Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции под действием кислот

    Примером гомогенного катализа может служить каталитическое действие кислот и оснований, а также водородных и гидроксильных ионов на ход многих реакций. Ввиду специфического характера этого типа катализа, называемого кислотно-основным, мы не будем рассматривать его здесь. [c.229]

    Кислотно-основной катализ. Каталитическое действие кислот на различные гетеролитические реакции в органической химии, такие, как гидролиз, конденсация, изомеризация и другие, является наиболее старым примером катализа. Ему посвящен ряд монографий [42—441 здесь мы коснемся лишь основных положений теории, связанных с переносом процессов на твердую поверхность. Обзоры по. этому вопросу изложены в работах [45 47 ]. [c.34]


    Реакция серной кислоты с углеводородами в присутствии продуктов реакции заметно ослабляется. Продукты реакции (сульфокислоты и прочие соединения), концентрируясь на границе раздела масло — серная кислота, обусловливают вторичные реакции действия кислоты на эти соединения, что вызывает холостую работу кислоты. Поэтому для эффективности действия последней требуются обязательно вывод продуктов реакции из очищаемого продукта и порционная обработка кислотой после тщательного осаждения кислого гудрона и спуска его перед обработкой продукта новой порцией кислоты. [c.157]

    Следует заметить, что, для того чтобы соответствовать такой интерпретации, любой субстрат, способный подвергаться специфическому или общему кислотно-основному катализу, должен сам по себе быть способным действовать и как кислота, и как основание (т. е. быть амфотерным). Это согласуется с известными фактами, хотя и ие все реакции, катализируемые кислотой, могут катализироваться основаниями и наоборот. [c.483]

    Реакции этого типа, состоящие в отщеплении элементов НХ от аммиакатов Р1(1У), получили название амидо-реакций. А. А. Гринберг указал на полнейшую аналогию амидо- и гидроксо-реАКцпп. Как реакция отщепления элементов НХ под действием щелочи, так и обратная реакция действия кислот на амидо- и гидроксо-соеди-нения протекают совершенно однотипно  [c.376]

    Повышение температуры сернокислотной очистки приводит к они ению выхода целевого продукта и резкому увеличению выхода кислого гудрона вследствие усиления реакций сульфирования и повышения растворяюш его действия кислоты. При низких температурах из-за высокой вязкости раствора затрудняется отделение кислого гудрона. В этой связи очистку обычно проводят при 40 — 60 °С. Расход кислоты зависит от состава сырья для дистиллятных масел — 3 - 10 % масс., остаточных — 15-20 % масс. Для получения белых парфюмерных и медицинских масел используют дымящую серную кислоту. При очистке дистиллятных масел применяют 92 — 98 % —ную кислоту. [c.277]

    После очистки тяжелого или остаточного сырья на заводах обычно регенерируется только 60% от израсходованной кислоты. По всей вероятности, очистное действие кислоты имеет прежде всего химическую природу, причем продукты реакции перед тем, как подвергнуться осаждению, образуют в очищаемом нефтепродукте коллоидный раствор [62]. [c.235]

    Эти свойства приобретаются в результате удаления кислородных, азотистых и сернистых соединений, а также химически активных углеводородов путем глубокой очистки масел. Последняя почти всегда производится при помощи серной кислоты. Очищающее действие кислоты имеет как химическую (реакции сульфирования и окисления), так и физическую природу (селективное растворение смол, асфальтенов, азотистых и сернистых соединений). [c.559]


    Составить уравнения реакций получения хлорида магния а) действием кислоты на металл  [c.38]

    При действии кислот, даже таких слабых, как уксусная, все карбонаты разлагаются с выделением диоксида углерода. Этой реакцией часто пользуются для открытия карбонатов, так как выделение СОа легко обнаружить по характерному шипению. [c.439]

    При выполнении этой работы вы познакомитесь с химической реакцией взаимодействия азотной кислоты НЫОз с медью (Си). Такая реакция называется коррозией. Этот термин используется для любых реакций, во время которых происходит разрушение какого-либо вещества. Многие металлы корродируют под воздействием кислот. Осторожно Кожа тоже разрушается под действием кислот. [c.109]

    Катодная реакция с выделением водорода относится к наиболее частым случаям коррозии большинства металлов и сплавов под действием кислот, а также некоторых металлов с весьма отрицательными потенциалами (например, магния и его сплавов) н нейтральных растворах электролитов. [c.39]

    Процессы корроаии металлов, у которых катодная деполяризация осуществляется водородными ионами по реакции (6), называет коррозией металлов с водородной деполяризацией. Такая коррозия протекает у большинства металлов и сплавов под действием кислот. [c.33]

    Действие кислот на твердые вещества Газожидкостная абсорбция, сопровождаемая реакцией [c.22]

    Каталитическое действие кислот на ряд химических реакций связано с тем, что одно из исходных веществ в этих реакциях является основанием, и кислота, передавая ему протон, переводит его в протонизованную форму, обладающую более высокой реакционной способностью. Так, Протонизованная молекула сложного эфира [c.245]

    Гомологи циклопропана по своим свойствам близки к олефино-вым углеводородам они изомеризуются под действием кислот, протонируются с раскрытием цикла, способны вступать в реакцию алкилирования ароматических углеводородов и т. п. Стабилизация образующихся циклопропильных карбокатионов протекает после присоединения к ароматическому ядру или другому электронодонорному соединению, а также за счет выброса протона и превращения в олефиновый углеводород  [c.131]

    В конце 18 в. было открыто каталитическое действие кислот при осахаривании крахмала и впервые Применены твердые катализаторы [3] глины при дегидратации спиртов, металлы в процессах дегидрирования. Однако понятие о катализе возникло позднее. Лишь в 1834 г, Е. Митчерлих [4] ввел понятие контактные реакции , а в 1835 г. Д. Берцелиус [5]i предложил термин катализ . [c.5]

    Использование ионитов в качестве катализаторов имеет преимущества перед растворимыми кислотами и щелочами благодаря более мягкому воздействию ионообменных групп уменьшается протекание побочных реакций продукты реакции и катализатор легко разделяются фильтрованием устраняется коррозионное действие кислот на металл, что упрощает конструктивное оформление процесса. Иониты легко регенерируются, а потому используются многократно, что снижает расход катализатора на целевой продукт [236, 238—240]. Во многих случаях каркас ионита используют как носитель металла-катализатора. Насыщая катионит соответствующими ионами металла с его последующим восстановлением, удается достичь высокой степени дисперсности катализатора [241]. Однако твердые органические контактные массы отличаются [c.175]

    Значения констант нестойкости и устойчивости приьодятся li справочниках по химии. С помощью этих величин можно предсказать течение реакций между комплексными соединениями при сильном различии констант устойчивости реакция пойдет в сторону образования комплекса с большей константой устойчивости или, что равноценно, с меньшей константой нестойкости. Например, для иона [Ag(NH3)2]+Л нест= 6,8-10- , а для иона NHI /< нест=5,4-1 3 поэтому иод действием кислот аммиакат серебра разрушается с образованием ионов Ag" и NHI  [c.603]

    Из рис. 2—4 видно, что в случае применения катализатора КУ-2 лучшая линейность кинетических зависимостей наблюдается для уравнения второго порядка. Незначительное отклонение этих зависимостей от линейности при этерификации низкомолекулярных кислот объясняется, по-видимому, следующими явлениями эте-рификация ТЭГ низкомолекулярными кислотами катализируется лучше, чем высокомолекулярными. Низкомолекулярные кислоты свободно проникают в поры катализатора, и реакция протекает быстро. Из-за накопления внутри пор крупных молекул продуктов реакции диффузия кислот затрудняется по мере протекания реакции, т. е. диффузия частично контролирует кинетику, и часть активных групп внутри пор не проявляет своего действия. Таким бразом, состав катализатора при этерификации этими кислотами как бы меняется к концу реакции, чем и объясняется отклонение от линейности. [c.108]


    Механизм этой реакции точно не установлен, но Курцер предлагает два варианта, из которых наиболее вероятный приводится ниже. Как будет показано, N-аренсуль намидинотиомочевины циклизуются в тиадиазолы под действием брома 153]. Попытки осуществить реакцию действием кислоты или нейтрального раствора перекиси водорода оказались безуспешными — основным продуктом реакции был аренсу лы )онилгуанидин. Выделение замещенного гуанидина подтверждает предположение об образовании ароилгуапи- [c.432]

    По протолитической теории Бреистеда каталитическое действие кислоты А объясняется тем, что она способна отдавать свой протон веществу, подвергающемуся химическому превраищиию, а каталитическое действие основания В — его способностью воспринимать протои от реагирующего соединения. В обоих случаях образуется промежуточный комплекс, превращеьие которого в конечные продукты реакции происходит легче, чем самих исходных веществ. [c.71]

    Мирзаанская нефть нз скиажины № 140 с удельным весом — 0,8699 несколько раз подвергалась дробной перегонке. Полученная фракция 60—150 взбалтывалась с 75%-ной серной кислотой в теченне 15 мин, после чего промывалась водой, 10%-ным раствором соды, снова водой, сушилась хлористым кальцием и перегонялась в присутствии металлического натрия. Для указанной фракции определялись удельный вес, показатель лучепреломления н максимальная анилиновая точка. Для опытов нрнменялн сухой и свежеперегнанный анилин, чистота которого проверялась посредством анилиновой точки чистого индивидуального углеводорода. Ароматические углеводороды, находящиеся в мирзаанской нефти (фр. 60—150°), удалялись действием серной кислоты удельного веса 1,84. Смесь бензина и серной кпслоты помещалась о склянке с притертой пробкой и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов проверялось качественной реакцией (серная кислота + формалин). Деароматизированная фракция промывалась, сушилась н перегонялась в присутствии металлического натрия, после чего определялись те же константы, что и до обработки серной кислотой. По изменению максимальных анилиновых точек и с применением коэффициентов, приведенных в трудах ГрозНИИ [18] определялся групповой состав вышеуказанной фракции. [c.226]

    В практике нефтеочистки ранее наблюдались большие потери с образованием смолистых осадков при обработке дистиллятов смазочных масел концентрированной серной кислотой. Потери значительно снижались, если обрабатывались масляные дистилляты, полученные при перегонке под высоким вакуумом, когда крекинг незначителеп или вовсе отсутствует. Хотя нельзя сказать, что причины образования смолистых осадков прн действии концентрированной серной кислоты на вышекипящие нефтяные дистилляты стали внолпе понятны, несомненно, однако, что этот суммарный результат включает реакции серной кислоты с непредельными углеводородами, незначительное сульфирование углеводородов, содержащих в молекуле ароматические кольца, реакцию или растворение сернистых соединений, нафтеновых кислот, азотистых оснований и, возможно, других загрязнений. [c.98]

    Найдено, что при проведении нитрования для препаративных целей наиболее эффективными нитрующими агентами являются смеси, состоящие из концентрированных азотной и серной кислот. Роль серной кислоты, в смеси этих кислот часто приписывают ее эффективному связыванию воды, образующейся в результате реакции. Серная кислота не может заставить реакцию дойти до конца в результате простого удаления воды, поскольку реакция нитрования является необратимой реакцией. (Это отличает ее от реакций нитрования спиртов, которые не дают нитросоединений, а образуют сложные эфиры азотной кислоты здесь же серная кислота действует как дегидратирующий агент.) Данные, говорящие в пользу существования иона нитрония, и вероятность, что он должен быть сильным нитрующим агентом, заставляют предполагать, что действие серной кислоты можно объяснить ее сильной кислотной природой, обусловливающей индуцирующий эффект ее на образование иона нитрония  [c.558]

    Этерификация—процесс замещения иона водорода в органической кислоте алкильной или арильной группой. Водородный ион действует каталитически на реакцию. Применяются сильные кислоты или соли сильных кислот и слабых оснований. Хлористый цинк усиливает каталитическое действие кислот. Используются и другие катализаторы фториды бора и кремния хлориды алкминия, трехвалентного железа и магния металлы в тонко- [c.328]

    Во-вторых, Аррениус установил, что прибавление нейтральной соли, не имеющей общего иона с катализирующей реакцию кислотой, также приводит иногда к увеличению каталитического действия кислоты. Например, скорость инверсии тростникового сахара в присутствии уксусной кислоты возрастает на 30% при прибавлении 10% (мольных) Na l. Это явление называется первичным солевым эффектом. [c.287]

    Поверхностно-активные вещества. ПАВ добавляют к рабочему раствору для обеспечения полного удаления из пласта отработанной кислоты и продуктов реакции. Действие ПАВ основано на эффекте гидрофобиза-ции поверхности породы в результате адсорбции на ней ПАВ. Это способствует увеличению фазовой проницаемости для нефти и увеличению дебита после СКО. [c.12]

    Это можно объяснить следующими соображениями. Можно предполагать, что введение кислоты в нефть приводит к целой серии реакций не только действия кислоты на асфальты, но таиже и взаимодействия образующихся продуктов с избытком этой кислоты. Таким образом часть кислоты расходуется на бесполезные для хода очистки Вторичные реакции. С другой стороны, образовавшиеся кислые отбросы разбавляют концентрацию кислоты и таким образом понижают ее активность. [c.186]

    Реакции в жидкой фазе обычно протекают при темне )атуре 150—250 С и давлении 10—15 МПа, а в отдельных случаях — до 20,0 МПа [32]. Следует ожидать положительных результатов от применения н качестве катализаторов железа и меди в присутствии свободных кислот или только от действия кислот. Например, в работе [33] применялись соли серебра и ртути в присутствии галоидных кислот. В условиях гомогенного катализа изучалось влияние на скорость реакции HI и H2SO4 в малых концентрациях (5—10 %). При температуре 220 С и давлении 6,0—7,0 МПа удавалось за 28 ч перевести в алкоголь 45,1 % этилена. Более детальное изучение реакций гидратации олефинов в присутствии минеральных кислот, несомненно, поможет окончательно решить эту проблему в лабораторных масштабах, тем более, что теоретически минеральные кислоты в любой степени разбавлелия являются наиболее специфичными катализаторами жидкофазных реакций [34]. [c.20]

    В водном растворе остается практически постоянной в ходе реакции. Эта реакция катализуется кислотами. Она была изучена в самом конце прошлого века Оствальдом, который обнаружил, что константа скорости данной реакции возрастает почти в 300 раз под влиянием НС1 другие кислоты приводят к возрастанию ее скорости в число раз, указанное в табл. 22-3. Нетрудно заметить корреляцию между возрастанием константы скорости и константой диссоциации кислоты. Теперь понятно, что эффективность действия кислоты как катализатора (обнаруживаемая по изменению константы скорости) обусловлена концентрацией ионов Н , образуемых кислотой (эта концентрация определяется константой диссоциации кислоты). Все полностью диссоциирующие сильные кислоты обусловливают приблизительно одинаковое возрастание константы скорости катализируемой реакции. [c.391]

    В главных чертах механизм действия твердых кислот и оснований должен быть аналогичен механизму действия кислот и оснований в гомогенных жидкофазных системах. Для частного случая минеральных кислот, адсорбированных на твердой поверхности, это было показано Гольданским, Семеновым и Чирковым [48]. Для свбственно твердых кислот, как показано рядом авторов [49— 51] на примере реакции крекинга на алюмосиликатных катализаторах, каталитическая активность находится в прямой зависимости от количества, находящегося в катализаторах обменивающегося водорода. Аналогия в строеппи и действии гомогенных и гетерогенных кислых катализаторов указывает на возможность протекания реакций по ионному механизму с ионом протона в качестве катализа- [c.36]

    Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеющиеся в составе нефти гзотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых 1 серной кислот ослабляют эффективность действия серной кислогы на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. Условия очистки. Технологический режим сернокислотной очистки зависит от ее назначения. Дли очистки, имеющей целью удаление смолистых веществ из мaзo ныx масел, повышение качества осветительных керосинов, удаление сернистых соединений, применяют 93% кислоту. При деароматизации используется 98% кислота или олеум. Легкая очистка бензина, предназначенная для улучшения цвета или удаления азотистых оснований, проводится серной кислотой с концентрацией 85% г ниже. Применение разбавленной кислоты там, где это возможно, предпочтительнее, так как кислый гудрон образуется в меньших количествах, ослабляются процессы полимеризации. [c.317]

    Основные компоненты пефти и ее продуктов — углеводороды — неодинаково относятся к действию химических реагентов. Наиболее высокой реакционной способностью обладают непредельные углеводороды, и для их отделения применяют ряд химических реакций (действие галоидами на холоду, разбавленной и концентрированной серной кислотой, полухлористой серой). Ароматические углеводороды также способны реагировать со многими веществами копцоптрировапной и дымящей азотной кислотой, серной кислотой, пикриновой кислотой и др. Эти соединопия употребляют для выделения группы ароматических углеводородов из смесей с пасыщенпымп углеводородами. [c.88]

    Эту реакцию применяют в аналитической химии для отделения 5п + от других катионов. При действии кислот тиостаннаты ра.зла-гаются, образуя 8п 2 и Нг5. Сульфид ЗпЗг растворяется также в растворах щелочей  [c.386]

    При выборе огнеупоров обычно исходят из общих положений для реакций, протекающих в щелочной среде, применяют основные огнеупоры, а для кислых про[1ессов — кислые. Однако необходимо иметь в виду, что бывают и исключения, так как при действии химических реагентов на футеровке могут образоваться продукты взаимодействия, служащие защитоГ от кор ю-зии (действие кислых шлаков иа магнезитовую футеровку). В зависимости от химико-минералогического состава огнеупоры могут быть стойкими к действию кислот и осиовании, В табл. 45 приведены данные о химической стойкости различных огнеупоров. Одним из основных показателе , характеризующих пригодность огг[еупоров, является их термическая стойкость. [c.386]

    При всем различии механизмов коксообразования на платине, и носителе (оксиде алюминия) действие их является взаимосвязанным, как это вытекает из предложенной в [114] схемы образования кокса на бифункциональном катализаторе риформинга. Так, ненасыщенные углеводороды, образующиеся на платине, служат источником кокса, отлагающегося на носителе. Возможно также мигрирование углеродсодержащих отложении с платины на носитель [1061. С другой стороны, продукты уплотнения, в частности многоядерные ароматические углеводороды, образующиеся под действием кислот-,ных центров носителя, достаточно подвижны и могут блокировать также металлические центры катализатора. Об рс подвижности, можнб сУдить по тому, что при риформинге в жестких условиях в п Ь- лученном бензине обнаружен полициклический ароматический угле-водород С24Н]2 (коронен) [115]. Таким образом на процесс коксообразования влияют обе функции катализатора — металлическая и кислотная. Степень же дезактивации катализатора должна зависеть от закоксованности как платины, так и носителя, поскольку ряд важнейших реакций риформинга протекает по бифункциональному механизму. [c.56]

    Тяоацеталя весьма устойчивы к действию кислот, в связи с чем выход ях в условиях кислотного катализа достигает 90-95% /1- . Цикло рмали в реакции с сероводородом образуют тритиан, выход которого приближается к количественному. [c.22]

    В отличие от алкильных эфиров, арильные эфиры, синтезированные из фенолов и хлорангидрида кислоты, являются очень устойчивыми соединениями [4506]. Они легко растворяются в разбавленной щелочи, выпадая из раствора в неизмененном виде при действии кислот. Гидролиз их происходит только при нагревании с 50%-ным раствором едкого натра, тогда как алкильные эфиры полностью гидролизуются горячей водой, в которой метиловый эфир легко растворим. Арильные эфиры вследствие наличия достаточно подвижного водорода дают соли щелочных металлов в водном растворе, но алкильные эфиры образуют металлические соли только в безводном растворителе, например в бензоле при действии металла, причем получающиеся соли разлагаются спиртом или водой. Так, дифенилметионат содержит, очевидно, более подвижный водород, чем диэтилмалонат, кислотные свойства которого в свою очередь выражены сильнее, чем у диэтилме-тионата. Натриевые и калиевые производные алкильных и арильных эфиров легко алкилируются иодистыми алкилами или диметилсульфатом. На этой реакции основан метод синтеза гомологов метионовой кислоты, получение которых другими путями затруднительно. Представляется довольно интересным, что натрийалкил-эфиры, повидимому, не претерпевают внутримолекулярного алкилирования, которое, как можно было бы ожидать, будет происходить по схеме  [c.177]

    Поэтому обессеривающее действие серной кислоты следует отнести преимущественно за счет селективных свойств ее. Последние проявляются в большей мере при низких температурах, при которых реакция серной кислоты с углеводородными компонентами масел незначительна, в результате чего основную роль играет растворимость сернистых соединений в кислоте. Аналогично этому более эффективные селективные свойства серной кислоты при низких температурах очистки масел сказываются и при удалении из последних нежелательных компонентов. Примером этого служат данные Н. И. Черножукова совместно с Н. Гребенщиковой [54]. Очистке подвергался дистиллят трансформаторного масла из артемовской нефти Одна порция дистиллята была очищена противоточным методом 10% серной кислоты при 20°, другая (в аналогичных условийх) — при 0°. Результаты очистки даны в табл. 85. [c.231]

    Реакция синильной кислоты с окисью этилена экзотермична. Газы, выходящие из реактора, поступают в конденсатор, охлаждаемый рассолом с температурой —10°, и зател выбрасываются в атмосферу. Процесс проводят при 55°. Через 10 час. в реакторе накапливается 2500 кг продукта. Содержимое реактора выдерживают еще 6 час. при 60°, после чего подвергают дальнейшей обработке. Для этого реакционную смесь нейтрализуют уксусной кислотой (около 20 л), прибавляют серную кислоту до реакции на конго-рот и спускают в емкость, откуда она поступает на ненрерывно действующую установку, в которой при 110° и разряжении отгоняют воду. Непрерывную работу этой установки обеспечивают два периодически действукрщих аппарата. После отгонки воды получается смесь нитрила оксинропионовой кислоты с солями, образовавшимися в процессе реакции последние отделяют на фильтрпрессе. Продукт-сырец содержит около 4—5% воды и 2% полимеров синильной кислоты. Выходы достигают 90%, в расчете как на синильную кислоту, так и на окись этилена. [c.423]


Смотреть страницы где упоминается термин Реакции под действием кислот: [c.157]    [c.276]    [c.273]    [c.193]    [c.355]    [c.36]    [c.54]    [c.61]    [c.165]   
Смотреть главы в:

Реакции нитрилов -> Реакции под действием кислот




ПОИСК





Смотрите так же термины и статьи:

Кислоты действие



© 2025 chem21.info Реклама на сайте