Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбены реакции

    Некоторые авторы пытались объяснить этот факт тем, что в образующемся карбо-ний-ионе все атомы должны лежать в одной плоскости. Такое строение исключается в случае бициклических соединений. Хотя это предположение и может быть правильным, оно не доказано кинетически. Возможно, что реакция не идет благодаря тому, что строение этих соединений сильно препятствует сольватации, облегчающей ионизацию. [c.474]


    Продукты присоединения к полициклическим мостиковым алкенам при условии соблюдения стерических требований быстро перегруппировываются. В этих случаях перегруппировки могут проходить во время реакции, и образующиеся продукты способны к присоединению второй молекулы карбена, что приводит к сложным смесям продуктов. Механизм реакции характеризуется тем, что син-атом хлора временно отщепляется в виде хлорид-иона и дисротаторное раскрытие трехчленного цикла ведет к образованию аллильного катиона, который снова присоединяет хлорид-анион с той же самой стороны молекулы  [c.304]

    Нагары образуются в результате крекинга, пиролиза и окисления углеводородных топлив с последующей конденсацией и коксообразованием продуктов химических реакций на горячих поверхностях деталей камеры сгорания. При этом образуются асфальтены, оксикислоты, карбены, карбоиды и другие соединения. Составы образующихся нагаров представлены в табл. 4.11 и 4.12 [ 153, 154]. [c.150]

    К числу важнейших задач, поставленных перед нефтеперерабатывающей промышленностью СССР, относится углубление переработки нефти с целью получения максимального выхода моторных топлив высокого качества и сырья для нефтехимического синтеза. Одним из наиболее распространенных процессов, обеспечивающих эффективное решение этих проблем, является каталитический крекинг флюид (ККФ). Это обусловливается следующими его достоинствами осуществление процесса при низком давлении и в аппаратах простой конструкции наличием значительных ресурсов сырья, начиная с керосино-газойлевой фракции и кончая гудроном высокими выходами (до 90%) ценных продуктов высокооктанового бензина, легкого газойля-компонента дизельных топлив, сжиженных газов -сырья для производства метил-третичного бутилэфира (МТБЭ) и алкилатов, тяжелого газойля - сырья для производства технического углерода, игольчатого и электродного кокса возможностью повышения мощности установок и их блокирования с другими возможностью удовлетворительного решения проблем безостаточной переработки нефти и охраны окружающей среды более высоким по сравнению с термическим крекингом качеством продуктов. В продуктах ККФ практически отсутствуют сухие газы (С1 и Сг), промежуточные продукты реакций уплотнения (например, смолы, асфальтены и карбены, образующие крекинг-остаток), меньше непредельных, больше парафиновых углеводородов изомерного строения, ароматических углеводородов и кокса, бедного водородом. Это свидетельствует о более глубоком протекании реакций распада, изомеризации и перераспределении водорода. Бензин обогащается водородом за счет ароматизации средних фракций и образования кокса, весьма бедного водородом. [c.102]


    Схема описывает процесс цепной поликонденсации. Так как образующиеся высокомолекулярные продукты поликонденсации могут вступать в реакции с радикалами совершенно та же, как и асфальтены, продуктом реакции в основном является сшитый трехмерный полимер — карбоиды. Несшитые макромолекулы представляют собой экстрагируемые из кокса сероуглеродом вещества — карбены. Различие в кинетике разложения нефтяных нативных асфальтенов и асфальтенов вторичного происхождения вызвано тем, что в первом случае цепи обрываются по реакции (п), а во втором —по реакции (т). При обрыве цепей по реакции (п) скорость суммарной реакции описывается уравнением  [c.119]

    В ходе каталитического алкилирования парафиновых углеводородов карб-г катионы претерпевают ряд реакций отщепление протона [c.116]

    Диазометан, равно как и многие замешенные диазоалканы, широко применяются для циклопропанирования, поскольку под действием света или при нагревании в присутствии солей тяжелых металлов (Си, Rh) из них легко генерируются карбены (реакция (5)] [ЗЗе]. Однако простейшие диазоалканы не могут долго храниться даже в растворах, и каждый раз их приходиться получать из таких предшественников, как N-нитрозометилмочевина или ее аналоги. Напротив, производные диазоажанов, содержащие электроноакцепторные заместители, такие, как диазоуксусный эфир или диазоацетон, достаточно стабильны и удобны в применении для синтеза замещенных циклопропанов. [c.244]

    Высокая активность карбенных центров предопределяет их быстрое исчезновение в реакционных смесях, причем типы молекул-перехватчиков достаточно разнообразны. Вместе с тем карбенные реакции удается достаточно четко классифицировать. Поскольку большинство реакций характерно для всех типов карбенов, в основе такой классификации лежит тип реакционного центра, перехватывающего карбен, — центральный атом другой молекулы карбена (реакции ди- и полимеризации), двойная или тройная связь (реакции присоединения), ординарная связь (реакции внедрения), гетероатом с неподеленной парой электронов или атом переходного металла (реакции комп- Лексообразования). Большинство таких реакций возможны и во рнутримолекулярном варианте, однако ряд внутримолекулярных реакций карбенов обладает определенной спецификой и заслуживает отдельного рассмотрения. В настоящем разделе для большинства типов карбенных реакций приведены только общие сведения об их протекании и наиболее вероятном механизме возможность использования реакций того или иного типа рассмотрена отдельно (см. гл. 4—6). [c.61]

    Необходимо отметить, что для свободных радикалов не. характерна реакция, аналогичная реакции изомеризации правило 3) ионоц карбо ния, поскольку свободные радикалы в противоположность ионам карбония редко подвергаются перегруппировке. Этим обстоятельством объясняется разница между лродуктами некоторых термических реакций и аналогичных каталитических реакций, [c.215]

    Реакция карбоний-ионной сополимеризации. Как и в реакциях свободно радикальной сополимеризации, лучшим способом получить данные об относительных реакционных способностях мономеров при карбоний-ионной полимеризации является исследование состава сополимеров. Хотя сообщение, что изменение характера активного центра (переход от свободного радикала в ион карбония) может резко изменить состав сополимера, появилось в 1944 г. [99], уравнение сополимеризации не применялось к системам, содержащим ион карбония, до 1948 г., когда было показано [6], что реакция сополимеризации стирола и /г-хлорсти-рола в растворе СС1 , катализируемая ЗпС] , дает постоянные отношения реакционных способностей мономеров (г = 2,2—2,7, = 0,35), это резко отличается от результатов, получаемых при свободно-радикальной реакции (г = 0,74, Гз = 1,025). Впоследствии были опубликованы данные еще для ряда систем, которые подтвердили применимость уравнения во всех случаях, когда сополимер содержит достаточное количество обоих компонентов. На основании этих исследований выяснились два общих свойства реакций карбоний-ионной сополимеризации во-первых, карбо-ний-ионная сополимеризация не имеет тенденции к чередованию или же эта тенденция проявляется в незначительпой степени и, во-вторых, реакционные способности могут быть сведены в последовательные ряды с несколько более широкими пределами распространения, чем это наблюдается при реакции свободно-радикальной сополимеризации. Такие ряды показаны в табл. 11. [c.159]

    Эти результаты находятся в соответствии с медленным разложением первого порядка в ион фенилкарбония с последующей реакцией карбо-ний-иона с различными нуклеофильными веществами, присутствующими в растворе (СУШ)  [c.476]

    Воды в реакционной среде быть не должно, так как М,Ы -карбо-нилдиимидазол гидролизуется даже во влажном воздухе (с образованием двуокиси углерода и имидазола) . Реакция поликонденсации проводится в инертных растворителях (тетрагидрофуран, ме-тилеихлорид) . Образующийся имидазол по окончании реакции удаляют из раствора поликарбоната экстракцией соляной кислотой и водой или другим способом, так как его присутствие даже в небольших количествах приводит к потемнению и разложению поликарбоната в процессе переработки. Реакции ди-(4-оксифенил)-алка-нов с Ы,М -карбонилдиимидазолом в расплаве приводят к получению окрашенных низкомолекулярных поликарбонатов вследствие разложения бис-фенолов и поликарбонатов имидазолом > мв-мо В настоящее время этот способ получения поликарбонатов промышленного применения не имеет. [c.46]


    При сопряженной полимеризации карбоний-ион, образовавшийся на второй стадии реакции (ВСНСНгСННСНз), отнимает от молекулы олефина ион водорода, в результате чего сам карбо-ний-ион превращается в насыщенный парафиновый углеводород, а олефин — в олефиновый карбоний-ион последний, теряя протон, превращается в диолефин. Последовательная миграция водорода по такой схеме приводит к образованию еще более ненасыщенных соединений, которые в свою очередь могут циклизоваться. Конечная реакционная смесь содержит как насыщенные парафиновые углеводороды, так и множество соединений, весьма бедных водородом. [c.227]

    Асфальтены, карбоиды и карбены получаются при продолжении этих реакций. Если конденсация протекает между различными молекулами, то молекулярный вес быстро меняется, и кислород или его эквивалент сера могут остаться в положениях, допускающих оксониевый тип соединений с хлоридами железа и ртути и с серной кислотой, как показал Маркуссон. Насколько высоким может быть молекулярный вес этих соединений и других членов этого ряда, еще недзвестно. Работа в лаборатории автора на неразогнанных нерастворимых в пентане осадках дала максимальное значение порядка 40 ООО. Другие расчеты дали величину порядка 140 000 [33]. Вышеизложенные предположения о роли кислорода могут быть подтверждены или опровергнуты тщательным кинетическим изучением распределение кислорода в конечных продуктах наблюдалось (Кнотнерусом (Knotnerus [34]). [c.543]

    Этиловый спирт. Этилен легко поглощается 98—100%-ной серной кислотой при температуре 75—80° С. Более высокие температуры вызывают нежелательные окислительно-восстановительные реакции, а высокая концентрация кислоты вызывает потерю этилена, связанную с превращением его в этионовую кислоту и карбил-сульфат [239, 240]. Образование полимеров в данном случае значения не имеет. Образуются как моно-, так и диэтил сульфаты после разбавления водой и нагревания происходит энергичный гидролиз. Вторичная реакция между нейтральным эфиром и спиртом ведет к образованию этилового эфира [c.577]

    Еще раз следует подчеркнуть, что важной особенностью предлагаемого механизма является стабилизация предшественника карбена, динамически связанного в форме тригалометилидного аниона на границе раздела фаз. Кинетика таких реакций и реакций алкилирования слабых кислот не исследована. Их изучение осложняется гетерогенностью системы, конкурентными реакциями, сложными равновесиями, а также общими ограничениями, связанными с получением линейных зависимостей для констант скоростей второго порядка (см. [10]). Однако, несмотря на все эти трудности, известные факты, по-вцдимому, согласуются с рассмотренным выше механизмом. [c.63]

    Поэтому другие сообщения [623] о некоторой небольшой оптической индукции при присоединении СС12 в присутствии оптически активных аминов Р при К = Е1, РЬ и Н = Ме, Е1 (схема 3.10) были встречены сдержанно. Несмотря на то что Макоша рассмотрел предположения о появлении интермедиата типа О, который представляет собой илид, образованный при взаимодействии карбена с атомом азота, и показал [433], что его образование невозможно, данные этой работы игнорируются в некоторых более поздних исследованиях, и такие структуры все еще используются. [623] для объяснения хода реакции. Для того чтобы твердо установить, возможна ли оптическая индукция подобного типа, была проведена реакция с хлороформом и концентрированным раствором гидроксида натрия в присутствии (5)-(+)-К,К-диметилфенилэтиламина. Перегнанный продукт реакции действительно обладал небольшим оптическим вращением, которое, однако, исчезало при тщательной очистке [843, 1697]. [c.106]

    Попытки доказать возможное образование карбена в качестве промежуточного продукта при реакции Н в условиях МФК оказались безуспешными. В результате были получены стереоизомеры Е, а также соединения Р, I, К [517]. Реакция между нит-робензилхлоридами и замещенными фенилацетонитрилами в системе концентрированный гидроксид натрия/катализатор [308, 319] приводит главным образом к продуктам замещения наряду с некоторым количеством продуктов взаимодействия радикалов (более подробно см. в разд. 3.41). [c.277]

    Время жизни образовавшегося дихлоркарбена всегда крайне мало. В отсутствие реагирующего олефина он выдыхается . Например, хорошо изучены многостадийные и сложные реак-ци с дихлоркарбеном, полученным из трихлорацетата натрия [614]. Однако в случае реакции Макоши весь дихлоркарбен не образуется одновременно. Побочные реакции и гидролиз идут медленно, и система остается реакционноспособной в течение длительного времени даже в отсутствие хорошего акцептора карбена. Таким образом, находящийся в равновесии с исходным реагентом ССЬ может ждать субстрат, и поэтому становится возможной реакция даже с очень дезактивированными субстратами. На практике применяют 50%-ный (концентрированный) водный раствор гидроксида натрия в присутствии ТЭБА как катализатора и хлороформа в качестве растворителя. Общие тенденции к образованию, присоединению и гидролизу ССЬ приведены в табл. 3.18. В отсутствие олефина медленный гидролиз хлороформа ускоряется примерно в 6 раз под действием ТЭБА. Добавление олефина приводит к повышению расхода хлороформа, величина ускорения зависит от природы олефина. Гораздо большее значение имеет то, что соотношение скоростей присоединения карбена и гидролиза хлороформа зависит от нуклеофильности олефина и может изменяться в очень широких пределах [384]. Поэтому малореакционноспособные субстраты следует перемешивать с большим избытком основания и хлороформа длительное время. Из данных, приведенных в табл. 3.18, видно, что условий, оптимальных для всех олефинов, не существует. Тем не менее была проделана большая и успешная работа по оптимизации условий реакции [c.291]

    Декарбоксилирования не происходит, если при реакции в условиях МФК используют концентрированный водный раствор трихлорацетата натрия, хотя (гидратированный) анион экстрагируется. В данном случае основную роль играет количество катализатора. Когда катализатора слишком много, в растворе находится и разлагается за единицу времени относительно большое количество трихлорацетата натрия это ведет к заметному развитию хорошо известных побочных реакций [614] (атака ССЬ или СС1з на трихлорацетат и осмоление), и ССЬ выдыхается . В отличие от метода Макоши в данном случае олефин не влияет на скорость расходования источника карбена [675]. Было изучено [676] также влияние катионов (K+>Na+>Li+) как в присутствии, так и в отсутствие краун-эфиров на декарбоксилирование и присоединение дихлоркарбена. Выводы были аналогичными при быстром де-карбоксилировании выход продукта относительно низок. [c.297]

    В заключение можно отметить, что жидкофазпое гидрирование представляет сложный процесс, в котором протекают чередующиеся и часто взаимосвязанные реакции гидрирования и расщепления, алкилирования и деалкилироваиия, изомеризации положения заместителей, функциональных групп, водорода. Закономерности насыщения ароматических карбо- и гетероциклических систем часто объясняются большей или меньшей электронной плотностью ароматических связей за счет конденсации или введения гетероатома, а закономерности изомеризации и расщепления — радикальным механизмом этих реакций. [c.220]

    Сравнение относительных скоростей реакции переалкилирования в двойных и тройных системах показывает, что в последнем случае относительные подвижности -алкильных заместителей по сравнению с этильной группой заметно возрастают. С позиций механизма Стрейтвизера [174, с. 503] подобное явление можно объяснить тем, что лимитирующей стадией переалкилирования н-алкилбензолов является образование алкилфенил-карбониевых ионов, дающих начало цепному механизму карбо-ний-ионных превращений. В соответствии с этим в тройных системах концентрации разных катионов выравниваются за счет цепного механизма гидридных переносов с алкилароматически-ми углеводородами, что и выравнивает различия между их относительными скоростями переалкилирования. [c.183]

    Позже поведение родиевых комплексов в этой последовательности реакций изучил спектрофотометрическим методом Форстер [10—12]. На основании полученных данных о структуре промежуточных соединений был предложен механизм карбо-ннлирования метанола в присутствии родиниодного катализатора, согласующийся с кинетикой реакции (рис. 3). [c.296]

    Катализируемые основаниями реакции углерод-углеродного (по С—С-овязи) шрисоединения представляют интерес для препаративных целей, поскольку они позволяют получать с хорошим выходом углеводороды и аналогичные им соединения щростым одностадийным процессом. Возможность проведения этих реакций определяется тем, что углеводороды и другие соединения, содержащие бензильный или аллильный атом водорода, являются углеродными кислотами , имеющими рКа в интервале от 35 до 37 они могут отдавать протон основанию и превращаться в карба-нионы. Эти карбаиионы способны присоединяться по двойной связи ненасыщенных углеводородов. Превращения, наблюдаемые в ходе цепной каталитической реакции, иллюстрируются приведенными ниже уравнениями (реагенты — толуол и этилен, катализатор — натрий) [5]  [c.164]


Смотреть страницы где упоминается термин Карбены реакции: [c.160]    [c.148]    [c.161]    [c.42]    [c.212]    [c.108]    [c.339]    [c.416]    [c.42]    [c.62]    [c.77]    [c.320]    [c.335]    [c.353]    [c.358]    [c.20]    [c.159]    [c.398]    [c.535]    [c.218]    [c.56]    [c.258]   
Начала органической химии Книга первая (1969) -- [ c.537 , c.541 , c.563 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.15 , c.18 , c.19 , c.20 , c.479 , c.488 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.503 , c.507 , c.528 , c.536 ]




ПОИСК





Смотрите так же термины и статьи:

Карбены



© 2025 chem21.info Реклама на сайте