Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение и обращение конфигурации

    Синтезированный АТР весьма полезен при изучении стереохимических закономерностей и, следовательно, механизма реакции фосфорилирующих ферментов (киназ) (разд. 3.3). Можно представить по крайней мере два механизма, по которым фермент катализирует передачу 7-фосфатной группы от АТР к субстрату. Это может происходить, во-первых, прямым замещением на поверхности фермента с обращением конфигурации хирального у-фосфата  [c.140]


    Если диполь имеет обратное направление, то следовало бы ожидать приближения атакующего иона с той стороны молекулы, где расположена вытесняемая группа, что должно было бы привести к сохранению конфигурации. Однако, вопреки этому, замещение четвертичной аммониевой группы опять-таки ведет к обращению конфигурации. Квантовомеханический эффект, управляющий реакцией, преобладает над электростатическим  [c.371]

    При реакциях замещения, не относящихся к типу Зй-2 (что устанавливается кинетически), предсказание стерического результата реакции зачастую невозможно без привлечения дополнительных данных. Сохранение и обращение конфигурации могут происходить одновременно в различных соотношениях (рацемизации отвечает отношение 1 1). [c.371]

    Инверсия конфигурации. Обращение конфигурации часто имеет место в реакциях нуклеофильного замещения, когда реагент атакует асим- [c.318]

    Кинетические доказательства — это необходимое, но не достаточное условие, так как возможны и другие механизмы, которые будут согласовываться с этими данными. Значительно более убедительные доказательства можно получить из того факта, что механизм Sn2 предсказывает обращение конфигурации, если замещение происходит у хирального атома углерода, и это неоднократно наблюдалось [2]. Такое обращение конфигурации (т. 1, разд. 4.7) называется вальденовским обращением и было обнаружено задолго до того, как Хьюз и Ингольд сформулировали механизм Sn2 [3 . [c.13]

    Стереохимические доказательства механизма SnI, так же как и кинетические данные, характеризуются меньшей четкостью, чем стереохимические доказательства механизма Sn2. Если процесс включает образование свободного карбокатиона, то последний должен быть планарен (т. 1, разд. 5.2) и нуклеофил должен с одинаковой легкостью атаковать его с обеих сторон плоскости, что приведет к полной рацемизации. Многие реакции замещения первого порядка действительно приводят к образованию рацемического продукта, однако имеется большое число реакций, для которых это не так. Обычно обращение конфигурации составляет от 5 до 20 %, в ряде случаев наблюдалось [c.21]

    И представляет собой по существу два акта 5н2-замещения, каждый из которых приводит к обращению конфигурации, поэтому окончательным результатом будет сохранение конфигурации. На первой стадии этой реакции соседняя группа выступает как нуклеофил и выталкивает уходящую группу, а сама при этом сохраняет связь с молекулой. На второй стадии внешний нуклеофил замещает соседнюю группу в результате атаки с тыла  [c.29]


    Бимолекулярные механизмы реакций электрофильного алифатического замещения аналогичны механизму Sn2 в том от-нощении, что новая связь образуется, когда разрывается старая. Однако в механизме Sn2 входящая группа несет с собой пару электронов и эта орбиталь может перекрываться с орбиталью центрального атома углерода лишь в той степени, при которой уходящая группа отделяется со своими электронами, в противном случае у углерода было бы более восьми электронов на внешней оболочке. Поскольку электронные облака отталкиваются, входящая группа атакует молекулу субстрата с тыла под углом 180 к уходящей группе, так что при этом наблюдается обращение конфигурации. Если атакующей частицей является электрофил, несущий субстрату только вакантную орбиталь, такое рассмотрение неприменимо и невозможно заранее предсказать, с какой стороны должна происходить атака. Теоретически можно представить два главных направления атаки и соответственно два механизма Se2 (с фронта) и Se2 (с тыла) (заряды на схеме не показаны)  [c.408]

    Таким образом, на второй стадии реакции равновероятна атака нуклеофильного реагента с обеих сторон плоскости, г. 8. наиболее естественным результатом реакции по механизму должна была бы быть рацемизация. Практически же в большинстве случаев наблюдается, наряду с рацемизацией, обращение конфигурации. Это объясняют тем, что уходящий анион X- прикрывает подход к плоскому карбкатиону и атака нуклеофильного реагента происходит преимущественно с противоположной стороны, напоминая ход замещения по механизму [c.274]

    Наиболее общий путь получения эпоксидов — отнятие галогеноводорода от галогенгидринов — осуществляется по механизму бимолекулярной реакции замещения с обращением конфигурации у углеродного атома, от которого уходит галоген. Из диастереомерных галогенгидринов получаются при этом геометрически изомерные окиси, например  [c.549]

    Замещение хлора на аминогруппу идет с обращением конфигурации у атома фосфора. Интересно, что продукт реакции соединения ХШб существует в виде двух вполне устойчивых конформеров, не склонных к взаимопревращению даже при 250 X. [c.610]

    Сравнение скорости смешивания радиоактивного иода со скоростью рацемизации показывает, что в этой 5ы2-реакции нуклеофильное замещение осуществляется исключительно с обращением конфигурации. (В данном случае проблема корреляции абсолютной конфигурации реагента и продукта снимается, поскольку вопрос идентичности продукта исходному веществу или его энантиомеру зависит от того, сопровождается реакция замещения сохранением или обращением конфигурации.) [c.226]

    Рассмотрим теперь некоторые особенности механизма и кинетики радикальных реакций (15.1) и (15.2). По-видимому справедливо, что реакция замещения типа X + СНдХ- Х СНд + X протекает с обращением конфигурации. Реагент X образует связь с атомом углерода субстрата со стороны, противоположной той, откуда отрывается уходящая группа X. Поэтому процесс замещения можно схематически изобразить в виде [c.144]

    Кеньон и Филипс нашли, что (+)-октанол-2 можно превратить в энан-тиомерный (—)-октанол-2 через (+)-2-тозилоксиоктан и —)-2-ацет-оксиоктан. Обращение конфигурации происходит на стадии Б, так как реакции Л и В протекают без затрагивания асимметрического центра. G точки зрения кинетики и влияния растворителя реакцию Б следует классифицировать как бимолекулярное нуклеофильное замещение (Sjv2). То же справедливо и для реакции обмена оптически активного 2-иодоктана с радиоактивным иодистым натрием в ацетоне  [c.370]

    Эти представления позволили провести прямое сопоставление конфигураций молочной кислоты и аланина при помощи строго контролируемых реакций замещения у асимметрического атома углерода (Брюстер, Хьюз, Ингольд, Pao 1950). Для каждой стадии было показано кинетически, что замещение проходит п(5 механизму 8л-2, т. е. реакция сопровождается обращением конфигурации. D-(-]-)-а-бром-пропионовая кислота под действие.м концентрирогзаиной щелочи превращается в L( + )-молочную кислоту, а под действием азида натрия Б L-a-азидопропионовую кислоту. Последняя при гидрировании, которое [c.372]

    Оказалось, что замещение соответствует реакции второго порядка, т. е, протекает по бимолекулярному механизму, и что скорость уменьщения оптической активности в два раза превышает скорость изотопного обмена. Последнее означает, что в результате каждого элементарного акта происходит обращение конфигурации это полностью соответствует пре.аставленмям о механизме 5n2, предполагающем атаку нуклеофильного реагента исключительно с тыльной стороны по отношению к уходящей из молекулы субстрата группе. [c.137]

    Замещение по механизму 5д,2 происходит с обращением конфигурации независимо от каких-либо деталей строения реагентов. Левовращающий изомер в реакции 5. 2 превращается в правовращающий продукт. Это объясняется тем, что в реакции 5дг2 происхо дит выворачивание тетраэдра вследствие того, что У атакует С ь Х со стороны, противоположной X  [c.123]

    Нередко наблюдаются и смешанные случаи, когда среди продуктов есть молекулы, сохранившие исходную конфигурацию, и молекулы с обращенной конфигурацией. Например, хлорянтарная кислота гидролизуется под действием AgOH частично с инверсией, частично с сохранением конфигурации, что объясняется параллельным протеканием реакций замещения Sjyl и 5, 2  [c.320]


    Карбогидразы представляют достаточно много примеров реакций по тому и другому типу [98—100], но для лизоцима (и большинства других эндогликогидролаз) оказалось, что катализируемые ими реакции осуществляются с сохранением конфигурации расщепляемой связи. С точки зрения физико-органической химии это означает, что разрыв химической связи под действием лизоцима протекает в две (или в четное число) стадии. Простой вариант одностадийного замещения N2 гликозильного кислорода водой (с одновременным ассистированием ферментом) здесь отпадает, так как в этом случае реакция сопровождалась бы обращением конфигурации. [c.170]

    Был предложен еще пятый вариант [101] — общий кислотно-основной катализ с согласованным участием обеих карбоксильных групп активного центра, Glu 35 и Asp 52, по механизму простого замещения Sn2. По этой гипотезе подвижный протон карбоксильной группы остатка Glu 35 переносится па атом кислорода 0(4) расщепляемой гликозидной связи субстрата (как и н рассматриваемом ниже карбокатионном механизме, рис. 20). Однако, в от-. шчие от карбокатиониого механизма, одновременно с переносом протона здесь происходит согласованный процесс с участием другой, отрицательно заряженной, карбоксильной группы остатка Asp 52 — акцептирование протона от молекулы воды и одновременная атака образующимся гидроксильным ионом углеродного атома С(1) гликозидной связи субстрата. Такой одностадийный согласованный механизм Sn2 маловероятен, поскольку должен протекать с обращением конфигурации расщепляемой связи субстрата, что противоречит соответствующим экспериментальным данным. [c.172]

    Здесь желательно вспомнить о том, как в оригинальных работах было доказано, что реакция замещения происходит с обращением конфигурации, причем тогда, когда механизм реакции еще не был известен. Вальден [4] привел ряд примеров реакций, в которых должно происходить обращение конфигурации. Например, ( + )-яблочную кислоту действием тионилхлорида можно превратить в ( + )-хлороянтарную, а действием хлорида фосфора(V)—в (—)-хлороянтарную  [c.13]

    Следовательно, та часть оригинальной реакции, которая приводит к сохранению конфигурации, представляет собой две последовательные реакции Sn2, а не результат какого-либо пограничного поведения [61]. В другом исследовании Стрейтвизер, Уэлш и Вольф показали, что рацемизация, сопровождающая инверсию при ацетолизе оптически активного 2-октилтозилата, является результатом реакций иных, чем действительное сольволи-тическое замещение, а именно — реакции 2-октилацетата с образующейся п-толуолсульфоновой кислотой, присоединения уксусной кислоты к 2-октену (получающемуся из субстрата по конкурентной реакции элиминирования) и рацемизации исходного тозилата [62]. Само нуклеофильное замещение происходит практически с полным обращением конфигурации. [c.28]

    Замещение в свободном эпоксиде, которое, как правило, происходит в нейтральной или основной среде, идет обычно по механизму Sn2. Поскольку первичные субстраты легче подвергаются SN2-aTaK6, чем вторичные, то соединения тииа 90 в нейтральном или основном растворе атакуются по менее замещенному атому углерода, причем взаимодействие происходит стереоспецифично с обращением конфигурации у этого атома углерода. В кислой среде в реакцию вступает протонированная форма эпоксида. В таких условиях реакция может идти по механизму либо SnI, либо Sn2. При осуществлении механизма SnI, для которого характерно участие третичных атомов углерода, можно ожидать, что атака будет происходить по наиболее замещенному атому углерода, что и наблюдается. Однако даже когда протонированные эпоксиды реагируют по механизму Sn2, атака тоже происходит по более замещенному положению [368]. Так, часто можно изменить направление раскрытия цикла при переходе от основных растворов к кислым и наоборот. Раскрытие эпоксидного цикла, конденсированного с циклогексановым кольцом, по механизму Sn2 всегда имеет диаксильный, а не диэкваториальный характер [369]. [c.99]

    Установить стереоснецифичпость этой реакции значительно труднее, чем для нуклеофильного замещения у насыщенного атома углерода, когда хиральные соединения относительно несложно приготовить. Однако необходимо помнить, что оптическая активность возможна также и в случае соединения типа Н50аХ, если один атом кислорода — это изотоп 0, а второй — 0 (т. 1, разд. 4.2). Обращение конфигурации было обнаружено при превращении под действием реактива Гриньяра (реакция 10-122) сульфоната, обладающего хиральностью такого типа, в сульфон [1371]. Это не противоречит [c.239]

    В случае ртутьорганических субстратов обращения конфигурации не наблюдалось. Возможно, имеются и другие случаи атаки с тыла [13], которые не удалось идентифицировать из-за трудностей получения соединений с конфигурационно устойчивой связью углерод — металл. Соединения, хиральность которых обусловлена асимметрическим атомом углерода, входящего в связь углерод — металл, обычно трудно разделить на оптические антиподы, а будучи разделенными, такие соединения зачастую легко рацемизуются. Чаще всего удается разделить ртутьорганические соединения [14], поэтому больщая часть сте-реохимических исследований была выполнена именно на этих субстратах. Известно лишь несколько оптически активных реактивов Гриньяра [15], в которых единственным асимметрическим центром был бы атом углерода, связанный с магнием. Поэтому стереохимия электрофильного замещения при связи С—Жg установлена далеко не во всех случаях. Для одной из таких реакций, а именно для взаимодействия экэо- и эн(5о-изомеров 2-норборнильного реактива Гриньяра с НдВг2, приводящего к 2-нор-борнилмеркурбромиду, показано, что она происходит с сохранением конфигурации [16]. Вполне вероятно, что обращение конфигурации имеет место только в тех случаях, когда стерические затруднения препятствуют фронтальной атаке и когда электрр-фил не несет группу Ъ (см. выше). [c.411]

    В реакции нуклеофильного бимолекулярного замещения (5 -2) на 5р -углеродном атоме наблюдается обращение конфигурации углеродного тетраэдра, что было найдено экспериментально еще в 1870 г. (П. Вальден). Этот результат хорошо объясняется проведенными теоретическими расчетами серии модельных реакций 5лг2 типа (табл. 79). [c.374]

    Правило для SN2-peaкцuй замещение у асимметрического атома, протекающее по механизму 5 у2, всегда сопровождается обращением конфигурации независимо от деталей строения молекулы. [c.82]

    В гл. 1 мы уже отмечали, что стереохимический результат реакций замещения у асимметрического атома углерода определяется правилами Ингольда замещение по механизму 5лг2 сопровождается обращением конфигурации, замещение по механизму 5 1 обычно протекает с рацемизацией или частичным обращением конфигурации, а при наличии в молекуле фиксирующих групп — и с сохранением конфигурации. Правилам Ингольда можно дать следующее наглядное толкование. [c.272]

    Реакции по механизму 5 2 идут через переходное состояние, в котором вступающая группа взаимодействует с асимметрическим центром тогда, когда уходящая группа еще не потеряла связи с ним. Наиболее выг(5Дной моделью такого переходного состояния является расположение входящей и уходящей групп на одной прямой с двух сторон от асимметрического центра. Замещение при этом приводит к обращению конфигурации  [c.272]

    Специальными работами было показано, что стереохимический результат 5 у2-реакций одинаков для процессов нуклеофильного замещения как при первичном, так и при вторичном и третичном атомах углерода. Возможность исследовать стереохимию реакций замещения при первичном атоме углерода появилась лишь после того, как были получены оптически активные вещества с водородно-дейтериевой асимметрией . Примером может служить использование 1-дейтероэтанола для доказательства обращения конфигурации при щелочном гидролизе его /г-толуолсульфоната. [c.273]

    В 1896 г. П. И. Вальден сообщил, что ему удалось осуществить непосредственное превращение оптически активного соедипения в его оптический антипод, минуя рацемическую форму. Обращение конфигурации оптически активного центра происходнло в процессе следующих реакций замещения. [c.232]

    Поскольку не существует простой связи между направлением вращения света и абсолютной конфигурацией, трудно выбрать, какая из альтернативных схем верна. В настоящее время установлено, что все 5н2-реакции сопровождаются обращением конфигурации хирального центра, у которого происходит замещение. Этот вывод, сделанный первоначально на основании циклической последовательности реакций, был затем изобретательно подтвержден при исследовании взаимодействия изотопно меченного (радиоактивного) иодид-иона с оптически чистым 2-иодооктаном. Алкилиодид при этом рацемизуется в результате 5к2-замещения нормального иодида на радиоактивный ио-дид-ион. [c.226]

    Кроме тех случаев, о которых шла речь выше, когда реакции замещения приводят к обращению конфигурации или к рацемизации, а в некоторых случаях одновременно и к тому, и к другому, известно несколько реакций, протекающих с сохранение , конфигурации, т. е. реакций, при которых как исходное вещество, так и продукт обладают одинаковой конфигурацией. Конкретным случаем, для которого это было показано, является замещение ОН на С1 в присутствии тионилхлорида. Эта реакция подчиняется кинети Гескому уравнению второго порядка, т. е. скорость пропорциональна [ННа1][50С12]. Однако нельзя считать, что она протекает строго в соответствии с механизмом 8 2, поскольку при этом должно было бы иметь место обращение конфигурации, чего в действительности не наблюдается. Механизм этой реакции был интерпретирован следующим образом  [c.104]

    Хлорсульфит-анион распадается затем на SO2 и С1", причем распад происходит настолько быстро, что С1" может осуществлять фронтальную атаку карбониевого иона до того, как этот ион успеет оказаться сплющенным до плоского состояния. В результате образуется продукт, конфигурация которого не отличается от конфигурации исходного соединения. Доказательством того, что соединение VHI является промежуточным продуктом, может служить тот факт, что такие алкилхлорсульфиты действительно могут быть выделены и легко превращены в соответствующие алкилгалогениды с выделением SO2. Если же проводить реакцию в присутствии основания, например пиридина, то хлористый водород, выделяющийся при образовании хлорсуль-фита на стадии (1), дает анион h, который затем легко атакует соединение VHI с задней стороны с удалением "0S0 1. Теперь это будет уже реакция 5л 2 обычного типа, сопровождающаяся обращением конфигурации, а реакция, протекающая по несколько необычному механизму, условно названному механизмом внутреннего нуклеофильного замещения и обозначаемому SnI (при котором конфигурация исходного вещества сохраняется), больше наблюдаться не будет. [c.105]

    Трехчленное кольцо затем вновь раскрывается под действием иона ОН, причем атакуется менее замещенный из двух атомов углерода, т. е. тот же, который атаковался вначале (в нашем случае это атом С, связанный вначале с хлором), поскольку он более положителен. Доступность электронов этого атома углерода повышается, так как он находится под влиянием иидуктив-ного эффекта только одной алкильной группы, а не двух. Атака ионом "ОН также будет проходить по механизму типа 5 2 с той стороны, с которой сначала был присоединен хлор, и в результате произойдет второе обращение конфигурации этого атома углерода. Реакция завершается превращением аниона XII в спирт XIII, причем этот спирт будет иметь ту же конфигурацию, что и исходное хлорпроизводное IX. Едва ли правильно было бы здесь просто сказать, что суммарная реакция протекает с сохранением конфигурации. В действительности кажущееся сохранение конфигурации является результатом двух последовательных обращений. Эта особенность рассматриваемой реакции отличает ее от реакций типа которые протекают с истинным сохранением конфигурации. [c.106]

    Восстановление других классов органических соединений комплексными гидридами металлов может происходить иным путем. Так, восстановление алкилгалогенидов, эфиров сульфокислот и эпоксидов протекает как нуклеофильное замещение Sn2 типа, в процессе которого перенос гидрид-иона осуществляется атакой аниона AIH4 . Как и следовало ожидать, при восстановлении эпоксидов происходит обращение конфигурации атома углерода, атакуемого алюмогидридом лития, а в случае несимметричного эпоксида связь углерод-кислород разрывается со стороны наименее замещенной связи в соответствии со значимостью стерических препятствий в S] 2 реакциях. Восстановление винил-, циклопропил- и арилгалогенидов может проходить другим путем по карбанионно-му, четырехцентровому или радикальному механизму в зависимости от природы восстановителя и условий реакции. [c.125]

    Описать взаимодействие литийорганических соединений с алкилгалогенидами в рамках единого механизма не представляется возможным. В зависимости от строения субстрата и условий реакции механизм может быть гетеролитическим 5 /2 типа или радикальным. Так, реакции аллил- и бензиллития со вторичными алкил-бромидами протекают с хорошими выходами продуктов и с высокой степенью обращения конфигурации атома углерода, у которого происходит замещение атома брома  [c.245]

    Еания, Когда же стереохимяческое направление истинного процесса замещения было рассмотрено с учетом этих реакций, прпводяших к потере оптической активности, было найдено, что прн замещении происходит стереоспецифичное обращение конфигурации [70]. [c.197]


Смотреть страницы где упоминается термин Замещение и обращение конфигурации: [c.171]    [c.372]    [c.99]    [c.110]    [c.27]    [c.40]    [c.181]    [c.486]    [c.214]    [c.102]    [c.171]    [c.175]    [c.196]   
Смотреть главы в:

Равновесие и кинетика реакций в растворах -> Замещение и обращение конфигурации




ПОИСК





Смотрите так же термины и статьи:

Конфигурация обращение

Обращение конфигурации при нуклеофильном замещении

Обращение фаз



© 2025 chem21.info Реклама на сайте