного вещества. В этом случае движущая сила определяется выражением [c.15]

    Увеличение концентрации растворенных веществ приводит к повышению осмотического давления раствора, что снижает эффективную движущую силу процесса, а также, как правило, возрастанию вязкости. Все это вызывает снижение проницаемости. С увеличением концентрации уменьшается толщина слоя связанной воды на поверхности и в порах мембраны, ослабевают силы взаимодействия между ионами и молекулами воды в растворах неорганических веществ [159], что приводит к снижению селективности. [c.188]

    Вместе с тем гидравлический расчет мембранных аппаратов имеет свои особенности. При движении разделяемого раствора в элементе аппарата рабочее давление в нем снижается вследствие гидравлических потерь напора. При этом в мембранных аппаратах снижается движущая сила процесса, причем еще быстрее, поскольку с увеличением концентрации растворенного вещества в растворе повышается его осмотическое давление. [c.269]


    В зависимости от природы веществ компоненты смеси могут обладать ограниченной взаимной растворимостью, образуя, таким образом, отдельные фазы многокомпонентной системы. В простейшем случае при смешении жидкостей образуются две фазы, в каждой из которых содержатся отдельные компоненты органического и неорганического происхождения. Иногда такие системы образуются искусственно путем добавления компонента, склонного к избирательному растворению. Добавление такого компонента (разделяющего агента) изменяет условия фазового равновесия системы, увеличивая движущую силу процесса, и позволяет применить специальный метод для разделения компонентов исходной смеси. Часто введение разделяющего агента в исходную смесь обуславливается не столько близостью свойств компонентов, а склонностью к разложению, полимеризации и т. п. при высоких температурах. [c.285]

    Второй закон термодинамики рассматривает вопрос о движущей силе всех совершающихся в природе самопроизвольных процессов. Первый закон термодинамики не затрагивает этого вопроса. В прошлом веке за меру движущей силы реакции принимали тепловой эффект реакции. Томсон и Бертло считали, что самопроизвольно протекают только экзотермические реакции, а эндотермические, как правило, не являются самопроизвольными. Однако этому противоречило существование самопроизвольно протекающих, но в то же время эндотермических процессов растворения многих веществ, а также многих равновесных процессов, степень превращения в которых соизмеримы в прямом и обратном направлениях (если в прямом направлении идет экзотермическая реакция, то при установлении равновесия должен протекать и обратный процесс и в соответствии с первым законом термодинамики обратная реакция должна быть эндотермической). [c.233]

    С момента нанесения возмущения t=0 начинается массообмен между зонами в поперечном направлении по всей длине аппарата с движущей силой, равной разности концентраций растворенного вещества в проточной и застойной зоне (2, I)—63(2, t). [c.255]

    Движущая сила массопереноса вещества из кристалла в несущую фазу (растворение) есть [c.68]

    Если смесь находится в тепловом и скоростном равновесии, то движущие силы массообмена при росте и растворении записываются в общепринятом виде  [c.69]

    В качестве второй системы рассматривались раствор и кристаллы щавелевой кислоты. Были проведены эксперименты в пределах температур 303—323 К, концентраций 13—21%, при различных массах кристаллов (0,2-7 мг) по растворению кристаллов щавелевой кислоты в трубе ячейки. Система уравнений, описывающая движение, растворение кристалла совместно с явлениями тепло- п массообмена, аналогична предыдущей. В [72] исследовалась данная система, в качестве движущей силы было принято пересыщение ii—с, (растворение идет в диффузионной области), была найдена зависимость Sh = /1 Re" для определения м- В настоящей работе в качестве движущей силы было взято соотнощение (1.238). Неизвестным параметром являлся коэффициент массоотдачи. В результате расчета системы для кристаллов различных размеров при различных условиях с учетом (1.238) была подтверждена зависимость (8Ь = Л Re ) ошибка в определении скорости растворения кристаллов по найденному соотношению снизилась на 7% по сравнению с ошибкой, определенной в [72]. [c.80]

    Если абсорбция ведется без отвода тепла или с неполным его отводом, температура Повышается вследствие выделения тепла при растворении газа в жидкости. Повышение температуры ведет к повышению равновесного парциального давления компонента и к сдвигу линии равновесия вверх. Движущая сила при этом уменьшается и условия абсорбции ухудшаются. [c.593]

    Диффузионная теория роста кристаллов не объясняет ряд явлений, происходящих при кристаллизации (различная скорость роста граней, дефекты, слоистость и пр.). Согласно этой теории, процесс растворения и кристаллизации обратимы, однако доказано, что это не так. Часто при одинаковых значениях движущей силы (разности концентраций) рост кристаллов протекает гораздо медленнее, чем растворение. [c.635]

    Движущей силой процесса осмоса является разность химических потенциалов растворителя и раствора. Возникающее при этом давление называют осмотическим. Осмотическое давление является функцией размеров и концентрации частиц растворенного вещества. В коллоидных системах осмотическое давление ослаблено вследствие относительно больших по сравнению с молекулами размеров и соответственно малой концентрации коллоидных частиц. Несмотря на это применение современных методов анализа позволяет надежно регистрировать значения осмотического давления, посредством которых возможно изучать коллоидные системы, в частности изменение размеров коллоидных частиц при воздействиях на систему и их распределение по размерам в растворах различной концентрации. [c.19]


    Следует особо отметить зависимость изменения толщины сольватного слоя и устойчивости нефтяной дисперсной системы от растворяющей способности дисперсионной среды. Повышение растворяющей способности среды вызывает непрерывное увеличение сольватного слоя сложной структурной единицы до максимума и одновременное уменьшение размеров надмолекулярной структуры. При этом нефтяная дисперсная система имеет максимальную устойчивость против расслоения, то есть максимальную коллоидную стабильность. При дальнейшем увеличении растворяющей способности среды, при переходе от плохого растворителя к хорошему, дисперсионная среда оказывает интенсивное влияние на сольватный слой и толщина его уменьшается, за счет чего повышается движущаяся сила процесса расслоения системы на фазы. Дисперсионная среда начинает взаимодействовать непосредственно с надмолекулярной структурой. После полного растворения сольватной оболочки и надмолекулярных структур нефтяная дисперсная система переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения. В этом случае система термодинамически устойчива. [c.48]

    Рассмотрим проницаемую мембрану, разделяющую фазы I и II разбавленного, например, водного раствора некоторого вещества. Очевидно, через мембрану могут проходить поток У, воды и поток У2 растворенного в ней вещества. Движущей силой потока растворителя (воды) У, является разность гидростатических давлений АР в разделенных фазах, в то время как поток растворенного вещества [c.326]

    Движущая сила, обусловленная разностью химических потенциалов, переносит растворитель через мембрану в трубку. Проникновение растворителя можно объяснить как диффузию под действием градиента концентрации в результате проникновения растворителя в раствор содержание растворителя Х1 увеличивается и постепенно приближается к 1, хотя не может быть ей равным, сколько бы растворителя ни прошло в трубку, так как в растворе остается исходное количество растворенного вещества. Поэтому, для того чтобы система находилась в [c.281]

    Тогда, если молярную концентрацию растворенного вещества в элементарном слое обозначить через с, то движущую силу /, прихо- [c.60]

    Кристаллизация из раствора, как и кристаллизация из расплава,— сложный процесс, представляющий собой совокупность нескольких последовательно и параллельно протекающих стадий. Основными из них также являются стадии зарождения кристаллов и их роста. Но движущей силой процесса при этом будет пересыщение раствора, под которым понимается избыточная концентрация содержащегося в растворе вещества сверх его растворимости при заданной температуре в рассматриваемом растворителе. Причем оказывается, что образование центров кристаллизации и рост кристаллов в растворе имеет место лишь при определенном его пересыщении, т. е. используя для характеристики пересыщенных растворов понятие степень пересыщения Чп = уп/уи, где уп и Ун — концентрации растворенного вещества в пересыщенном и насыщенном растворах, можно утверждать, что образование центров кристаллизации не будет происходить не только при но и в некотором интервале [c.150]

    Движущими силами обмена ионами являются осмотическое давление л растворенного вещества и электрохимическая упругость растворения металла (Я). [c.163]

    При равновесии химические потенциалы компонента I по всех фазах равны, но концентрации его не обязательно должны быть одинаковы. Таким образом, химический потенциал является величиной, характеризующей способность компонента переходить в данную фазу или, наоборот, ее покидать, т. е. является движущей силой фазовых переходов (испарение, сублимация, растворение, кристаллизация, химическое взаимодействие и т. п.). [c.17]

    Процесс растворения ускоряется при повышении температуры (через Км), измельчении твердной фазы (через перемешивании и увеличении концентрации (через АС). В случае физического растворения движущей силой процесса является разность концентраций ДС = (Сн - С), поэтому, скорость его определяется уравнением  [c.251]

    В работах [6, 14] обсуждаются также аномалии проницаемости полимеров при дифференциальном режиме, когда движущая сила процесса намного меньше давления в напорном канале АР/Р<1. Обнаруженный [18] эффект резкого увеличения проницаемости в дифференциальном режиме объясняют образованием в матрице вторичных структур и появлением в связи с этим новых механизмов переноса массы. Надмолекулярные объединения частиц растворенного газа—кластеры—при определенной их концентрации в матрице образуют зону повышенной проницаемости. При дифференциальном режиме этазо- [c.103]

    Нернст полагал, что электродный потенциал металла возникает в результате обмена ионами между металлом и раствором, но в качестве движущих сил этого обмена ионами Нернстом были приняты электролитическая упругость растворения металла Р и осмотическое давление растворенного вещества я. На этой основе им была создана качественная картина возникновения скачка потенциала на границе металл—раствор и количественная зависимость величины скачка этого потенциала для металлических электродов первого рода от концентрации раствора. Из теории Нернста, в частности, следовал вывод о независимости стан-дартньга ( нормальных ) потенциалов электродов от природы растворителя, поскольку величина электролитической упругости растворения Р, определяющая нормальный (или стандартный) потенциал металла, не являлась функцией свойств растворителя, а зависела только от свойств металла. [c.216]

    В работе изложены теоретические основы, необходимые для понимания и расчета процессов массовой кристаллизации в различных кристаллизаторах, выведены уравнения движения н тер.модина.мики гетерогенных сред, в которых происходит Гфоцесс массовой кристаллизации. Получены замкнутые системы уравнений для полидисперсиых смесей с учетом фазовых переходов (кристаллизация, растворение), относительного движения фаз, хаотического движения и столкновений частиц. Определены движущие силы массопереноса в процессе кристаллизации. Описаны имеющиеся в современной литературе решения задач о тепломассообмене около частиц, теории за-родышеобразования и роста кристаллов. Получено математическое описание процесса массовой кристаллизации и как частные случаи — математические модели кристаллизаторов различных типов. Рассмотрены задачи ои-тимизации промышленных кристаллизационных установок. [c.2]

    Книга состоит из четырех глав. В первой главе, посвященной качественному анализу структуры процесса массовой кристаллизации как сложной ФХС, вскрываются особенности данной ФХС как на языке смысловых, лингвистических построений, так и на языке точных математических формулировок, причем в последнем случае обсуждаются два подхода — феноменологический (детерминированный) и стохастический. На уровне детерминированного подхода формулируется обобщенная система уравнений термогидромеханики полидисперсной смеси с произвольной функцией распределения кристаллов по размерам с учетом роста, растворения, зародышеобразования, агрегации и дробления кристаллов. Особое внимание уделено описанию процесса вторичного зародышеобразования. На основе термодинамического подхода получены теоретические зависимости для структуры движущих сил вторичного зародышеобразования при бесконтактном и контактном зародышеобразовании. Стохастический подход представлен методом пространственного осреднения, развитого в последние годы в механике гетерогенных сред, а также методами фазового пространства и стохастических ансамблей для описания стохастических свойств процессов массовой кристаллизации. На основе метода пространственного осреднения получено уравнение типа Колмогорова— Фоккера — Планка с коэффициентом диффузии, учитываю- [c.5]

    Определим структуру движущих сил массопереноса при росте и растворении кристаллов, зародышеобразовании (гомогеным и гетерогенным путем). Движущая сила массопереноса вещества из несущей фазы в кристалл имеет вид (см. выше) [c.67]

    Скорость массоотдачи из несущей фазы к поверхности раздела фаз определяется прежде всего движущей силой, состоящей из трех частей I — разности химических потенциалов растворенного вещества в ядре потока и вблизи поверхности кристалла, отнесенных к соответствующим температурам фаз hJTi—(Хок/Т П — энтальпийной движущей силы (обусловленной температурной неравновесностью 0-фазы и несущей фазы) iJl/T o—УГ,] П1 —скоростной движущей силы (обусловленной скоростной неравновесностью фаз) ( 2—Wi)V27 i. [c.77]

    Аналогично определяются движущая сила масоотдачи от поверхности раздела фаз в несущую и движущая сила собственно растворения (только знаки меняются на противоположные). [c.77]

    Рассмотрим кратко влияние этих факторов иа адсорбцию на границе ядро — дисперсионная среда. Если дисперсная фаза (например, асфальтены) и диснерсионная среда (парафины) ре.зко различаются по полярности, взаимодействие между ними незначительно. В этом случае элементы структуры дисперсной фазы находятся в состоянии, аналогичном модели ССЕ по Ленгмюру (гтах, Лт ,,) система склонна к расслоению. Поверхности с высокой поверхностной энергией легко адсорбируют алканы с образованием монослоя с низкой поверхностной энергией. Введение в систему аренов или других аналогичных добавок изменяет обстановку. Изменения наступают в результате влияния растворения на баланс сил в системе и в конечном счете на размеры гик ССЕ. Поскольку парные взаимодействия между молекулами алканов и аренов слабее, чем между молекулами аренов, то с поверхности ядер ССЕ удаляются алканы. В итоге формирую я активные ССЕ (с повышенной поверхностной энергией). Активные ССЕ обладают нескомиенсированной поверхностной энергиеС , что является движущей силой для роста размеров ССЕ. Все эти стадии схематически выглядят так  [c.78]

    Экспериментальные определения и расчеты стандартных термодинамических функций мицеллообразования по полученным соотношениям позволяют оценить энергетику взаимодействия ПАВ с растворителем (растворения) и непосредственно мицеллообразования. Вклад стадий растворения является превалирующим, вследствие чего суммарная движущая сила процесса определяется в осиовиом ростом энтропии. Например, для бромида -додецилт1)иметиламмония в воде ДС° = — 17,8 кДж/моль, = —1,38 кДж/моль, —7Д5 = —16,5 кДж/моль для м-но-децилсульфата натрия соответственно —21,1 кДж/моль, +0,38 кДж/моль и —21,5 кДж/моль. В то же время стадия непосредственно мицеллообразования сопровождается ростом упорядочения, т. е. уменьшением энтропии системы. Однако нельзя не учитывать некоторого роста конформационной энтропии с увеличением размеров ассоциатов (образование мицелл), подобно тому, как это наблюдается для макромолекул в растворах полимеров. Можно заключить, что экспериментально определяемые значения стандартных термодинамических функций отвечают не столько мпцеллообразованию (из истинного раствора), сколько самопроизвольному диспергированию ПАВ. [c.296]

    Движущая сила процесса растворения пропорциональна разности СЭ асфальтенов и ГШ-растворительа (H -ls). Как видно из уравнения (5. J2), растворимость асфальтенов вятской нефти (СЭ==.3,07 эВ) существенно выше, чем асфальтенов западносибирской товарной нефти (СЭ= 1,87 эВ). Учитывая, что АСВ содержит свободные стабильные радикалы и является поли-компонентной системой обеспечивать разнообразие (поливариантность) взаимодействия, растворитель должен иметь поликомпонетный состав ароматические, алифатические, нафтеновые гетероатомные полярные фракции. На основе изложенной теории разработаны новые растворители. ЛСВ. [c.110]

    Замкнутый периодический процесс проводится в аппарате с механическим нли пневматическим перемешиванием. Пневмачическое перемешивание позволяет в случае необходимости использовать перемешивающий агент (воздух) в качестве окислителя. При достаточно интенсивном перемешивании твердые частицы быстро движутся с изменяющейся по направлению и величине скоростью, то отставая от потока омывающей их жидкости, то опережая его. В этих условиях возникает переменная во времени скорость обтекания, обусловленная инерцией твердых частиц. При таком инерционном режиме создаются благоприятные условия для ускорения процессов растворения и экстракции, несмотря на то что движущая сила процесса снижается по мере приближения к состоянию равновесия. [c.553]

    Прямоточный и противоточвый процессы, проводимые в аппаратах непрерывного действия, широко распространены. В принципе экстракцию и растворение можно проводить непрерывно в аппарате с мешалкой путем непрерывного подвода в аппарат твердой и жидкой фаз и отвода их из него. Однако осуществление непрерывного процесса таким способом неизбежно приведет к падению интенсивности вследствие того, что поступающий в обработку твердый материал будет взаимодействовать с раствором, концентрация которого в аппарате, вследствие интенсивного перемешивания, близка к концентрации насыщения. Это вызовет значительное снижение движущей силы и соответственно — скорости экстракции по сравнению со средней скоростью (за одну операцию) в периодическом процессе, где аналогичные условия создаются только на конечной стадии процесса. Кроме того, в одиночном аппарате возможен проскок некоторой части твердых частиц, в результате чего время пребывания может оказаться недостаточным для достижения высокой степени извлечения экстрагируемого вещества. [c.554]

    Совместно с И.Н.Дороховым и Э.М.Ко и>цовой получена и научно обоснована структура универсальной движущей силы массообменных процессов в гетерофазньпс ФХС, которая учитывает разность потенциалов Планка, энтальпийную и механическую состав шющие, а также составляющую, связанную с поверхностной энергией системы. Получены конкретные выражения движущих сил процессов абсорбции, ректификации, экстракции, кристаллизации, растворения, сушки, сублимации и десублимации установлена общность структуры их движущих сил, для ряда исследуемых процессов количественно вскрыто влияние градиентов поверхностного натяжения на интенсивность массопередачи. [c.12]

    Таким образом, по П. А. Ребиндеру и 3. Н. Маркиной, процесс солюбилизации, как и мицеллообразование, является энтропийным по своей природе, т. е. его движущая сила — положительное изменение энтропии. Это находит объяснение с позиций представлений о гидрофобных взаимодействиях в воде. Как уже отмечалось, молекулы углеводородов в водной среде промотируют структурообразование растворителя — возникновение дополнительных водородных связей между молекулами воды, в результате чего вокруг неполярных молекул возникает айсберговая оболочка из структурированной воды. Это приводит к уменьшению энтальпии и значительной убыли энтропии системы. Внутримицеллярное растворение углеводородов сопряжено с разрушением (плав-78 [c.78]

    Поэтому Ат/ С = 7[ 11пЛ 1 + И2 1пЛ/2] <0. Таким образом, образование идеального раствора является всегда самопроизвольным процессом, и движущей силой растворения служит изменение энтропии (так как Ат1хН = 0). [c.126]

    Процессы с кислородной деполяризацией отличаются от рассмотренных рядом особенностей. Во-первых, бла1годаря более высокой окислительной способности эти деполяризаторы могут вызнать коррозию таких металлов, которые не вытесняют из раствора водород. В слабокиолых и особенно нейтральных и щелочных растворах это значительно расширяет круг. металлов, которые могут подвергаться коррозионным воздействиям. Во-вторых, увеличение свободной энергии, а значит, и движущей силы процесса приводит к тому, что скорость растворения металла с кислородной деполяризацией бывает во много раз больше, чем с водородной. В-третьих, высокий потенциал катодного процесса делает гораздо более вероятным наступление пассивного состояния, а иногда создает возможность и для перапас-сивации металлов. [c.419]

    Если при растворении молекулярных веществ не происходит заметной сольватации их молекул ( сольв—0), а сами молекулы неполярны ( структ—0), то растворение практически не сопровождается тепловым эффектом. Это наблюдается, например, при растворении иода в тетрахлориде углерода СС14. При этом движущей силой процесса является увеличение энтропии. Тепловой эффект растворения может стать нулевым и при больших значениях структ и сольв, если они равны между собой. [c.147]

    Движущей силой растворения является недонасыщенность раствора, т. е. разность между концентрацией насыщения Xq и фактиче- [c.217]

    Движущая сила зависит от способа растворения и типа аппарата-растворителя. Например, при осуществлении периодического процесса в резервуаре с мешалкой движущая сила при хорошем перемешивании практически одинакова во всех точках системы, но уменьшается во времени вследствие роста концентрации х раствора. В непрерывнодействующих аппаратах-растворителях, в которых осуществляется противоточное или прямоточное движение твердой и жидкой фаз, движущая сила изменяется в направлении движения потоков,, но остается неизменной во времени для любой их координаты. Для расчета процесса растворения обычно используют среднелогарифмическую величину движущей силы, вычисляемую по начальному и конечному ее значениям. [c.218]


Смотреть страницы где упоминается термин Растворение движущая сила: [c.64]    [c.68]    [c.73]    [c.77]    [c.81]    [c.554]    [c.325]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.278 ]

Растворение твёрдых веществ (1977) -- [ c.56 ]

Технология минеральных удобрений и солей (1956) -- [ c.38 ]

Технология минеральных солей (1949) -- [ c.116 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Движущая сила



© 2025 chem21.info Реклама на сайте